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Abstract: Detecting small defects against a complex surface is highly challenging but crucial to ensure
product quality in industry sectors. However, in the detection performance of existing methods,
there remains a huge gap in the localization and segmentation of small defects with limited sizes and
extremely weak feature representation. To address the above issue, this paper presents a weighted
matrix decomposition model (WMD) for small defect detection against a complex surface. Firstly, a
weighted matrix is constructed based on texture characteristics of RGB channels in the defect image,
which aims to improve contrast between defects and the background. Based on the sparse and
low-rank characteristics of small defects, the weighted matrix is then decomposed into low-rank and
sparse matrices corresponding to the redundant background and defect areas, respectively. Finally,
an automatic threshold segmentation method is used to obtain the optimal threshold and accurately
segment the defect areas and their edges in the sparse matrix. The experimental results show that the
proposed model outperforms state-of-the-art methods under various quantitative evaluation metrics
and has broad industrial application prospects.

Keywords: defect detection; machine vision; weighted matrix decomposition

1. Introduction

Under the trend of intelligent manufacturing, automatic quality control is widely
regarded as the top priority in industrial production [1,2]. Surface defect, the key factor
of quality control, is generally defined as local anomalies embedded in homogeneous
textures [3]. Due to complexity of manufacturing processes and diversity of production
environments, defects on product surfaces are always various and complex. For example,
the manufacturing process of powder metallurgy is composed of casting, forging, rolling,
machining, and extrusion, while its porosity, an important characteristic of powder metal-
lurgy sintered materials, is influenced by multiple factors including temperature, sintering
time, and pressure [4]. Surface defects not only directly lower appearance quality, but also
reduce product performance and commercial value [5]. To effectively detect surface de-
fects, automatic visual inspection methods with great advantage in non-destructive defect
detection have been widely applied in rails [6], fabric [7], steel [8], thin-film-transistor [9],
photovoltaic [10], and other flat products [11].

Conventional defect detection methods can be roughly divided into three categories:
statistical-, spectral-, and model-based techniques [3]. Statistical-based approaches com-
pute local features at each pixel and then derives a set of statistics from distributions of the
local features to discriminate defects [12]. They generally contain eight representative algo-
rithms, including thresholding [13], clustering [14], edge-based [15], fractal dimension [16],
gray-level statistic [17], co-occurrence matrix [18], local binary pattern [19], and morpho-
logical [20]. Among them, the most classical method is thresholding. Ostu presented a
threshold selection method from gray level histograms, which is optimal for thresholding a
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histogram with bimodal or multimodal distribution but fails if the histogram is unimodal
or close to unimodal [21]. To address this issue, a number of modified methods were devel-
oped based on the work of Ostu [22]. For example, Ng et al. proposed the valley-emphasis
method (VE), which is suitable for images with unimodal and bimodal distributions [23].
To obtain better and more stable thresholding results, the Gaussian valley-emphasis method
(GVE) was developed [24]. Truong et al. designed an entropy weighting scheme (EnOstu)
to improve upon Otsu’s method [25]. In addition, neighborhood valley-emphasis method
(NVE) [26] and improved valley-emphasis method (IVE) [27] were proposed for small
surface defect detection. Statistical-based approaches perform well on defect detection
against steel surface whose pixel intensities exhibit remarkable regularity and apparent
periodicity. However, they are vulnerable to illumination change [28], pseudo defects, and
local noise [29].

To overcome the above limitation, the second method transforms the whole image from
spatial domain to frequency domain where defects can be discriminated from defect-free
regions more easily via comparison of their amplitudes [3]. Spectral-based approaches are
composed of six representative algorithms, such as Fourier transform [30], Gabor filters [31],
optimized FIR filters [32], wavelet transform [33], multiscale geometric analysis [34], and
hough transform [35]. Tsai et al. proposed fabrics defects inspection method based on
a global image restoration scheme using the Fourier transform, which does not rely on
local features of textures [36]. Similarly, Hu et al. combined Fourier analysis and wavelet
shrinkage to detect textile defects [37]. Aiger et al. presented a novel method based on the
Phase Only Transform (PHOT) [38] for detecting defects on textured surfaces. Its simplicity
and generality enable it to work on various pattern without prior knowledge. Choi et al.
proposed an unsupervised detection approach of surface defects by combining both global
estimation and local refinement, which gives robust results even in noisy surface defect
images [39]. However, the spectral-based method is unable to effectively preserve local
information after the transformation, which means it can only deal with defects that occupy
a large amount of the whole image and exhibit significant difference to the background.

To achieve better performance for diverse defects, the third method projects original
texture distribution of image blocks into low-dimensional space using different specialized
models [40], such as Markov random field [41], Gaussian mixture entropy [42], and Weibull
distribution [43]. Model-based approaches accomplish defect detection by similarity mea-
surement between the model which is established by the feature of image and the test
image [44]. Susanet et al. proposed a Gaussian mixture entropy model to automatically de-
fect detection with no manual intervention [42]. Han et al. developed a novel methodology
for anomaly detection in noisy images with smooth backgrounds, named smooth-sparse
decomposition (SSD) [45], which has superiority in terms of the detection accuracy as well
as computation time. The following year, they proposed a spatio-temporal smooth sparse
decomposition [46], which has the capability of identifying not only the time of process
changes, but also the location of detected anomalies. Yu et al. proposed a coarse-to-fine
model to identify rail defects at different scales [47]. However, the model-based methods
are designed for specific defects and difficult to generalize for various types of defects [48].

Most of the aforementioned approaches distinguish defects from background by
extracting the textural features [8]. The statistical and spectral methods can hardly deal with
the situation when detect exhibit low contrast against complex background [49]. The model-
based approaches tend to consider the feature of the test images, which means the model is
always specific and difficult to achieve universality. Convolutional neural networks (CNNs)
have become a key element in the breakthrough of defect detection [50–52], but they may
fail to detect small defects that are only a few pixels in size, since rich representations
are difficult to learn from their poor-quality appearance and structure. Another obstacle
presented by convolutional neural networks is that downsampling of the image always
misses the opportunity to locate small defects; for example, YOLO apply a downsampling of
32× 32 to the input image, which means a defect with only a few pixels will disappear in the
feature map [53]. In view of these points, the above conventional methods are difficult to be
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applied directly for the inspection of small defects on surfaces with complex backgrounds.
Although these conventional defect detection methods have accomplished grate success
in the detection of specific defects, their performance still needs to be improved for small
defects with extremely low gradient intensity or contrast to background while equate to
only a few pixels in size within images.

Detecting small defects against complex surfaces has been an extremely challenging
task for industrial manufacturing. Figure 1 gives an example of small surface defect [54].
As shown, the resolution of the whole image is 640× 480 pixels where the defect and its
surrounding region are enlarged in a square box with 15× 15 pixels in size. Figure 1b
presents the ratio of the number of pixels in the defect region to the total pixel number of
the original image. As can be seen, the proportion of the small defect to the whole image is
quite low (less than 0.01%). In this case, it is difficult even for humans to notice such tiny
defects. Specifically, difficulties for small defect detection are reflected in three aspects:
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Figure 1. Examples of small surface defect dataset [54]. (a) Typical challenging examples of small
surface defect. (b) The ratio is calculated over the defective or defect-free regions to an image.

(1) Small defects always equate to a few pixels in size, revealing almost no other visual
features, such as shape, texture, and color, which means their feature representations are
extremely weak.

(2) Low contrast and unclear boundary between defect and defect-free regions of
complex surface bring great uncertainties for defect feature extraction.

(3) Noise inevitably introduced in image acquisition processes is difficult to discrimi-
nate from small defects and also leads to inaccuracy of defect area segmentation.

To address these issues, a weighted matrix decomposition model (WMD) is proposed
for small defect detection against complex surface. Specifically, a matrix is constructed
by weighted summation of three channels from the original color image to improve the
contrast between small defects and background. The weighted matrix is then decomposed
into a sparse matrix and a low-rank matrix to identify defect regions while eliminating the
interference of complex backgrounds. The pixel intensity of the defects identified by the
sparse matrix are further analyszd. Finally, the binarization operation and the pixel value
statistical analysis of the connected domain are performed to accurately segment defect
regions and effectively filter out noise.

The rest of our paper is organized as follows. In Section 2, the weighted matrix
decomposition model is introduced. In Section 3, experimental results on small surface
defect detection are presented, together with the qualitative studies. Finally, the main idea
and future work of this paper is summarized and concluded in Section 4.
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2. Weighted Matrix Decomposition Model
2.1. Overall Network Architecture

The total framework of the proposed weighted matrix decomposition (WMD) model
is shown in Figure 2. As can be seen, it is composed of three main steps, including weighted
matrix construction, image decomposition, and defect region segmentation. Specifically, a
weighted matrix is firstly constructed for a color image to improve contrast between defect
and defect-free regions. The weighted matrix is further decomposed into a low-rank and
sparse matrices to eliminate redundant background. Finally, defective regions in the latter
matrix are located by an adaptive threshold. The following sections will elaborate on each
step of the proposed WMD model.
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Figure 2. Framework of the WMD model for defect detection.

2.2. Weighted Matrix Construction

Figure 3 shows the 2D views and 3D views of the RGB channels and gray-scale version
of a steel surface image. As can be seen, pixel values of the defect are extremely close
to those of the background. In this case, it is quite difficult to discriminate the defect
and defect-free regions. To solve this problem, a weighted matrix is proposed to enhance
contrast, which consists of three steps, including normalization, weighted summation, and
linear transformation.

(1) Normalization
The pixel values [0, 255] of the RGB channels are all normalized to [0, 1] for the conve-

nience of calculation, that is,

I(x, y, z) = f (x, y, z)/255 (1)

where f (x, y, z) denotes input color image, (x, y) represents spatial coordinates, and z ∈
{1, 2, 3} is the channel index corresponding to the R, G, B channels, respectively.
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Figure 3. The first column shows R channel, G channel, B channel, grayscale version, and weighted
matrix of a steel surface image, respectively, while the second and third columns present their
corresponding 2D and 3D views. The weighted matrix is derived from the weighted summation of
the R, G, and B channels.

(2) Weighted Summation
To closely match human perception of lightness, weights of the RGB channels are

assigned based on the CIELAB color space [55]. Specifically, the higher contrast between
defect and defect-free regions, the larger the weight. As shown in Figure 3, the contrast
between the defect and defect-free regions in the three channels are arranged in descending
order as G, R, and B channels. The weighted summation of the RGB channels is expressed as

IM(x, y) = u1 · I(x, y, 1) + u2 · I(x, y, 2) + u3 · I(x, y, 3) (2)

where u1, u2, and u3 are constant and satisfy u2 > u1 > u3, u1 + u2 + u3 = 1. To further
enhance the contrast of the defect, the cube root of the weighted summation is adopted,
that is

IL(x, y) = IM(x, y)1/3 (3)

where IL(x, y) denoted the contrast-enhanced matrix.
(3) Linear Transformation
The pixel values of IL(x, y) are linearly transformed to integer values from 0 to 255,

that is

IW(x, y) ≈ 255× IL(x, y)−min(IL(x, y))
max(IL(x, y))−min(IL(x, y))

(4)

where IW(x, y) is a positive integer matrix. If there are decimals in Equation (4), we round
them up to the nearest integer. In this stage, we obtain the weighted matrix IW(x, y), where
the contrast of the defect is significantly enhanced, as can be seen from Figure 3. IW(x, y) is
further decomposed in the following sections to separate defects from the background.

2.3. Matrix Decomposition

A weighted matrix IW is first partitioned into N nonoverlapping patches, and then
decomposed into sparse matrix IS with defects and low-rank matrix IL with redundant
backgrounds. To address the issues discussed in Section 1, a novel weighted matrix
decomposition model is proposed as follows:

IW = IL + IS (5)

where IL is devoted to allow identification of the intrinsic feature subspace of the redundant
background patches. IS is used to capture the spatial and feature relations of patches. Then,
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the defect detection task is transformed into a typical optimization problem of recovering
low-rank and sparse components from a data matrix:

min
IS ,IL

rank(IL) + λ||(IS)||0 s.t. IW = IL + IS (6)

where the λ is weight coefficient (λ > 0). r is a constant. || · ||0 represents the L0 norm to
count the number of non-zero values. k is the number of pixels in the defect area.

Figure 4 illustrate the matrix decomposition process for an image containing single
defect, while Figure 5 present the matrix decomposition process for an image containing
multiple defects. In each figure, the first column shows visual images of the weighted
matrix, low-rank matrix, and sparse matrix after integerization while the second column
presents their 3D views. In the following, the regularization of sparsity and low-rank
matrices is verified, and their decomposition is implemented.
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Figure 4. Matrix decomposition in single-defect images. The first column is a weighted matrix, which
is decomposed into low-rank (in second column) and sparse matrices (in third column), respectively.
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Figure 5. Matrix decomposition in multiple-defect images. The first column is a weighted matrix,
which is decomposed into low-rank (in second column) and sparse matrices (in third column), re-
spectively.
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(1) Sparsity Regularization for Salient Defects
The contrast between defect and defect-free is glaringly obvious in the sparse matrices

of Figures 4 and 5. In their 3D view images, it is quite clear that most of the values are
0. Since the defect area is particularly smaller than the input image, the IS satisfies the
following requirements:

||(IS)||0 < k (7)

where the image size is M × N, namely:

k� M× N (8)

Equation (8) means that most of the elements in matrix IS are 0. That is, the assumption
that the weight matrix of small surface defect images have sparsity, holds.

(2) Low-Rank Regularization for Image Background
As shown in Figures 4 and 5, the texture of low-rank matrices is relatively smooth. If

the image is divided into L blocks (where L < N), they are often similar and approximately
lie in a low-dimensional subspace. The low-rank regularization on the background feature
matrix IL is applied to pursue its intrinsic structure. Figure 6 presents three representative
small surface defect images with the same size of 480 × 640 × 3, their corresponding
weighted matrices in second column, and the singular value of the weighted matrix in third
column where the patch size is 8× 640 and the vertical sliding steps are 8. Since the sizes
of all corresponding patch-images are 5120× 60, the matrix has 60 singular values. The
above analysis shows that the background feature matrix IL derived from the weighted
matrix is low-rank, that is,

rank(IL) ≤ r (9)

where r is a constant. Intrinsically, it constrains the complexity of the background image.
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Figure 6. Low-rank matrix analysis. The first column shows three representative examples. In
addition, the second and third one are weighted matrices and the singular values of the corresponding
background patch-images.

(3) Sparse and Low-Rank Matrices Decomposition
In order to detect small surface defect of images, the defect detection task is intrinsically

a typical problem of recovering a low-rank and sparse components from a data matrix.
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This problem can be effectively solved via Principal Component Pursuit [56] and converted
to solve the following convex optimization problem:

min
IS ,IL
||(IL)||∗ + λ||(IS)||1

s.t. IW = IL + IS

(10)

where λ is a positive constant. ||(IL)||∗, ||(IS)||1 replace rank(IL) in Equation (9) and
||(IS)||0 in Equation (7), respectively, for tractable computation. Here, || · ||∗ is the nuclear
norm of a matrix (i.e., the sum of singular values); || · ||1 is the L1-norm, that is

||X||1 = ∑
ij
|Xij| (11)

The above optimization problem Equation (10) is convex and can be solved by applying
the Accelerated Proximal Gradient approach proposed in [57]. Through the above steps,
the low-rank and sparse decomposition process of the weighted matrix has been completed,
where the latter contains defect areas.

2.4. Pixels Segmentation

After obtaining the sparse matrix, the following features can be observed in combina-
tion with Figures 1, 4 and 5.

(1) Imbalanced Data Distribution : From Figure 1, it can be seen that the percentage
of small defects in the whole image is very low, which means that the background oc-
cupies most of the image, that is, the area difference between defect and defect-free is
highly significant.

(2) Zero Pixels Predomination : Most pixels in the sparse matrix are zero (background
regions), and the non-zero pixels correspond to defects or noises, as shown in the 3D
view of Figures 4 and 5 (the second row). For intuitive visualization, the pixel values of
sparse matrix are readjusted to a value of positive integer between 0 and 255, as shown in
Figures 4 and 5 (the first row).

After the above analysis, combined with the sparse matrices of Figures 4 and 5, we
have two following conclusions. Firstly, the pixel values of the defect are less than 0, and the
pixel value greater than 0 is interference such as noise. Secondly, after integer conversion,
the mode in images is adopted as the threshold. If pixel values of an area are lower than
the mode in images, then the area is regarded as a defect; otherwise, it is regarded as the
background. The binarization image is expressed by

IBW(x, y) =
{

1, IS(x, y) < mode( f (x, y))
0, otherwise

(12)

where the defect is represented as 1 and the background is 0.
In order to enhance the consistency of the defect images, for those images containing

a small amount of noises or other interference factors, the connected domain pixel value
statistics method is used to further instantly remove the interference and accurately segment
the defect area.

3. Results and Discussions
3.1. Experimental Setup
3.1.1. Datasets

To guarantee the effectiveness of the algorithm, we use two publicly available datasets
for experimentation. In order to convince the experimental effect, we use the exist-
ing methods and the proposed method in this paper for performance evaluation in
the same dataset. The dataset used in this experiment is the silicon steel strip dataset
(http://faculty.neu.edu.cn/songkechen/zh_CN/zdylm/263273/list/index.htm, accessed:
10 December 2022) [54], which contains a number of color images with a resolution of

http://faculty.neu.edu.cn/songkechen/zh_CN/zdylm/263273/list/index.htm
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480× 640× 3 pixels. It is characterized by small defect areas, noise interference, complex
background, and extremely low contrast between defect and defect-free regions. Another
is the magnetic tile dataset (https://github.com/abin24/Magnetic-tile-defect-datasets, ac-
cessed: 10 December 2022), consisting of numerous size-varied images. In the experiments,
each image is cropped to uniform 270× 180 pixels. The contrast between the defect and
the background is extremely low in each magnetic tile image, while interfering by stains
and textures.

3.1.2. Parameter Settings

The parameters in the implementation of the proposed WMD model are set as follows.
In weight matrix construction, to closely match human perception of lightness, we assign
weights of the RGB channels based on the CIELAB color space, where u1 = 0.212, u2 = 0.715,
u3 = 0.073. In matrix decomposition, λ is related to the number of small defect pixel values,
which is set as λ to 1/

√
max(M, N). All experiments are tested on the MATLAB software

platform under a machine that is equipped with Intel-i7 2.4-GHz CPU, 16-GB memory.

3.1.3. Comparison Algorithms

The proposed defect detection algorithm is compared with nine state-of-the-art so-
lutions, including six statistical methods (EnOstu [25], VE [23], NVE [26], GVE [24],
IVE [27], Ostu [21]), a spectral method (PHOT [38]), and a model-based method (SSD[45]).
EnOstu [25] is fully automatic and capable of detecting extremely small defect regions,
and the images of low contrast between defect and defect-free. VE [23] is widely used in
defect detection, where the applicable defect range can be from no defect to small or large
defects. NVE [26] has accurate segmentation results in defect detection, such as a small
defect image, a part image, and a number image. GVE [24] resolves such problem of an
optimal segmentation threshold selection in a image with unimodal or close to unimodal
by introducing a Gaussian weighting scheme to enhance the weighting effect. IVE [27] is
suitable for the defect detection with uneven illumination, complex image texture, and
relatively small defect area. Ostu [21] is a classical automatic threshold segmentation
method. PHOT [38] can be applied to various patterns of defect detection, e.g., periodic
texture defect, multiple textures defect of various size and regularities, arbitrary scene with
synthetic defect, etc. SSD [45] can detect various types of defects in a smooth background.
With the popularization of deep learning methods, a defect classification method based
on deep features, called MT [50], is selected as the comparison method of this experiment.
In this method, SqueezeNet and MobileNetV2 models are adopted for feature extraction,
while the ReliefF algorithm is used for feature selection.

3.1.4. Evaluation Metrics

To evaluate the performance of small surface defect detection methods, we employ
nine comparison metrics including accuracy (Ac), sensitivity (Se), specificity (Sp), the Mean
Intersection over Union (MIoU), the F-Measure (MF) [58], the Mutual Information (MI),
the Normalized Mutual Information (NMI), the Structural Similarity (SSIM) [59], and the
E-Measure (EM) [60], respectively. It should be noted that the recall rate and sensitivity are
the same. The higher these nine indexes, the better the performance of the algorithm. The
common evaluation indicators Ac, Se, Sp, MIoU, MF can be formulated as follows

https://github.com/abin24/Magnetic-tile-defect-datasets
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Ac =
TP + TN

TP + TN + FP + FN
(13)

Se =
TP

TP + FN
(14)

Sp =
TN

TN + FP
(15)

Pr =
TP

TP + FP
(16)

MIoU =
TP

FN + TP + FP
(17)

MF =
(β2 + 1) · Pr · Se

β2 · Pr + Se
(18)

where TP, TN, FP, and FN represent the number of True Positives, True Negatives, False
Positives, and False Negatives, respectively. True Positive (TP) denotes the number of
correctly detected defect pixels mapping to the ground truth. True Negatives (TN) repre-
sents the number of correctly detected background pixels mapping to the ground truth.
False Positive (FP) is the number of defect pixels that are false detected. False Negative
(FN) represents the number of undetected defect pixels. In general, the improvement of
precision corresponds to the decrease of recall. For the MF metric, we use β2 = 1 in this
paper to balance precision and recall.

We also compare the detected result with ground truth by calculating their pixel
and structure similarity. Specifically, MI and NMI metrics compute pixels similarity
between the test image and the ground truth, while the SSIM and EM compute the
structural similarity.

SSIM =
(2uxuy + c1)(2δxy + c2)

(u2
x + u2

y + c1)(δ2
x + δ2

y + c2)
(19)

where ux and uy are the mean values of x and y, respectively. δ2
x and δ2

y are the variances
of x and y, respectively. δxy is the covariance of x and y. c1 and c2 are constants. EM
comprehensively evaluates image quality from pixel, region, boundary, and object level [60],
that is

EM =
1

w + h ∑
x=1

∑
y=1

φFM(x, y) (20)

where w and h are the width and height of image, respectively. φFM is an enhanced
alignment matrix.

3.2. Comparison with the State-of-the-Art

The proposed WMD algorithm is evaluated on the small surface defect detection
dataset and compared with nine recently proposed algorithms. The visual comparisons
are shown in Figures 7–12, and Table 1 shows some quantitative comparison. The results
show that the proposed WMD, an unsupervised method, ranks first on the small surface
defect detection dataset across different criteria.

3.2.1. Visual Comparison

Figures 7–9 show the visualization of partial detection results. In Figures 7 and 8,
we can observe that EnOstu [25], VE [23], IVE [27], SSD [45], Ostu [21], and MT [50]
cannot identify the location of the defect. NVE [26], GVE [24], PHOT [38], and our method
(WMD) are able to effectively separate the defect from the background. In Figure 9,
EnOstu [25], VE [23], NVE [26], GVE [24], and IVE [27] almost judge the background as
a defect. PHOT [38] and SSD [45] identify background and a small number of defects.
Ostu [21] and MT [50] are powerless against magnetic tile defects.
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(a) Image 

(l) GT(k) WMD

(b) EnOstu (c) VE (d) NVE 

(e) GVE (f) IVE (g) PHOT (h) SSD

(i) Ostu (j) MT

Figure 7. Visual comparisons of detection results of the ten methods on the image with a single defect.
Our detection result (WMD) is quite close to ground truth.

(k)WMD

(b)EnOstu (c)VE (d)NVE (e)GVE (f)IVE

(g)PHOT (h)SSD

(a)Image 

(l)GT(i)Ostu (j)MT

(k) WMD

(b) EnOstu (c) VE (d) NVE 

(e) GVE (f) IVE (g) PHOT (h) SSD

(a) Image 

(l) GT(i) Ostu (j) MT

Figure 8. Visual comparisons of detection results of the ten methods on the image with multiple
defects. The detection result of the proposed WMD method is quite close to ground truth, whereas
the other competing methods are unable to either identify the defect location or completely separate
the defect from the background.
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(k) WMD (l) GT(h) SSD (i) Ostu (j) MT(g) PHOT

(f) IVE(e) GVE(d) NVE (c) VE(b) EnOstu(a) Weight matrix

Figure 9. Visual comparisons of detection results of the ten methods on the image with multiple
defects. The detection result of the proposed WMD method is quite close to ground truth, whereas
the other competing methods are unable to either identify the defect location or completely separate
the defect from the background.

To further evaluate the performance of these methods, we conduct two experiments
on five randomly selected single-defect images and multiple-defect images in a silicon
steel strip dataset, as shown in Figures 10 and 11, respectively. In these two experiments,
the results from EnOstu [25], VE [23], IVE [27], SSD [45], Ostu [21], and MT [50] methods
are not present because they are incapable of detecting defects and their results contain a
number of false positives. Similarly, there is no experimental result for the magnetic tile
image because the traditional method is similar to Figure 9 in other images. In Figure 10,
PHOT [38] is unable to effectively identify defects on all the five images. The NVE [26] and
GVE [24] methods can detect relatively salient defects in (a)–(c) and partial defect regions in
(d), but fail to detect the defect that is highly similar to the background in (e). The method
proposed (WMD) in this paper achieves the best detection results in the above five images.
In Figure 11, we obtain a conclusion similar to that in Figure 10.

(a)

(b)

(c)

(e)

(d)

Image NVE  GVE PHOT WMD GT

Figure 10. Visual comparisons of four methods on (a–e) five randomly selected single-defect images.
The detection result of the proposed WMD method is quite close to ground truth (GT), whereas the
other competing methods are unable to either identify the defect location or completely separate the
defect from the background.
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ImageImage  NVE NVE GVEGVE PHOTPHOT WMDWMD GTGT

(a)

(b)

(c)

(d)

(e)

Figure 11. Visual comparisons of four methods on (a–e) five randomly selected multiple-defect
images. The detection result of the proposed WMD method is quite close to ground truth (GT),
whereas the other competing methods are unable to either identify the defect location or completely
separate the defect from the background.

3.2.2. Performance Comparison

It can be seen that the methods of NVE [26] and GVE [24] are suitable for the detection
of small surface defects by the comparison of the above experiments. Figure 12 shows
some quantitative comparisons by the three methods (NVE, GVE, and WMD). As shown in
Figure 12a,c–i, Ac(%), Se(%), MF, MIoU, MI, NMI, SSIM, and EM are clearly higher than
those of the baseline methods. Sp represents the probability of detected background pixels,
and Se denotes the probability of detected defect pixels. However, it should be noted that
recall is more indispensable than precision in small surface defect detection, in respect
that a missed defect has a greater hazard than an error-checked noise. The performance
comparison demonstrates that the proposed WMD model performs better than all the
competitors in detecting the images with single defect and multiple defects.

To quantify the effect of Figure 9, the evaluation indicators of ten methods are shown
in Table 1. As can be seen, the WMD works best in the Ac(%), Pr(%), Se(%), MF, MIoU,
NMI, SSIM, and EM indicators. The Sp value of EnOstu [25], VE [23], NVE [26], GVE [24],
and IVE [27] respectively reaches 100%, because the five methods almost all judge the
background as defects. However, their Pr and Sp values are extremely low, and the Ac
value for correct identification of background and defects is also quite small. The above
results demonstrate the effectiveness of the proposed method in the magnetic tile image.
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Image ID

(i)

Image ID

(h)

Image ID

(g)

Image ID

(d)

Image ID

(e)

Image ID

(f)

Image ID

(c)

Image ID

(b)

Image ID

(a)

Figure 12. Quantitative comparison in terms of (a) Ac(%), (b) Sp(%), (c) Se(%), (d) MF, (e) MIoU,
(f) MI, (g) NMI, (h) SSIM, and (i) EM, where the x axis is the Image ID. Our method (WMD)
significantly outperforms these evaluated defect detection algorithms across ten randomly selected
surface defect detection images.

Table 1. Results on the magnetic tile image in terms of Ac(%), Pr(%), Sp(%), Se(%), MF, MIoU, MI,
NMI, SSIM, and EM.

Methods Ac(%) Pr(%) Sp(%) Se(%) MF MIoU N MI SSIM EM

EnOtsu 0.45013 0.19990 100 0.25123 0.00399 0.00200 0.50008 0.86746 0.00130
VE 10.49514 0.22229 100 10.31631 0.00444 0.00222 0.50031 0.88316 0.23347

NVE 0.27837 0.19956 100 0.07913 0.00398 0.00200 0.50004 0.86711 0.02549
GVE 0.27837 0.19956 100 0.07913 0.00398 0.00200 0.50004 0.86711 0.02549
IVE 0.27837 0.19956 100 0.07913 0.00398 0.00200 0.50004 0.86711 0.02549

PHOT 99.66240 8.33333 6.93069 99.84768 0.07568 0.03933 0.50745 0.99984 0.58086
SSD 99.84009 79.41176 26.73267 99.98615 0.40000 0.25000 0.59021 0.99992 0.64337
Ostu 36.86725 0.30245 96.03960 36.74903 0.00603 0.00302 0.50046 0.92478 0.24855
MT 50.75417 0.38346 95.04950 50.66566 0.00764 0.00383 0.50072 0.94407 0.25117

WMD 99.86378 94.44444 33.66337 99.99604 0.49635 0.33010 0.62883 0.99994 0.66594

3.3. Verify the Effectiveness of Weighted Matrix Decomposition

In the experiment comparison in Section 3.2, the small surface defect images are
converted to gray images, then the existing methods are used to perform defect detection.
However, in Section 2.2, the contrast between the defect and the background of the weighted
matrix is greater than that in the gray images (Figure 3). To verify the effectiveness of low-
rank and sparse matrices decomposition in defect detection, all methods are simultaneously
used in the weighted matrix. Visual comparisons are shown in Figures 13–17, while some
quantitative comparisons are presented in Figure 18 and Table 2.

3.3.1. Visual Effect Verification

Figures 13–15 show the visualization results. As can be seen, the detection effect
of NVE [26], GVE [24], and IVE [27] present great distinction between single-defect and
multiple-defect images. In Figure 13, these methods cannot identify background and
defects, whereas in Figure 14, they fail to separate the defect or only part of the region.
Similar conclusions can be obtained in other small surface defect images. Ostu [21] and
MT [50] are unable to distinguish defects and backgrounds in Figures 13 and 14. PHOT [38]
only identifies one of the defects in a small number of multi-defect images, and performs
poorly in single-defect images. The results are similar with those in Section 3.2. EnOstu [25],
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VE [23], SSD [45], and our method (WMD) are capable of discriminating the defect regions.
In Figure 15, the visual results of the EnOstu [25], NVE [26], GVE [24], IVE [27], PHOT [38],
SSD [45], Ostu [21], and MT [50] in the weighted matrix are similar to those in Figure 9.
The detection performance of the VE [23] in the weighted matrix is better than that in
the original image, but it only detects part of the defects, and also mistakenly judges
some background as defects. Our method (WMD) is capable of separating defects from
the background.

(l)GT(k)WMD

(b)EnOstu (c)VE (d)NVE (f)IVE(e)GVE

(g)PHOT (h)SSD (i) Ostu (j) MT

(a)Weight matrix

(l) GT(k) WMD

(a) Weight matrix (b) EnOstu (c) VE (d) NVE 

(f) IVE(e) GVE (g) PHOT (h) SSD

(i) Ostu (j) MT

Figure 13. Visual comparisons of detection results using the ten methods on weighed matrix. NVE,
GVE, IVE, and PHOT do not have any output. EnOstu, VE, SSD, Ostu, MT, and our method (WMD)
have the ability to separate defects from the background.

(k)WMD (l)GT

(b)EnOstu (c)VE (d)NVE (f)IVE(e)GVE

(g)PHOT (h)SSD (i) Ostu (j) MT

(a)Weight matrix

(k) WMD (l) GT

(a) Weight matrix (b) EnOstu (c) VE (d) NVE 

(f) IVE(e) GVE (g) PHOT (h) SSD

(i) Ostu (j) MT

Figure 14. Visual comparisons of detection results using the ten methods on weighed matrix with
multiple defects. NVE, GVE, and PHOT cannot effectively identify defects. EnOstu, VE, IVE, SSD,
Ostu, MT and our method (WMD) can effectively provide the location of the defect.
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(k) WMD (l) GT(h) SSD (i) Ostu (j) MT(g) PHOT

(f) IVE(e) GVE(d) NVE (c)VE(b) EnOstu(a) Weight matrix

Figure 15. Visual comparisons of detection results using the ten methods on weighed matrix of
magnetic tile images. EnOstu, VE, NVE, GVE, IVE, PHOT, SSD, Ostu, and MT cannot effectively
identify defects. VE only identifies some defects, and our method (WMD) can effectively provide the
location of defect.

Figures 16 and 17 show some visual comparisons of the best methods in the experi-
ments. As can be seen from Figure 16, EnOstu [25], VE [23], and WMD successfully separate
the defects from the background. However, SSD [45] occasionally fails to identify the defect.
In Figure 17a–d, EnOstu [25] and VE [23] correctly detect small defects, but are incapable
of detecting defects similar to the background in Figure 17e. SSD [45] is unable to detect
the defects as small as a few pixels or similar to the background. The method proposed
(WMD) in this paper successfully locates the defects in the above five images.

(a)

(b)

(c)

(e)

(d)

Image EnOstu  VE SSD WMD GT

Figure 16. Visual comparisons of different methods on (a–e) five randomly selected single-defect
images. The ground truth (GT) is shown in the last column. EnOstu, VE, SSD, and our method
(WMD) have the ability to locate the defect.
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Image EnOstu  VE SSD WMD GT

(a)

(b)

(c)

(d)

(e)

Figure 17. Visual comparisons of different methods on (a–e) five randomly selected multiple-defect
images. Compared with the baseline methods, the proposed WMD produces more discriminative
models, which is capable of identifying the defect from backgrounds.

3.3.2. Performance Metrics Verification

Figure 18 shows some quantitative comparison of the best methods (EnOstu [25],
VE [23], SSD [45], and WMD). It can be concluded that the proposed model WMD in this
paper has the best performance in terms of eight evaluation metrics (Figure 18a,c–i). The
quantitative evaluation results in Figure 15 are shown in Table 2, which yields similar con-
clusions to Table 1. Among them, the Pr and Sp values of PHOT [38] are both 0, indicating
that it judges all defects as background. However, the AC value reaches 99.77691%, because
the proportion of defects in the image is extremely low, and the background is particularly
large. The quantitative evaluation results in Figure 15 are shown in Table 2, which yields
similar conclusions to Table 1. Among them, the Pr and Sp values of PHOT [38] are both
0, indicating that it judges all defects as background. However, the AC value reaches
99.77691%, because the proportion of defects in the image is quite low, and the background
is particularly large.

In summary, for the images whose defect and defect-free region share similar appear-
ance, WMD successfully separates the defects from the background, while other methods
often fail. These results illustrate the robustness of the WMD algorithm, and confirm the
effectiveness of the proposed weighted matrix in separating the low-rank and sparse sub-
spaces.

Table 2. Results on weight matrix of magnetic tile image in terms of Ac(%), Pr(%), Sp(%), Se(%), MF,
MIoU, MI, NMI, SSIM, and EM.

Methods Ac(%) Pr(%) Sp(%) Se(%) MF MIoU N MI SSIM EM

EnOtsu 0.55279 0.20011 100 0.35410 0.00399 0.00200 0.50009 0.86766 0.00655
VE 80.78457 0.63551 61.38614 80.82333 0.01258 0.00633 0.50085 0.97779 0.25874

NVE 0.28627 0.19957 100 0.08704 0.00398 0.00200 0.50004 0.86712 0.01858
GVE 0.28627 0.19957 100 0.08704 0.00398 0.00200 0.50004 0.86712 0.01858
IVE 0.28627 0.19957 100 0.08704 0.00398 0.00200 0.50004 0.86712 0.01858

PHOT 99.77691 0 0 99.97626 0 0 0.50001 0.99987 0.38060
SSD 99.60317 27.67857 61.38614 99.67953 0.38154 0.23574 0.57370 0.99986 0.66337
Ostu 62.84056 0.48664 91.08911 62.78412 0.00968 0.00486 0.50095 0.95823 0.25334
MT 49.19450 0.36789 94.05941 49.10486 0.00733 0.00368 0.50064 0.94140 0.25088

WMD 99.86378 94.44444 33.66337 99.99604 0.49635 0.33010 0.62883 0.99994 0.66594
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Figure 18. Quantitative comparison in terms of (a) Ac(%), (b) Sp(%), (c) Se(%), (d) MF, (e) MIoU,
(f) MI, (g) NMI, (h) SSIM, and (i) EM, where the x axis is the Image ID. Our method outperforms
the baseline methods.

4. Conclusions

In this paper, we have presented a weighted matrix decomposition model which
effectively solves the problem of detecting small surface defects. Firstly, a weighted matrix
is established to improve the contrast between small defects and background. Then, the
weighted matrix is decomposed into a low-rank matrix representing image background
and a sparse matrix identifying defects, which eliminates the interference of complex
backgrounds. Finally, the pixel intensity of the defects is analyzed to select the optimal
threshold and accurately separate the defects from the background. Experiments on a
small surface defect dataset have shown that, compared to the conventional methods, the
proposed achieves encouraging performance in small defect detection against complex
product surfaces on public benchmark datasets under various quantitative metrics. The
proposed model provides an effective solution in industrial manufacturing for detecting
small defects against complex product surfaces. In the future, we will further generalize
our 2D patch model into 3D or more dimensions and investigate applications of the N-D
patch model. We will also try multi-subspace cluster strategies to further improve the
flexibility of our method in highly variant background cases.
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