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Abstract: The laser-assisted diamond turning (LADT) method can effectively improve the machin-
ability of hard and brittle materials based on the laser heating effect, resulting in prolonged diamond
tool life and better surface integrity. However, due to the incomplete absorption of laser beam energy
within the workpiece cutting zone, simultaneous heating of the tool holder occurs, resulting in a
structural thermal expansion that affects the workpiece form accuracy. In this article, the form accu-
racy of a LADT-machined workpiece was systematically studied. Accurate calculations of the tool
shank and tool holder thermal fields and thermal expansion were performed using thermodynamic
coupled finite element analysis. In addition, the LADT tool path was precisely pre-compensated by
taking into account the structure expansion. The experimental results demonstrate that the form
accuracy can be significantly improved with a pre-compensated tool path, which provides crucial
technical support for achieving a high-precision finish on optical elements using the LADT method.

Keywords: laser-assisted diamond turning; tool path; form accuracy; finite element analysis

1. Introduction

Hard and brittle materials possess numerous advantages, including light weight, high
strength, wear resistance, and high refractive index properties [1,2]. Consequently, typical
tungsten carbide (WC), silicon (Si), and silicon carbide (SiC) hold immense application
value in advanced optics and precision glass molding fields. Among them, binderless WC
is a crucial mold material that is widely used in precision glass molding. High-performance
glass lenses can be mass-produced in an efficient and economical manner using glass
molding technology and high-quality optical molds made of binderless WC [3].

Traditional ultra-precision machining processes have significant restrictions and draw-
backs [4,5]. It is challenging to maintain the machining efficiency, surface integrity, and
residual stress state at the same time [6]. Ultra-precision grinding is currently the primary
method used for machining binderless WC, which allows for optical surface machining
with nanometric roughness and sub-micron form accuracy. However, the unsatisfactory
subsurface integrity and surface tensile stress state limit the service life and performance of
the mold insert. In order to reduce the influence of surface stress and the subsurface damage
layer, it is essential to remove the machined affected layer through a subsequent polishing
process, which significantly limits the machining efficiency and surface shape accuracy. At
the same time, the feasibility of ultra-precision grinding is even compromised when the
workpiece has a high-aspect-ratio micro-nano structure geometry [7]. The above problems
can be solved by ultra-precision cutting methods, such as high-speed flying cutting, single
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point diamond turning, etc. These methods have unique advantages in terms of surface
flexibility and machining efficiency, while also resulting in residual compressive stress on
the workpiece surface. Furthermore, the depth of subsurface damage is greatly reduced
compared with grinding, thereby helping to ensure device performance and service life.
However, the machining of hard and brittle materials leads to severe diamond tool wear and
surface cracking, which greatly limits the workpiece aperture size and surface quality [8].
Laser-assisted diamond turning (LADT) is one of the most effective machining methods for
hard and brittle materials. It possesses widespread application prospects [9] and mainly
utilizes the thermal softened effect to improve materials’ machinability. The feasibility
of the LADT method has been verified in various hard and brittle materials, including
silicon [10], zinc selenide [11], and tungsten carbide [12]. With the laser in-process heating
assistance, diamond tool wear, finish quality, subsurface damage, and machining efficiency
can be effectively improved compared with the conventional single-point diamond turning
method [13]. However, it is challenging to ensure the sub-micron form accuracy of the
workpiece using the LADT method. The incident laser beam will not only heat the cutting
zone of the workpiece material, but also lead to an undesired temperature increase in the
tool holder, which will seriously affect machining stability and tool path accuracy [14]; this
has greatly limited the application of the LADT method.

Due to the increasing performance requirements of modern optical systems, higher
requirements are put forward for the form accuracy of key components [15]. Optical
elements with large form errors will lead to imaging distortion and restricted optical
system performance [16]. The machined surface form accuracy is affected by several
dominant factors, including tool path, tool edge waviness, lathe stability, etc. [17]. Among
these factors, the tool path is the easiest to control and compensate [18]. The tool path
accuracy will not only affect the form accuracy, but also affect the surface quality of
complex optical elements [19]. Any deviation in the tool path will be directly transferred
to the machined surface [20]. At present, published tool path research mainly focuses on
traditional diamond turning. No LADT tool path investigation has been carried out. The
system error introduced by the tool geometrical factors, including the nose radius and rake
angle, can be compensated precisely [21–23]. However, there is no strategy to compensate
the thermal drift of diamond tool in the LADT machining processing. It is urgent to propose
a LADT tool path thermal compensation method.

The thermal deformation of optical elements is common for hot-forming technology,
such as precision glass molding [24] and precision injection plastic molding [25]. In indus-
trial mass production, the mold pre-compensation method is commonly used to eliminate
the effect of material thermal deformation and ensure the form accuracy of the generated
lens. The numerical analysis can significantly reduce the number of pre-compensation
iterations and improve final lens form accuracy. Su et al. [26] established the finite element
analysis (FEA)-assisted compensation procedure, which calculates the deformed lens’s
profile precisely and obtains the pre-compensated mold insert surface form in advance.
Zhang et al. [27] proposed an effective mold pre-compensation method based on mathe-
matical analysis to eliminate the glass expansion and contraction influence in the precision
glass molding process. In the same way, the structural thermal expansion effects of LADT
machining can be eliminated by tool path pre-compensation. But to the best of the authors’
knowledge, no related study has been performed.

In this paper, we propose the LADT tool path pre-compensation method to improve
the LADT-machined workpiece form accuracy. In Section 2, a systematic analysis of the
effect of tool-setting errors on form accuracy is presented. The structural thermal expansion
of tool holder and tool shank during the LADT machining process is precisely calculated
using the FEA method, which enables thermal pre-compensation of the LADT tool path.
Comparative experiments are described in Section 3. The experimental results in Section 4
successfully demonstrate that the proposed method can effectively improve the form
accuracy of the LADT-machined workpiece.
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2. Theoretical Approaches
2.1. Tool-Setting Error Influence

For accurate calculation of the tool path, it is essential to obtain the diamond tool
position prior to the diamond turning process. However, tool-setting errors are inevitable
due to the structural stress release drift and thermal expansion of the LADT machining. In
this paper, we machined and analyzed an aspherical binderless WC surface with a diameter
of 6 mm, which can be expressed as follows:

z =
cx2

1 +
√

1 − (1 + k)c2x2
+ a2x2 + a4x4 + a6x6 + a8x8 + a10x10 + a12x12 + a14x14 (1)

where c = 1/R is the radius of curvature of the aspherical vertex and k refers to the
aspherical cone coefficient. The aspherical higher-order coefficients a2, a4, a6, a8, a10, a12, a14
are designed to correct the imaging aberration.

In general, tool-setting errors in the X-axis and Y-axis directions directly affect the
machined workpiece form accuracy. The tool-setting error in the Z-axis direction only
affects the depth of a single cut for the conventional diamond turning. When the diamond
tool possesses 50 µm, 40 µm, 30 µm, 20 µm, 10 µm, 5 µm, 2 µm setting errors in the X-axis
and Y-axis directions, there will be a corresponding variable form error on the machined
surface, as shown in Figure 1, although the theoretical calculation results show that Y-axis
setting error has a much smaller effect on the surface form error compared with the X-axis
error. It will leave a severe central cylindric or conical protrusion defect on the machined
surface when the diamond tool is placed below or above the spindle center, respectively,
which leads to a long iterative correction time in the subsequent polishing stage [28,29].
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Figure 1. Effect of tool-setting errors in the (a) X-axis and (b) Y-axis directions on the aspherical
workpiece form error.

2.2. Structural Thermal Expansion

According to the laser path tracing simulation results [12], part of the laser beam will
be reflected and irradiated on the tool shank. Thus, the thermal expansion of tool shank and
holder is inevitable during the LADT process. To precisely obtain the thermal expansion
trend during the LADT machining process, the three-dimensional thermodynamic coupled
deformation is analyzed using FEA simulation. A tool shank made of WC and a tool
holder made of stainless steel are assembled in the model, while thermal exchange, thermal
radiation, and natural convective heat transfer are always taken into account. Considering
the following experiment-adopted laser parameters, the local upper surface of the tool
shank is heated by the equivalent 18 W laser simultaneously (at this time, the diamond tool
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emits 10 W). The initial temperature and ambient temperature are both set as 293 K. The
simulation parameters are summarized in Table 1.

Table 1. The FEA simulation parameters.

Parameters Value

Tool shank material WC
Tool shank thermal expansivity 4.5 × 10−6 1/K

Tool holder material Stainless steel
Tool holder thermal expansivity 12.6 × 10−6 1/K

Initial temperature 293 K
Laser power 18 W

Laser beam diameter 170 µm
Emissivity 0.8

Convection coefficient 10 W/(m2·K)

Since a 2 mm/min feedrate and a 10 mm aperture workpiece were used in the ex-
periments, the total machining time of the workpiece was 150 s. There is always a dwell
time of 30 s before the LADT machining process. In this way, the tool shank is heated for
180 s before the diamond tool reaches the workpiece center. Due to the thermal conductivity
between contact surfaces, the tool holder temperature will also increase. As a result, the
tool shank reaches a maximum temperature of 384 K near the diamond tool, as shown in
Figure 2.
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Figure 2. Thermal field of tool shank and tool holder during the LADT machining.

The mechanical deformation during the 180 s laser heating was precisely calculated
and analyzed. The simulation results indicate that the diamond tool will gradually expand
in the Y-axis and Z-axis directions, which will severely affect the accuracy of the diamond
tool set and machined surface form. Specifically, due to the symmetric design of the
structure, there is no thermal drift along the X-axis direction for the diamond tool tip, and
the diamond tool tip will expand 10.9 µm and 11.7 µm along the Y-axis direction and Z-axis
direction, respectively, as shown in Figure 3a, which should be pre-adjusted in the tool fine
setting process. Moreover, there is a great consistency between LADT-machined workpiece
form error with uncompensated tool path and tool holder thermal expansion in the Z-axis
direction, as shown in Figure 3b, which demonstrates the FEA simulation precision and also
indicates that thermal expansion plays the dominant role in the LADT-machined surface
form error. Furthermore, the residual difference in Figure 3b is mainly attributed to the
tool-setting error, measurement error of the tool nose radius, and tool edge waviness.
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3. Experimental Setup

The comparative LADT experiment was conducted based on the ultra-precision 3-axis
lathe and self-developed LADT-α system, as shown in Figure 4. The LADT-α system
can generate a 1064 nm wavelength continuous-wave (CW) laser beam. After optical
collimating and focusing, a 170 µm diameter laser beam can be guided to the workpiece
cutting area through a transparent diamond tool.
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Figure 4. LADT (a) experimental setup and (b) schematical diagram.

A binderless WC workpiece with a 10 mm overall aperture and 6 mm aspherical
aperture was machined by a brand-new cylindrical diamond tool with a 0.3 mm nose radius
and −35◦ rake angle. The edge-to-center diamond tool feed direction with a feed rate of
2 mm/min and a rotation speed of 2000 rpm was used in the experiments. According to
the numerical simulation results, the vertical expansion height of 10.9 µm was pre-adjusted
before the final turning. Cutting fluid was used to promote lubrication and reduce diamond
tool wear. For clarity, the experimental parameters are summarized in Table 2.
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Table 2. The LADT experimental parameters.

Parameters Value

Workpiece material Binderless WC
Workpiece aperture 10 mm

Surface form Aspherical (Convex with edge inversion)
Tool nose radius 0.3 mm
Tool rake angle −35◦

Feedrate 2 mm/min
Laser power 10 W

Cutting direction Edge-to-center

In the LADT experiments, tool paths were generated in the following two steps. Firstly,
the diamond tool geometries, including nose radius and negative rake angle, were all
compensated based on the machined aspherical surface form, which can directly generate
tool path #1. Secondly, the simultaneous structural thermal expansion along the Z-axis
direction can be determined from the results of FEA simulation and the experimental feed
rate. In this way, tool path #2 can be obtained by subtracting the simultaneous Z-expansion
values from tool path #1, as shown in Figure 5.
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4. Results and Discussion

Due to the continuous heating of the tool shank by the reflected laser beam during
the LADT machining process, the tool shank and tool holder will expand in the Y-axis
direction, which directly affects the accuracy of the diamond tool set position. If the thermal
expansion has not been compensated in advance, the diamond tool will always be higher
than the workpiece center, leaving a conical protuberance defect in the central region, as
shown in Figure 6. Specifically, the deteriorated finish quality in the region around the
central protrusion can be attributed to the unstable cutting state when the diamond tool
flank face squeezes against the central material.

Two binderless WC mold inserts were machined using the LADT method with raw tool
path #1 and pre-compensated tool path #2, respectively. The diamond tool tip height was
pre-adjusted to 10.9 µm to compensate the vertical thermal expansion before both turning
passes. Thus, only a slight central defect can be observed on the machined workpiece,
as shown in Figure 7a, indicating the tool-setting error in the Y-axis direction has been
basically eliminated. Furthermore, a stable machining state can be maintained during the
LADT process, thereby resulting in a homogeneous surface, as shown in Figure 7b.
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Figure 7. LADT-machined binderless WC mold insert surface morphology with a pre-compensated
diamond tool height in the (a) central region, and (b) fringe region.

The machined workpieces were estimated by a form measurement instrument (UA3P-
300). The diamond probe with a radius of 2 µm was used to scan the optics at a scanning
speed of 0.2 mm/s. There is a large difference in form accuracy between the tool path #1 and
tool path #2 machined surfaces. The large form error PV value of 4.015 µm is unqualified,
as shown in Figure 8a, using tool path #1, and there is a great consistency between the form
error and the diamond tool thermal drift in the Z-axis direction, as shown in Figure 3b.
Because thermal deformation was pre-compensated into toolpath #2, the workpiece form
accuracy can be effectively improved to a PV value of 0.573 µm, as shown in Figure 8b.
Moreover, there’s no obvious profile fluctuation in the central area, demonstrating that
the diamond tool tip coincides with the workpiece center by pre-adjusting the expansion
height, which is consistent with Figure 7a.
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Comparative experimental results demonstrate the feasibility of the proposed LADT
tool path pre-compensation method, although the form error of the aspherical surface can be
improved by tool path compensation based on the machined surface profile measurement
results. The pre-compensated tool path generation method can effectively save at least
1 turning pass, which is of interest for diamond tool life in the field of hard and brittle
material machining. In addition, the proposed LADT pre-compensated tool path generation
method provides a significant technique for freeform surface machining, which requires
first-turn pass completion accuracy.

5. Conclusions

In this study, the LADT tool path pre-compensation method has been developed to
eliminate the effect of thermal deformation on the form accuracy of machined surfaces.
A systematic analysis and comparison of the effect of the tip drift of the diamond tool
on the form accuracy was performed. The tool path is precisely pre-compensated based
on the results of FEA thermal expansion calculation. Ideal experimental results success-
fully demonstrate the feasibility of the proposed method. The main conclusions can be
summarized as follows:

1. The tool shank and tool holder will be heated to 384 K, resulting in large ther-
mal drifts in the diamond tool tip of 10.9 and 11.7 µm in the Y-axis and Z-axis
directions, respectively.

2. The workpiece central conical protrusion defects can be effectively eliminated by
tool-setting height pre-compensation according to the FEA simulation results.

3. The form accuracy of the machined aspherical workpiece is effectively improved by
85.7% to a PV of 0.573 µm using the pre-compensated tool path #2.
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