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Abstract: Write-once-read-many-times (WORM) memory belonging to an important non-volatile
memory type achieves the read-only state after the write operation and is used in the fields of data
security storage widely. WORM memory has been developed based on a variety of materials. In
recent years, halide perovskites have become the research hotspot material for this memory due to
its excellent properties. Here, the all-inorganic CsPbBr3 perovskite thin film was prepared on a FTO
substrate by using a two-step method. The prepared CsPbBr3 thin films have the characteristics
of densely packed crystal grains and smooth surface. The device, having the FTO/CsPbBr3/Al
sandwich structure by evaporating the Al electrode onto the CsPbBr3 thin film, represents the typical
WORM behavior, with long data retention time (104 s), a low operation voltage (2.1 V) and a low
reading voltage (0.1 V). Additionally, the resistance transition mechanism of the resulting WORM
devices was analyzed.

Keywords: write-once-read-many-times (WORM); memory; all-inorganic halide perovskite

1. Introduction

The technological advancement of Big Data, artificial intelligence and integrated
circuit has prompted the rapid development of modern information technology [1]. The
memory devices with high efficiency and reliability are indispensable in order to adapt
to the development of modern information technology [2,3]. There are many different
types of memory devices using similar device structures. In previous work, devices
based on ITO/PFOxPy/Al structures with p-type PFOxPy as the active medium showed
Dynamic Random Access Memory (DRAM) characteristics, attributed to the memory
switch mechanism of the Schottky barrier and shallow traps [4]. Ge et al. proposed
the Resistive Switching Random-Access Memory (ReRAM) with ultralow bias, based on
the FTO/CsBi3I10/Ag and FTO/Cs3Bi2I9/Ag structure, where the resistive behavior is
attributed to conductive filaments formed by halide vacancies [5]. Recently, Guan et al.
reported the Photonic Resistive Switching Memory with an Ag/SrTiO3/CsPbBr3/Au
heterogeneous structure, with operational mechanisms of photonic heterojunction barrier
variation and conductive filaments formed by metal electrodes [6]. Hsu et al. fabricated
Write-Once-Read-Many-Times Memory (WORM) based on the Al/AlOx:N/n+-Si structures
and analyzed the operational mechanism of the limited carrier transport by the defects
and P-F emission [7]. Among such devices, the WORM devices have been widely used
in various permanent storage applications [8]. In the future development of WORM,
it is possible that the data only needs to set up the read-only state and not the writing
permission, meeting the needs for safe storage enterprises.

To date, WORM characteristics have been observed in various materials, including
organics [9,10], metal oxides [11–14], biological materials [15], low-dimension materials [16]
and halide perovskites [17]. Furthermore, increasing attention has been paid to the halide
perovskites due to their excellent properties, including simple preparation process of
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the precursors from solution [18], high defect tolerance [19], flexibility [20] and ion con-
ductivity [21]. The general chemical formula for perovskite is AMX3, in which A is the
monovalent cation, M is the divalent cation and X is the monovalent anion [22]. In AMX3
structure, the corner-sharing MX6 octahedra form an extended three-dimensional network,
with A cations residing in the cuboctahedron spaces formed by the M-X framework [23].
Usually, the large A cations are CH3NH3+, CH(NH2)2+ and Cs+, the small M cation is Pb2+,
and the X anions are the halogen ions (such as Cl−, Br−, I−) [24]. In the past, significant
research has focused on memory based on the organic–inorganic hybrid halide perovskites
(OHP), due to its excellent performance [25,26]. However, due to the hygroscopicity and
volatility of organic cations, the OHP may be chemically unstable under the condition of
oxygen, moisture and high temperature, limiting its application [27]. To form a more stable
perovskite structure, many researchers have attempted to replace the organic cation of the
A-site with inorganic Cs+ [28].

Here, we synthesized a CsPbBr3 perovskite structure using the solution method and
fabricated a FTO/CsPbBr3/Al sandwich structure device using an all-inorganic perovskite
CsPbBr3 thin film as an active layer, representing the WORM memory characteristics.
Additionally, the typical WORM behaviors of the device were investigated.

2. Materials and Methods
2.1. Chemicals and Reagents

Cesium bromide (CsBr, 99.999%), lead bromide (PbBr2, 99.99%) and dimethyl formamide
(DMF, >99.9%) were purchased from Aladdin Holdings Group Co., Ltd (Hong Kong, China).
Methyl alcohol (99.99%) was purchased from Shanghai Macklin Biochemical Technology., Ltd
(Shanghai, China). FTO conductive substrate was purchased from Luoyang Guluo Glass Co.,
Ltd (Henan, China). All materials were used directly without further purification.

2.2. Test Equipment

The phase analysis of the prepared thin film was carried out by X-ray diffraction
(XRD, Cu Kα radiation with λ = 1.5418 Å, Bruker D8 ADVANCE, Karlsruhe, Germany).
The surface morphology of the prepared thin film was observed by a scanning electron
microscope (SEM, TESCAN AMBER, Brno, Czech Republic) and atomic force microscope
(AFM, Bruker Multimode8, Billerica, MA, USA). The cross-sectional image of prepared thin
films was observed by a scanning electron microscope (SEM, Hitachi S3400, Tokyo, Japan).
The memory current-voltage scanning was performed using a semiconductor parameter
analyzer (Keithley 4200-SCS, Tektronix, Beaverton, OR, USA).

2.3. Fabrication of the Memory Device

FTO substrates were sequentially cleaned for 20 min with acetone, isopropanol, ethyl
alcohol and deionized water and then dried under nitrogen flow. The PbBr2 was dispersed
in DMF with magnetic stirring for 7 h at 70 ◦C to prepare the 1.0 M PbBr2 precursor solution.
The CsBr was added in methyl alcohol with magnetic stirring for 7 h at 50 ◦C to obtain the
0.07 M CsBr precursor solution. Firstly, the PbBr2 precursor solution was spin-coated onto
the FTO substrate with 2000 rpm for 30 s; then, the substrate was dried at 75 ◦C for 30 min
to form PbBr2 thin film. Secondly, the PbBr2 thin film was dipped in the CsBr solution at
50 ◦C for 10 min. Thereafter, the substrate was annealed at 160 ◦C for 30 min to accomplish
perovskite thin film preparation. Finally, Al top electrodes with the diameter of 200 µm
were deposited on the CsPbBr3 thin film by vacuum evaporation through shadow mask.
Figure 1 shows the crystal structures of CsPbBr3 [29] and the schematic drawing of the
FTO/CsPbBr3/Al vertical stack structure for the memory.
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Figure 1. The crystal structures of CsPbBr3 and the schematic drawing of FTO/CsPbBr3/Al vertical 
stack structure for the memory. (a) The crystal structures of CsPbBr3; (b) the schematic drawing of 
FTO/CsPbBr3/Al vertical stack structure for the memory. 

3. Results 
3.1. Material Characterization 

Figure 2 depicts the XRD measurements spectrum of the synthesized thin film to an-
alyze the phase composition and crystallographic information. The prominent and in-
tensely sharp three peaks indexed as (100), (110) and (200) at 15.18°, 21.55° and 30.64° 
confirmed the higher crystallinity of CsPbBr3 (PDF#54-0752). Some additional weak dif-
fraction peaks with a black rhombus correspond to another phase of perovskite as repre-
sented by CsPb2Br5(PDF#25-0211). The CsPb2Br5 with a two-dimensional-layer perovskite 
structure possibly grew as an intermediate product during the preparation of CsPbBr3 
thin film by the low temperature synthesis process [2]. The small area and weak diffrac-
tion peaks of the XRD spectrum demonstrate the presence of a small amount of CsPb2Br5. 
Moreover, it was reported that the CsPb2Br5 possesses similar behavior to CsPbBr3 [2]. 
Therefore, a small amount of CsPb2Br5 exhibits little influence on memory behaviors [20]. 

 
Figure 2. The X-ray diffraction spectra of the synthesized thin film. 

The surface morphology of the CsPbBr3 thin film was investigated by SEM and AFM. 
Figure 3a shows the surface SEM image, in which densely packed crystal grains and pin-
hole-free surface can be observed. Figure 3b gives the cross-sectional SEM image of the 
device, visualizing the CsPbBr3 layer and the Al electrode thickness of ~230 nm and ~100 
nm, respectively. Figure 4 is the AFM image and the corresponding 3D AFM height image 
(scan size = 5 μm × 5 μm), where the CsPbBr3 thin film exhibits a relatively smooth surface. 
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Figure 1. The crystal structures of CsPbBr3 and the schematic drawing of FTO/CsPbBr3/Al vertical
stack structure for the memory. (a) The crystal structures of CsPbBr3; (b) the schematic drawing of
FTO/CsPbBr3/Al vertical stack structure for the memory.

3. Results
3.1. Material Characterization

Figure 2 depicts the XRD measurements spectrum of the synthesized thin film to
analyze the phase composition and crystallographic information. The prominent and
intensely sharp three peaks indexed as (100), (110) and (200) at 15.18◦, 21.55◦ and 30.64◦

confirmed the higher crystallinity of CsPbBr3 (PDF#54-0752). Some additional weak diffrac-
tion peaks with a black rhombus correspond to another phase of perovskite as represented
by CsPb2Br5 (PDF#25-0211). The CsPb2Br5 with a two-dimensional-layer perovskite struc-
ture possibly grew as an intermediate product during the preparation of CsPbBr3 thin film
by the low temperature synthesis process [2]. The small area and weak diffraction peaks
of the XRD spectrum demonstrate the presence of a small amount of CsPb2Br5. Moreover,
it was reported that the CsPb2Br5 possesses similar behavior to CsPbBr3 [2]. Therefore, a
small amount of CsPb2Br5 exhibits little influence on memory behaviors [20].
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Figure 2. The X-ray diffraction spectra of the synthesized thin film.

The surface morphology of the CsPbBr3 thin film was investigated by SEM and AFM.
Figure 3a shows the surface SEM image, in which densely packed crystal grains and pinhole-
free surface can be observed. Figure 3b gives the cross-sectional SEM image of the device,
visualizing the CsPbBr3 layer and the Al electrode thickness of ~230 nm and ~100 nm,
respectively. Figure 4 is the AFM image and the corresponding 3D AFM height image (scan
size = 5 µm × 5 µm), where the CsPbBr3 thin film exhibits a relatively smooth surface.
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Figure 3. The images of SEM for CsPbBr3 thin film. (a) The surface SEM image; (b) the cross-sectional 
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Figure 4. The AFM images of the CsPbBr3 thin film. (a) AFM image; (b) corresponding 3D height 
image. 
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in which the resistance transformed from an HRS to a low resistance state (LRS), corre-
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3.2. Current-Voltage Characteristic

The current-voltage (I-V) characteristics were measured using Keithley 4200-SCS,
where the Al electrode was connected to the positive pole and the FTO was connected to
the ground. Figure 5 shows the I-V characteristic curves of the FTO/CsPbBr3/Al device
when exerting the sweep voltage in the sequence of 0→+4→0→−4→0. During the test,
the device was set at a compliance current of 10−2 A to prevent the device from being
damaged by excessive current. The pristine device was at the high resistance state (HRS),
corresponding to the OFF state. When exerting the sweeping voltage from 0 V to 4 V
(sweep 1), the current was enhanced with the increasing applied voltage, progressively.
The rapidly increasing current at 2.1 V indicates that the device completed the writing
operation in which the resistance transformed from an HRS to a low resistance state
(LRS), corresponding to the ON state. After that, the device remained in the ON state in
the subsequent voltage sweeps, i.e., sweep 2 (+4→0 V), sweep 3 (0→−4 V) and sweep
4 (−4→0 V). The I-V characteristics of the device demonstrate that once the data were
written, it could only be read and could not be rewritten. The retention characteristics of
the device are represented in Figure 6. The HRS and LRS of the device had no obvious
variations for 104 s at a read voltage of 0.1 V. The results indicate the device possesses
excellent operation stability. Many the WORM devices have been reported based on various
materials by other groups, as seen in Table 1, which shows a brief summary of the WORM
performances based on our research and that of the current literature. Comparing the
WORM performance, it can be seen that the device in this study has excellent retention
performance, low operation voltage and small reading voltage.
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Figure 5. The I-V characteristic curves of the FTO/CsPbBr3/Al memory device. The illustra-
tion demonstrates that the device is always kept at a low resistance state during the subsequent
scanning voltage.
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Table 1. A brief summary of the WORM performance based on our research and other studies.

Device Structure Memory Type Operation
Voltage (v)

Reading
Voltage (v)

Retention
Time (s) Ref.

Al/Au NPs: lignin/Al WORM 4.7 0.6 >103 [30]
ITO/CsPbBr3 QDs/Au WORM −1.1 −0.5 >103 [8]

Au/ZnO MBs/Au WORM ≈6.5 0.35 ≈104 [31]
n+-Si/CuO/Ag WORM ≈3 1 105 [32]

Ag/WS2-PVP/Cu WORM <1 0.02 >2 × 102 [33]
FTO/CsPbBr3/Al WORM 2.1 0.1 104 This work

4. Discussion

In general, there are two possible mechanisms to explain the resistive switching
effect: the formation and rupture of conductive filaments in the active medium [34] and
the interface barrier variation between the active medium and the adjacent layers [35].
To investigate the resistance transition mechanism of the resulting WORM devices, the
I-V characteristic curves in the forward sweeping voltage regions are converted to the
double-logarithmic coordinate scales, as shown in Figure 7. In Figure 7a, the I-V curve was
divided into four distinct regions for analysis. In Figure 7b, the slope of the fitting curve is
approximate to 1 in the process (1) (0–1.3 V), indicating an Ohmic dominant conduction
(I∝V) [36,37]. It is inevitable that randomly distributed defects are formed in the CsPbBr3
thin film during the process of low-temperature solution synthesis [38], resulting in some
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unfilled trap energy levels. In the CsPbBr3 perovskite crystal, Br− ions (Br− vacancies) have
the smallest activation energy, which makes it possible to primarily migrate species under
the electric field [39]. Under a low applied voltage, Br− ions migrate toward the anode and
leave behind Br− vacancies. The density of thermally generating free carriers within the
thin film is predominant over the injected charge carriers [40]. A small number of carriers
injected into CsPbBr3 are captured by the vacancy energy levels, contributing minorly to
the current. In the device, the current is mainly caused by the thermally exciting intrinsic
carrier drift. Therefore, the current has a linear relationship with the applied voltage,
showing ohmic conductivity. In Figure 7c, the slope of the fitting curve approximates to 2
in the process (2) (1.4–1.8 V). With the increasing applied voltage, the number of injected
carriers increases; meanwhile, the vacancies captured energy level is gradually filled by
the injected carriers. When the injected carriers dominate the current, the I-V relationship
confirms to Mott–Gurney law [41]. In this process, the current has a linear relationship
with the square of voltage, as shown in following equation [42]:

J =
9
8

θ0ε0εrµ
V2

L3 (1)

where J is the current density of the device, µ is electronic mobility, V is the voltage
applied to the device, θ0 is the ratio of free electrons relative to trapped electrons, ε0 and εr
are the vacuum dielectric constant and the relative dielectric constant of the active layer,
respectively, and L is thickness of the active layer. In the HRS region, the conductive
mechanism is consistent with the typical trap-controlled space charge limited currents
(SCLC) [6]. In the transition region from process (2) to (3), a negative differential resistance
shows that the abnormal behavior of the current decreases with the increasing bias voltage,
as shown in Figure 7a. The holes injected from the anode begin transition through the thin
film at the threshold voltage, causing some holes traps to be filled. At this time, the life
of the hole will increase with the reduction of that of the electron, resulting in a negative
differential resistance [43,44]. Thereafter, rapidly increasing current to the limiting current
indicates the device is up to an LRS due to the formation of a conductive channel connected
by the Br− vacancies between the two electrodes. In Figure 7d, the slope of the fitting
curve approximates to 1 in the flyback voltage region in the process (4) (1–0 V), showing
ohmic conductivity. Meanwhile, the formed robust conductive filaments composed of Br−

vacancies make it possible for the device to remain at an LRS. When exerting a negative
sweeping voltage, the device remains in an LRS. Therefore, it is possible that the device can
exhibit the WORM characteristics after the writing process.
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5. Conclusions

In this research, we fabricated a WORM device based on the resulting CsPbBr3 thin
film. The CsPbBr3 thin film was synthesized by a two-step method. The FTO/CsPbBr3/Al
device demonstrated the typical WORM characteristics, including low operation voltage,
small reading voltage and long data retention time. Through the linear fitting of the experi-
mental data to construct a conducting filament model, the memory behavior conforms to
the Ohmic mechanism and SCLC mechanism.
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