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Abstract: Micro-light-emitting diodes (micro-LEDs) have been regarded as the important next-
generation display technology, and a comprehensive and reliable modeling method for the design
and optimization of characteristics of the micro-LED is of great use. In this work, by integrating the
electrical simulation with the optical simulation, we conduct comprehensive simulation studies on
electrical and optical/emission properties of real InGaN-based flip-chip micro-LED devices. The inte-
grated simulation adopting the output of the electrical simulation (e.g., the non-uniform spontaneous
emission distribution) as the input of the optical simulation (e.g., the emission source distribution)
can provide more comprehensive and detailed characteristics and mechanisms of the micro-LED
operation than the simulation by simply assuming a simple uniform emission source distribution.
The simulated electrical and emission properties of the micro-LED were well corroborated by the
measured properties, validating the effectiveness of the simulation. The reliable and practical model-
ing/simulation methodology reported here shall be useful to thoroughly investigate the physical
mechanisms and operation of micro-LED devices.

Keywords: flip-chip micro-LED; electrical modeling; optical modeling; light extraction; efficiency

1. Introduction

Ever since Jiang et al. delivered the first III-nitride blue micro-light-emitting diodes
(micro-LEDs) in the year of 2000, research on micro-LED displays has become increasingly
attractive and promising [1,2]. In contrast to liquid-crystal displays (LCD) and organic
light-emitting-diode displays (OLEDs), micro-LED displays provide potential merits such
as high brightness, high luminous efficiency, high dynamic range, long lifetime, short
response time, low power consumption, and wide color gamut. The display applications of
micro-LEDs could range from large high-performance TVs and mobile/portable devices to
wearable devices for augmented reality (AR), virtual reality (VR), and smart watches. As a
result, micro-LED displays have been now regarded as one of the important next-generation
display technologies.

To develop high-performance micro-LEDs for displays, some issues and factors crit-
ical for micro-LED performance, such as: (i) current spreading, current crowding, and
bulk/surface Shockley–Read–Hall recombination that would influence the carrier/emission
distribution and internal quantum efficiency (IQE), and (ii) total internal reflection (TIR)
loss inside the micro-LED chips that would affect the light extraction/luminous inten-
sity/external quantum efficiency (EQE), require careful study and treatment. There have
been some previous simulation studies investigating the physical mechanisms and operat-
ing behaviors of micro-LEDs [3–6]. Some works focused on the study and optimization
of electrical properties [3,4], while some others paid attention to optical loss/light extrac-
tion properties [5,6]. Only a few studies considered/integrated both electrical and optical
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simulation of micro-LED chips simultaneously to give more complete and comprehensive
views of micro-LED characteristics [7]. However, it is known that the current/carrier
distributions and surface recombination phenomena inside the micro-LED mesa would
influence the distribution of the spontaneous emission rate over the lateral active region
and lead to an inhomogeneous emission distribution over the chip area. Nevertheless,
many works have simply assumed a uniform emission distribution over the active region
in the optical studies/simulation of micro-LEDs, which might lead to a deviation from
the actual situations/characteristics (either chip-surface emission intensity distribution or
far-field emission characteristics). Consequently, it would be more ideal and comprehen-
sive to consider/integrate both the electrical and optical simulation of micro-LED chips
simultaneously to obtain more a complete and comprehensive view and understanding of
micro-LED characteristics.

In this work, we conduct comprehensive simulation studies, integrating the electri-
cal simulation with the optical simulation, on real micro-LED devices and corroborate
simulation results with experimental characteristics. The reliable and practical model-
ing/simulation methodology reported here shall be useful to thoroughly investigate the
physical mechanisms and operation of micro-LED devices.

2. Research Methods

The simulation studies were based on real fabricated blue GaN micro-LED devices/chips,
as illustrated in Figure 1. As shown in Figure 1a, the rectangular flip-chip GaN micro-
LEDs transferred and solder-bonded onto the substrate having metal interconnection bus
electrodes had a size of 450 µm2 and a chip thickness of ~4.7–5 µm [5]. The sapphire
substrates had been removed from the micro-LED chips by the lift-off process. The GaN
micro-LEDs were grown on the pattered sapphire substrate (PSS), thus giving a textured
chip surface after substrate lift-off (Figure 1a). Figure 1a further depicts the cross-sectional
layer structure of the micro-LED chips. Epi-layers consisted of a ~0.3 µm p-GaN layer, a
0.02–0.05 µm p-AlGaN electron-blocking layer (p-EBL), ~0.2 µm InGaN multiple-quantum-
well (MQW) active layers, and a ~4–5 µm n-GaN layer [3,8–11]. To expose the n-GaN
for making n-contacts, a smaller mesa region containing the p-GaN/MQWs/partial n-
GaN was formed by etching. The indium tin oxide (ITO) in contact with the p-GaN layer
served as the current spreading layer for enhancing the electric conductivity and current
spreading over the device [12]. The micro-LED chip was encapsulated with a thin SiO2
layer for passivation and for insulation to reduce electrical leakage [13]. Finally, the metal
was applied (through openings in SiO2) as the p-contact to ITO/p-GaN and the n-contact
to n-GaN [14]. The GaN micro-LED chips were transferred and solder-bonded onto the
substrate having metal interconnection bus electrodes. The various sidewalls of the micro-
LED chips had a taper angle of 110 ± 10◦ relative to the chip surface (Figure 1a) [5]. The
PSS-induced surface texture had the concave shape of ~µm scale [15,16]. In addition to
bare micro-LED chips bonded onto the substrate, even more practical/realistic micro-
LED samples with a further encapsulation overcoat (OC, tens of micrometers thick over
the micro-LED/substrate), as illustrated in Figure 1b, were also prepared and studied.
Overall, two different micro-LED devices: (i) bare-surface-textured micro-LED without
OC (Figure 1a), and (ii) surface-textured micro-LED with OC (Figure 1b), were analyzed in
this study.

The electrical modeling/simulation was conducted using the semiconductor module
of the FEM (finite element method)-based multiphysics simulation software COMSOL
Multiphysics® of COMSOL Inc., while the optical modeling/simulation was conducted
using the Monte Carlo ray-tracing-based software LightTools® of Synopsys Inc. The 3D
electrical modeling/simulation of the micro-LED device was performed with the COMSOL
semiconductor module, which solves device equations (Poisson’s equations, current dis-
continuity equation, carrier transport equation, and photon emission rate equation) based
on the finite volume method. For most of the simulation, the operating temperature was
mainly assumed at room temperature (300 ◦K). Considering large aspect ratios between the
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length, width, and height in the micro-LED layer stack and chip geometry studied, instead
of using the default mesh geometry (tetrahedral mesh), it would be more effective to adopt
the swept meshing technique (as illustrated in Figure 2) in the numerical simulation [10].
In the swept meshing, a boundary of quadrilateral meshes with a size of ~300 nm was first
constructed as the source surface and the opposite targeted surface was specified. Then,
an ample number of layers was set according to the thickness of the designated domain.
Subsequently, the hexahedral elements were formed/arranged in order through the swept
meshing. By means of the mesh optimization, the swept meshing technique not only re-
duces the number of meshes (compared with the default tetrahedral mesh), but also enables
numerical solutions to reach convergence more effectively (e.g., with reasonable/reduced
computing resource and time).
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Figure 2. Illustration of the swept meshing method for numerical simulation of electrical characteris-
tics of the micro-LED by the COMSOL Multiphysics® software.

In reference to material growth conditions, Table 1 lists the material properties of vari-
ous micro-LED layers used for electrical modeling/simulation [17–24]. The material layers
were assumed as heavily doped near the electrode to ensure ohmic contacts to electrodes.
To analyze the dependence of internal quantum efficiency (IQE) on the current density,
non-ideal non-radiative recombination factors such as Shockley–Read–Hall recombination
(both the bulk one and the trap-assisted surface recombination) and Auger recombination
were considered in the numerical simulation. IQE ηIQE can conceptually be expressed
as [3]:

ηIQE =
RRad

RRad + RAuger + RSRH
, (1)

where Rrad is the radiative recombination rate, RAuger is the Auger recombination rate,
and RSRH is the (bulk or surface) Shockley–Read–Hall recombination rate. Assuming the
electron and hole concentrations are much larger than the intrinsic carrier concentrations,
the Auger recombination rate RAuger and Shockley–Read–Hall recombination rate RSRH can
be expressed as [4]:

RAuger = (Cnn + Cp p)np (2)

RSRH =
np

τnn + τp p
(bulk), RSRH =

np
n

vs,p
+ p

vs,n

(surface) (3)

Table 1. Materials properties of various micro-LED layers used for electrical modeling/simulation.

Material Layer Material Properties

n+-GaN Doping: 2 × 1018 1/cm3

n-GaN Doping: 1 × 1018 1/cm3 [17]

MQW

Non-doped
(a) τsp = 1 ns

(b) Cn, Cp = 8 × 10−31 cm6/s
(c) τn, τp = 200 ns

(d) vs,n, vs,p = 1000 cm/s
AlGaN Doping: 3 × 1018 1/cm3 [3]
p-GaN Doping: 3 × 1018 1/cm3 [21]

p+-GaN Doping: 8 × 1018 1/cm3

p+-GaN/ITO contact Specific resistance: 1.7 × 10−2 Ω-cm [22]
ITO Resistivity: 4 × 10−4 Ω [23]

ITO/metal contact Specific resistance: 3 × 10−4 Ω-cm [24]
(a) τsp is the spontaneous lifetime of the emission layer; (b) Cn, Cp are the auger recombination coefficients for
both electrons and holes, respectively, whose values are taken from reference [18]; (c) τn, τp are, respectively,
electron and hole lifetimes (in the bulk) for the Shockley–Read–Hall recombination, whose values are taken from
reference [19]; (d) vs,n, vs,p are the surface recombination velocities (SRVs) for both electrons and holes, respectively,
whose values are taken from reference [20].

n and p are electron and hole concentrations, Cn and Cp are the auger recombination
coefficients, τn and τp are electron and hole lifetimes (in the bulk) for the Shockley–Read–
Hall recombination, and vs,n and vs,p are the surface recombination velocities (SRVs) for both
electrons and holes, respectively. In general, RAuger is more significant at the high current
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densities, while RSRH is dominant at the low current densities (thus, under general operating
conditions of micro-LED devices). In view of the high perimeter-to-area ratios of micro-
LEDs, the trap-assisted surface non-radiative recombination occurring at mesa surfaces
was also considered [3], setting the trap levels 0.46 eV above the valence band and 0.24 eV
below the conduction band [25], and setting the surface recombination velocities (SRVs)
for both electrons and holes (vs,n and vs,p, respectively) around 1000 cm/s (Table 1) [13].
Through electrical simulation under different biases, the spatial distributions of carrier
concentrations, current flows, various recombination rates, and spontaneous emission rates
as a function of bias, J–V characteristics, and electroluminescence (EL) and IQE as a function
of bias can be analyzed. From the electrical modeling/simulation, the (three-dimensional)
distributions of current flows, carriers, recombination, and spontaneous emission in the
micro-LED device under different biases can be visualized.

With the spatial (non-uniform) distribution of radiative recombination rates (sponta-
neous emission rates) calculated from the electrical modeling/simulation by COMSOL,
the data were transformed into a matrix corresponding to locations over the MQW ac-
tive region and were then used to set-up the spatial light source distributions over the
MQW active region for optical modeling/simulation in LightTools. At each location, the
s-polarized and p-polarized light sources were established separately with isotropic and
cos2θ angular distributions and the total radiation power ratio of 3:1 (s vs. p polarization),
respectively [26]. In addition, the total radiation powers (sum of s and p polarizations) and,
thus, the total light ray numbers over locations were determined by the spatial distribution
of the spontaneous rates over the active region calculated by the COMSOL. Overall, the
effects of polarization, angular distribution, and spatial distribution were all taken into
account in our optical simulation model. As the optical microcavity effects in the micro-
LED configuration had been reported to be weak and relevant micro-LED dimensions
(sizes, thicknesses, etc.) were larger than emission wavelengths [5], the optical model-
ing/simulation was conducted by the 3D Monte Carlo ray-tracing method, using the
Synopsys LightTools software. Table 2 lists refractive indices and extinction coefficients
at the emission wavelength of 459 nm for various materials/layers used in the optical
simulation [5]. The small but not negligible extinction coefficient of the MQW layers would
induce absorption loss upon propagation and multiple reflections of light. Tens of millions
of rays propagating from the MQW emission region through multilayers and interfaces
were calculated according to Snell’s law and Fresnel equations. A planar receiver was
placed 20 nm above the micro-LED sample surface to detect the normal-direction surface
emission intensity distribution in correspondence with the measurement setup, while a
large (infinite) sphere far-field receiver was used to observe/collect the far-field emission
characteristics such as the light out-coupling/extraction efficiencies and emission patterns.
The emission patterns were represented by the emission intensity as a function of the polar
angle θ under various azimuthal angles φ, in which φ = 0◦ and φ = 90◦ correspond to the
long axis and short axis of the micro-LED chip (see Figure 1c), respectively. The external
quantum efficiency (EQE) ηEQE in general can be expressed as:

ηEQE = ηCIE × ηIQE × ηLEE, (4)

where ηCIE is current injection efficiency, ηIQE is internal quantum efficiency, and ηLEE
is light extraction efficiency [3]. For verification of optical simulation, simulation results
were compared with the experimental measurements. The current-density–voltage (J–V)
characteristics of the devices were measured by a source-measurement unit (Keithley 2400
SourceMeter, Tektronix Inc., Beaverton, OR, USA). The external quantum efficiencies (EQEs)
of devices were determined by collecting the total emission fluxes with a calibrated spectral
lamp measurement system (model SLM-12, AMA Optoelectronics Inc., Taoyuan, Taiwan),
including a 12” integrating sphere, a spectrometer (VNIR1010, Isuzu Optics Corp., Hsinchu,
Taiwan), and a source meter (Agilent E3632A, Agilent Technologies Inc., Santa Clara, CA,
USA). Angle-dependent EL properties (e.g., far-field emission patterns) of the devices
were measured by a goniometric spectroradiometer (DMS 201, Autronic-Melchers GmbH,
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Karlsruhe, Germany). The emission intensity distributions over the micro-LED sample
surface were observed using an optical microscope (MX50, Olympus Corporation, Tokyo,
Japan) equipped with a CMOS sensor (SR-5100, Topcon corporation, Tokyo, Japan).

Table 2. Refractive indices and extinction coefficients at the emission wavelength of 459 nm for
various materials/layers used in the optical simulation.

Material n k

SiO2 1.47 0
n-GaN 2.42 4 × 10−5

MQW 2.48 2 × 10−2

AlGaN 2.35 7 × 10−4

p-GaN 2.42 4 × 10−5

ITO 2.07 0
n/p metal 2.28 3.06

OC 1.49 0

3. Results and Discussion

By the numerical simulation approaches described in the previous section, various
electrical and physical characteristics for the micro-LED chip were calculated and analyzed.
Figure 3 shows simulated current-density–voltage (J–V) characteristics, which are in sat-
isfactory agreement with the measured ones. It is worth mentioning that the operating
current densities for display applications of micro-LEDs are usually in the range of 0.02 to
2 A/cm2 [3], substantially lower than those of conventional large-size LED applications
(e.g., lighting).
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Figure 4a shows the calculated volume-integrated spontaneous emission rate (Rsp.)
and non-radiative recombination rates (RSRH, RAuger) vs. current density characteristics
of the micro-LED. It is seen that RSRH is comparable to Rsp. or even more dominant at the
low current densities, while RAuger becomes more significant at higher current densities.
Correspondingly, in the calculated IQE vs. current density characteristics in Figure 4b,
the drop in IQE at lower current densities is associated with more significant influences
of RSRH, while the slight IQE roll-off at higher current densities is due to gradually more
significant RAuger [27]. The peak IQE (~82.3%) occurs around the medium current density
of 12.8 A/cm2. The micro-LED device under study exhibits a peak IQE at the (relatively
low) current density level useful for display applications, which would be beneficial for
the overall EQE of the micro-LED displays. The calculated electroluminescence (EL) peak
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wavelengths under different current densities are shown in Figure 5. A blue shift of
~3.1 nm in the peak wavelength is observed with increasing current density from 0.044 to
35.3 A/cm2, as often observed and caused by the piezoelectric-induced quantum-confined
Stark effect (QCSE) in the MQW layer [28]. This simulation result again is in good agreement
with measured values in experiments (also shown in Figure 5).
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To gain more insights into the operation of the MQW-based micro-LEDs, Figure 6a,c
and Figure 6b,d show the spatial distributions of carrier concentrations (both electrons
and holes) and total spontaneous emission rates of individual QWs in the MQW active
region under the operating current densities of 0.044 A/cm2 and 4.4 A/cm2, respectively.
With large effective mass and low mobility for holes, the hole concentration decreases from
the QW adjacent to the p-side to that close to the n-side, while additional high-electron
concentrations could occur in QWs near the p-side owing to the electron-blocking layer.
As both electrons and holes have high carrier concentrations in QWs near the p-side
(Figure 6a,b), higher spontaneous emission rates occur in QWs near the p-side (Figure 6c,d).
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under the current densities of 0.044 A/cm2 and 4.4 A/cm2.

To gain more insights into the distribution of current flows and current paths, the
current streamlines inside the micro-LED under different operating current densities were
also calculated and are visualized in Figure 7a (0.044 A/cm2) and Figure 7b (4.4 A/cm2).
At the low current density (0.044 A/cm2), the somewhat current crowding near the MQW
mesa edge next to the metal n-contact is observable. It indicates that the ITO film is rela-
tively conductive (compared to other GaN-based layers) for laterally conducting currents
(injected from the metal p-contact) at low current densities, thus being the important fac-
tor influencing the current streamlines at low current densities [29]. On the other hand,
at higher current densities, more uniform current spreading from the edge of the metal
p-contact toward the metal n-contact is noticeable. This is presumably because the carrier
concentration and the corresponding conductivity of the n-GaN region are substantially
enhanced at higher current densities, making it now effective for laterally conducting
currents. It, thus, could be deduced that the raised conductivity of n-GaN is the important
factor to affect the current flowing paths at higher current density levels.

Figure 8a,b further show the distributions of the spontaneous emission rates in both
3D and 2D formats over the MQW active area at the low current density (0.044 A/cm2) and
at the higher current density (4.4 A/cm2), respectively. They generally reveal a somewhat
non-uniform spontaneous emission distribution. More intense emission occurs around
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the edge of the metal n-contact (Figure 8a) due to somewhat current crowding at low
current densities (Figure 7a). On the other hand, more intense spontaneous emission shifts
toward the center of the MQWs at higher current densities (Figure 8b) due to more uniform
current spreading (Figure 7b). In addition, the intensity of the spontaneous emission drops
near the MQW mesa edges, which could be ascribed to current leakage and non-radiative
surface recombination on mesa sidewall surfaces [30]. In particular, such a phenomenon is
relatively more significant at low current densities [3].
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To gain more insights into the real operation of micro-LEDs, the influences of tem-
peratures on electrical properties are also simulated and discussed. Figure 9a shows the
simulated temperature-dependent current-density–voltage (J–V) characteristics. The cur-
rent density increases with rising temperature, which is consistent with previous studies
and can be ascribed to band-gap narrowing and increased carrier concentration in the active
region [31–33]. Figure 9b depicts the calculated temperature dependence of IQE vs. current
density characteristics. The peak IQE decreases slightly from 83% to 81% when raising
the temperature from 280 K to 320 K, mainly associated with the temperature dependence
of radiative and non-radiative recombination rates. The Shockley–Read–Hall and Auger
recombination ascend while the radiative recombination descends as the temperature
increases for the MQWs according to previous studies [33,34]. Further detailed analyses
also reveal that the spatial distribution of the spontaneous rate would be influenced by the
temperature. The more intense spontaneous emission shifts more toward the n-contact at
elevated temperatures due to the variation in carrier and current distributions.
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As described in the previous method section, we then used the simulation results of
the electrical modeling/simulation of the micro-LED (e.g., distributions of spontaneous
emission rate/intensity as in Figure 8) as inputs to set-up the emission sources in the active
region of the micro-LED, together with optical constants of various material layers listed in
Table 2, for further optical modeling/simulation. Figure 10 shows the simulated far-field
emission patterns (emission intensity as a function of the polar angle θ) of the bare micro-
LED (i.e., no OC) and the OC-encapsulated micro-LED (i.e., those in Figure 1a,b) along the
chip long axis (φ = 0◦) and along the short axis (φ = 90◦), in comparison with corresponding
measured emission patterns. The good agreement between the optical simulation results
and the measurement results indicates effectiveness of the overall modeling/simulation
methodology here (integrated electrical and optical simulation). Indeed, the optical simula-
tion can quite accurately predict the unsymmetric/different emission patterns along the
long axis (φ = 0◦) or the short axis (φ = 90◦), associated with unsymmetric chip geometry.
It also well predicts the narrowing of emission patterns induced by the encapsulation
overcoat (OC). The narrowing of emission patterns with the OC is mainly associated with
the total internal reflection (TIR) at the OC–air interface. For light rays coupled into the OC
with an initial internal angle larger than the TIR, the critical angle of the OC–air interface
would be confined inside the OC, while for the bare micro-LED, more large-angle light
rays extracted into air from various surfaces (including the perimeter sidewalls) can be
directly observed.
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Figure 10. Simulated far-field emission patterns (emission intensity as a function of the polar angle θ)
of the bare micro-LED (i.e., no OC) and the OC-encapsulated micro-LED along the chip long axis
(φ = 0◦) and along the short axis (φ = 90◦), in comparison with corresponding measured emission
patterns (under the current density of 4.4 A/cm2). Bare, φ = 0◦ (a). Bare, φ = 90◦ (b). OC, φ = 0◦ (c).
OC, φ = 90◦ (d).

The bare surface-textured micro-LED bonded onto the substrate gives a light extraction
efficiency ηLEE of 40.8% at 4.4 A/cm2, which is roughly independent of the driving current
density (not shown). With the encapsulation overcoat (OC), the light extraction efficiency
drops significantly to 16.4% (a reduction by nearly 60%). A similar efficiency drop is
also observed in the EQE measurement at the same current density (i.e., ~60% efficiency
drop). The consistency between efficiency simulation and measurement for different device
configurations again confirms the effectiveness of the simulation. According to detailed
analyses, the coupling ratio of micro-LED emission into the OC layer (~70%) is significantly
higher than that directly into air (40.8%) from the bare micro-LED due to the higher index
(~1.5) of the OC layer. However, most of the emission coupled into the thick OC layer is
confined (by total internal reflection at the OC/air interface) in the thick OC layer, resulting
in reduced overall ηLEE for the OC-encapsulated micro-LED (vs. bare micro-LED).

Figure 11(a1,b1) show the measured (normalized) emission intensity distributions
over a portion of the sample surface of the OC-encapsulated micro-LED under the low
driving current density of 0.044 A/cm2 and the higher driving current density of 4.4 A/cm2,
respectively. In measured emission intensity distribution profiles, several distinct emission
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features can be observed: (i) distinct emission around the chip edges/perimeter (outside
the MQW mesa area) and the MQW mesa edges/perimeter is observed, which can be
ascribed to the light extraction effect of the tapered chip/MQW mesa sidewalls (i.e., re-
direction and out-coupling of confined and laterally propagating light into the front-side
emission by the tapered sidewalls); (ii) stronger emission from the overlap areas of the
MQW mesa and the contact electrodes, due to optically reflective characteristics of the
metal electrodes; (iii) consistent with calculated distributions of the spontaneous emission
rates over the MQW active area shown in Figure 8, relatively weaker emission is seen
around the center of the MQW mesa at the low current density (0.044 A/cm2) due to the
current crowding/larger emission rate near the n-contact edge, while relatively stronger
and more uniform emission is seen around the center of the MQW mesa at the higher
current density (4.4 A/cm2) due to more uniform current spreading and a shift in more
intense spontaneous emission toward the mesa center; (iv) also consistent with calculated
distributions of the spontaneous emission rates in Figure 8, weaker-emission mesa areas
appear near the MQW mesa edges, presumably associated with non-radiative surface
recombination on mesa sidewalls.
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Figure 11. Measured and simulated (normalized) emission intensity distributions of the surface-
textured and OC-encapsulated micro-LED under the low driving current density of 0.044 A/cm2 and
the higher driving current density of 4.4 A/cm2. (a1,b1) Measured profiles. (a2,b2) Simulated profiles,
simulated using inhomogeneous emission source distributions calculated by the electrical stimulation.
(a3,b3) Simulated profiles, simulated using simple uniform emission source distributions.
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These measured profiles are compared with simulated emission intensity distribu-
tion profiles, simulated using inhomogeneous emission source distributions (as shown
in Figure 8) calculated by the electrical modeling/simulation (Figure 11(a2,b2)), or using
simple, conventional uniform emission source distributions (Figure 11(a3,b3)). Both simu-
lation approaches can more or less predict or reproduce optical effects induced by the chip
geometries and material optical properties (e.g., re-direction out-coupling by tapered side-
walls, surface textures, and reflection by the metal electrodes). Yet, the simple optical model
adopting the uniform emission source distribution fails to simulate some non-uniform
emission characteristics over the MQW mesa area (e.g., those associated with different
driving current density or non-radiative surface recombination), while the model adopting
the emission source distribution input from the electrical modeling/simulation can better
reproduce such characteristics. For instance, the optical model with the electrical simulation
input can simulate weaker emission around the center of the MQW mesa at the low current
density and stronger/more uniform emission around the center of the MQW mesa at the
higher current density. Such results clearly indicate that the integration of both electrical
and optical simulation is useful to provide more detailed and comprehensive characteristics
and mechanisms of the micro-LED operation.

4. Conclusions

In this work, by integrating the electrical simulation with the optical simulation, we
conducted comprehensive simulation studies on electrical and optical/emission prop-
erties of real InGaN-based flip-chip micro-LED devices. Through the electrical model-
ing/simulation, electrical properties, such as J–V characteristics, carrier, current, and
spontaneous emission rate distributions, and internal quantum efficiencies, were first calcu-
lated. The output of the electrical simulation (e.g., the non-uniform spontaneous emission
distribution) was then adopted as the input of the optical simulation (e.g., the emission
source distribution) for further calculating optical/emission properties, such as light extrac-
tion efficiency, external quantum efficiency, and far-field and intensity distribution profiles.
It was found that such an integrated simulation approach can provide more comprehensive
and detailed characteristics and mechanisms of the micro-LED operation than the opti-
cal simulation by simply assuming a simple uniform emission source distribution. The
simulated electrical and emission properties of the micro-LED were well corroborated by
corresponding measured properties, validating the effectiveness of the overall simulation
methodology. The reliable and practical modeling/simulation methodology reported here,
thus, shall be useful to thoroughly investigate the physical mechanisms and operation of
micro-LED devices.
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