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Abstract: Polymeric microgels, fabricated via microfluidic techniques, have garnered significant inter-
est as versatile drug delivery carriers. Despite the advances, the loading and release of hydrophobic
drugs such as curcumin from polymeric microgels is not trivial. Herein, we report that effective drug
loading can be achieved by the design of porous particles and the use of supramolecular cyclodextrin-
based curcumin complexes. The fabrication of porous microgels through the judicious choice of
chemical precursors under flow conditions was established. The evaluation of the curcumin loading
dependence on the porosity of the microgels was performed. Microgels with higher porosity exhibited
better curcumin loading compared to those with lower porosity. Curcumin-loaded microgels released
the drug, which, upon internalization by U87 MG human glioma cancer cells, induced cytotoxicity.
The findings reported here provide valuable insights for the development of tailored drug delivery
systems using a microfluidics-based platform and outline a strategy for the effective delivery of
hydrophobic therapeutic agents such as curcumin through supramolecular complexation.
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1. Introduction

Polymeric microgels, produced via the microfluidics technique, have emerged as a
fascinating area of research in materials science and biotechnology [1–3]. These miniature
hydrogel particles, typically ranging from hundreds of nanometers to a few micrometers in
size, impart unique properties that make them vital in a wide range of applications [4–6].
Microfluidics, a technology that manipulates fluids in microscale channels, allows precise
control over the synthesis process, resulting in well-defined and uniform polymeric micro-
gels [7]. Fabricating microgels using microfluidics offers numerous advantages compared
to traditional methods. The precise control over size and shape enabled by microfluidic
devices ensures the production of monodisperse microgels, providing uniformity in their
properties. Microfluidics devices enable high-throughput production, allowing the rapid
generation of large quantities in a short time, thus facilitating scalability for mass pro-
duction [8]. Moreover, the tunable properties of microgels, such as porosity and drug
release kinetics, can be finely adjusted by manipulating the fabrication parameters. With
reduced reagent consumption, ease of automation, and the seamless integration of other
functionalities, microfluidics-fabricated microgels emerge as a versatile and cost-effective
solution to advance biomedical research and enable cutting-edge technologies [9,10].

Due to their versatile and multifunctional nature, soft materials like hydrogels [11–13],
microgels [14–16], and nanogels [17–19] are finding increasing use in applications such
as drug delivery and diagnostics. Microgels are being explored as promising candidates
for drug delivery systems due to their remarkable features, such as substantial loading
capacity, compatibility with biological systems, and biostability [4,20–22]. The crosslinked
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network of microgels plays a crucial role in preventing the breakdown of long molecular
chains, thereby contributing to its stability [23]. The viscoelastic characteristics of microgels
add to their appeal by demonstrating structural changes in response to environmental
changes. Additionally, stimuli-responsive microgels [24,25] exhibit a faster response to
stimuli than bulk gels, proving their efficiency in drug delivery systems [26–29]. Another
aspect is that modulating the porosity of microgels through precise adjustments in monomer
compositions has a significant influence on drug delivery. By tailoring the monomer
constituents, it becomes possible to engineer microgels with varying degrees of porosity.
This, in turn, directly impacts the performance and efficacy of the drug delivery process.

The fabrication of microgels with a porous morphology enables control over the
diffusion of drugs from within the gel matrix [30,31]. Microgels with higher porosity
exhibit larger interstitial spaces, facilitating the faster diffusion and release of encapsulated
drugs. Moreover, the porosity of microgels influences their loading capacity. Microgels with
increased porosity can accommodate a larger quantity of drugs, enhancing the total payload
that they can deliver. This is particularly valuable when aiming to administer therapeutic
agents in precise amounts over extended periods. Additionally, porosity impacts the
interaction between microgels and their environment. Microgels with higher porosity tend
to be more responsive to external stimuli [32], leading to more pronounced changes in their
size and structure. This responsiveness can be harnessed to trigger accelerated drug release
when desired, providing an on-demand delivery mechanism.

Curcumin, a naturally occurring polyphenolic compound sourced from the rhizome
of turmeric (Curcuma longa), exhibits a wide array of biological and health-enhancing at-
tributes. These encompass antioxidant, antimicrobial, anti-inflammatory, anti-proliferative,
and anti-cancer activities, making it a versatile and valuable compound [33–35]. How-
ever, its potential for clinical applications remains limited due to curcumin’s challenges in
terms of low bioavailability, limited absorption, aqueous solubility, and rapid metabolism.
Therefore, curcumin has been explored using a variety of delivery techniques. These in-
clude liposomes [36], micelles [27,37], lipid-based nanoparticles [38], and polymer–drug
conjugates [39], often involving physical encapsulation or chemical conjugation for its
incorporation. Curcumin beta-cyclodextrin inclusion complexes represent a solution to the
inherent limitations of curcumin, including poor solubility, low bioavailability, and suscep-
tibility to degradation. Through the complexation of curcumin with beta-cyclodextrin, its
solubility is significantly improved, ensuring better absorption in the body and increased
bioavailability [40,41]. Furthermore, these complexes play a pivotal role in bolstering
curcumin’s stability, shielding it from detrimental environmental factors like light, heat,
and oxygen, which can cause degradation. Additionally, the capacity to regulate release
rates enables the sustained and controlled delivery of curcumin over time [42]. Therefore,
curcumin beta-cyclodextrin inclusion complexes offer a versatile and potent solution to
unlock the therapeutic potential of curcumin.

Herein, we fabricate non-porous and porous microgels using a microfluidics platform
and demonstrate the effective loading of a curcumin cyclodextrin complex into these
microgels (Figure 1). We show that the fine tuning of the monomer composition and
porosity has a profound effect on the efficiency of these microgels as drug delivery vehicles.
This study delves into the intricate relationship between microgel morphologies, drug
encapsulation and release, and cytotoxicity, thus providing valuable insights into the future
of the microfluidics-based tailoring of drug delivery systems.
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Figure 1. Schematic illustration of microfluidics-based fabrication of porous microgels for effective 
delivery of curcumin to cancer cells (scale 100 µm). 

2. Materials and Methods 
2.1. Materials and Devices 

All solvents were purchased from Merck and used as obtained without further puri-
fication. Ultrapure water was obtained from a Milli-Q Water Purification System (Milli-
pore, Billerica, MA, USA). Polyethylene glycol diacrylate (PEGDA), poly(ethylene glycol) 
methyl ether methacrylate (PEGMEMA), poly(ethylene glycol) 10kDA, 2,2-diphenyl-1-
picrylhydrazyl (DPPH), lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP), (2-hy-
droxypropyl)-β-cyclodextrin (HP-β-CD), and curcumin were obtained from Sigma Al-
drich (Sigma, St. Louis, MO, USA). 

For the microfluidics setup, polydimethylsiloxane (PDMS), hexamethyldisilane 
(HMDS), chlorotrimethylsilane, a negative photoresist (SU-8 2040), propylene glycol 
monomethyl ether acetate (PGMEA), glass slides and a biopsy punch (Harris Uni-Core 
0.75 mm, USA), and a nonionic surfactant (Span 80) were purchased from Sigma Aldrich. 
Mineral oil (0.880 kg/L) was purchased from AppliChem. Adhesion promoter TI prime 
was purchased from MicroChemicals. PTFE tubes for the inlets and outlets of microfluidic 
channels were obtained from Microfluidic ChipShop (Microfluidic ChipShop, Jena, Ger-
many). 

An EVG 620 semiautomatic contact photolithographic alignment and exposure tool 
with a 1000-watt light source was used for the silicon master mold fabrication (EV Group, 
Sankt Florian am Inn, Austria). Plasma treatment of the PDMS device and a glass slide 
was performed using a laboratory corona treater (BD-20AC, Electro-Technic Products Inc., 
Chicago, IL, USA). 

Figure 1. Schematic illustration of microfluidics-based fabrication of porous microgels for effective
delivery of curcumin to cancer cells (scale 100 µm).

2. Materials and Methods
2.1. Materials and Devices

All solvents were purchased from Merck and used as obtained without further pu-
rification. Ultrapure water was obtained from a Milli-Q Water Purification System (Milli-
pore, Billerica, MA, USA). Polyethylene glycol diacrylate (PEGDA), poly(ethylene glycol)
methyl ether methacrylate (PEGMEMA), poly(ethylene glycol) 10kDA, 2,2-diphenyl-1-
picrylhydrazyl (DPPH), lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP),
(2-hydroxypropyl)-β-cyclodextrin (HP-β-CD), and curcumin were obtained from Sigma
Aldrich (Sigma, St. Louis, MO, USA).

For the microfluidics setup, polydimethylsiloxane (PDMS), hexamethyldisilane
(HMDS), chlorotrimethylsilane, a negative photoresist (SU-8 2040), propylene glycol
monomethyl ether acetate (PGMEA), glass slides and a biopsy punch (Harris Uni-Core
0.75 mm, USA), and a nonionic surfactant (Span 80) were purchased from Sigma Aldrich.
Mineral oil (0.880 kg/L) was purchased from AppliChem. Adhesion promoter TI prime
was purchased from MicroChemicals. PTFE tubes for the inlets and outlets of microfluidic
channels were obtained from Microfluidic ChipShop (Microfluidic ChipShop,
Jena, Germany).

An EVG 620 semiautomatic contact photolithographic alignment and exposure tool
with a 1000-watt light source was used for the silicon master mold fabrication (EV Group,
Sankt Florian am Inn, Austria). Plasma treatment of the PDMS device and a glass slide
was performed using a laboratory corona treater (BD-20AC, Electro-Technic Products Inc.,
Chicago, IL, USA).

In situ photopolymerization was performed using a UV light source (36 W, 365 nm).
UV-vis spectra were collected on a Cary Varian spectrometer (Santa Clara, CA, USA).



Micromachines 2023, 14, 1969 4 of 16

Curcumin-loaded polymeric microgels were visualized using fluorescence microscopy
(HBO100 ZEISS Fluorescence Microscopy, Carl Zeiss., Jena, Germany), and fluorescence im-
ages were processed using the Zeiss AxioVision software. Syringe pumps were purchased
from maviTeknik (Mersin, Turkiye).

Cell viability experiments were performed with a plate reader (Multiscan FC, Thermo
Scientific, Waltham, MA, USA) using Cell Counting Kit-8 (CCK-8, Fluka, Sigma, St. Louis,
MO, USA). Images of drug internalized cells were obtained using a Zeiss Observer Z1
fluorescence microscope with an Axiocam MRc5 camera. The U87 MG cell line was pur-
chased from ATCC (LGC Standards, Wesel, Germany) and grown according to the culture
method requirements of the manufacturer. All the chemicals used in cell experiments were
purchased from Sigma Aldrich.

2.2. Microfluidics Channel Fabrication

To create a single-layer microfluidic channel of polydimethylsiloxane (PDMS) with
dimensions measuring 400 µm in width, 300 µm in depth, and 3 mm in length, as illustrated
in Figure 2a, the initial step involved crafting a replication mold using a conventional
lithography technique. To produce the master mold, a 4-inch silicon wafer underwent
a meticulous cleaning process, followed by silane vapor treatment utilizing HMDS for
one hour. After applying a coating of TI prime to serve as an adhesion promoter, a brief
one-minute pre-bake was carried out on a hotplate at 95 ◦C. Subsequently, a layer of SU-8
2050 was spun onto the wafer and it was subjected to a baking process at 65 β ◦C for one
minute, followed by 20 min at 95 β ◦C before the exposure stage.

Micromachines 2023, 14, 1969 4 of 17 
 

 

In situ photopolymerization was performed using a UV light source (36 W, 365 nm). 
UV-vis spectra were collected on a Cary Varian spectrometer (Santa Clara, CA, USA). Cur-
cumin-loaded polymeric microgels were visualized using fluorescence microscopy 
(HBO100 ZEISS Fluorescence Microscopy, Carl Zeiss., Jena, Germany), and fluorescence 
images were processed using the Zeiss AxioVision software. Syringe pumps were pur-
chased from maviTeknik (Mersin, Turkiye). 

Cell viability experiments were performed with a plate reader (Multiscan FC, 
Thermo Scientific, Waltham, MA, USA) using Cell Counting Kit-8 (CCK-8, Fluka, Sigma, 
St. Louis, MO, USA). Images of drug internalized cells were obtained using a Zeiss Ob-
server Z1 fluorescence microscope with an Axiocam MRc5 camera. The U87 MG cell line 
was purchased from ATCC (LGC Standards, Wesel, Germany) and grown according to 
the culture method requirements of the manufacturer. All the chemicals used in cell ex-
periments were purchased from Sigma Aldrich. 

2.2. Microfluidics Channel Fabrication 
To create a single-layer microfluidic channel of polydimethylsiloxane (PDMS) with 

dimensions measuring 400 µm in width, 300 µm in depth, and 3 mm in length, as illus-
trated in Figure 2a, the initial step involved crafting a replication mold using a conven-
tional lithography technique. To produce the master mold, a 4-inch silicon wafer under-
went a meticulous cleaning process, followed by silane vapor treatment utilizing HMDS 
for one hour. After applying a coating of TI prime to serve as an adhesion promoter, a 
brief one-minute pre-bake was carried out on a hotplate at 95 °C. Subsequently, a layer of 
SU-8 2050 was spun onto the wafer and it was subjected to a baking process at 65 β °C for 
one minute, followed by 20 min at 95 β °C before the exposure stage. 

 
Figure 2. (a) General illustration of microfluidics fabrication of polymeric microgels, (b) chemical 
scheme of microgel formation, (c) real droplet generator in operation, (d) optical image of monodis-
perse microgels in dry state produced via microfluidics (scale 200 µm). 

The photomask, bearing the desired pattern, was positioned pattern side up on a 5 × 
5-inch soda-lime glass substrate, which was then placed face down on a mask aligner. The 
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scheme of microgel formation, (c) real droplet generator in operation, (d) optical image of monodis-
perse microgels in dry state produced via microfluidics (scale 200 µm).

The photomask, bearing the desired pattern, was positioned pattern side up on a
5 × 5-inch soda-lime glass substrate, which was then placed face down on a mask aligner.
The silicon wafer coated with a photoresist was precisely aligned with the mask and
brought into contact to enable exposure. After exposure, the wafer was post-baked at 65 ◦C
for 5 min and 95 ◦C for 10 min. Subsequent immersion in an organic SU-8 developer solvent
(PGMEA) for 10 min facilitated the removal of excess photoresist. The wafer underwent
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sequential rinsing with isopropanol and DI water, followed by nitrogen drying. To enable
the reuse of the mold, the wafer’s surface was treated with chlorotrimethylsilane vapor
within a vacuum desiccator.

The next phase Involved mixing a silicone elastomer base with a curing agent in a
10:1 ratio within a controlled environment devoid of dust. This mixture was then cured
at 65 β ◦C for 2 h, leading to the replication of PDMS channels. Once complete curing
was achieved, the PDMS was extracted from the master mold, and each microchannel was
individually cut. The inlet and outlet points were established using a manually operated
biopsy puncher. Both the PDMS channel and the glass slide surfaces underwent oxygen
plasma treatment for 3 min to enhance bonding. The bonding itself was performed at
65 β ◦C for a night. Lastly, PTFE tubes were inserted into the inlets and outlets of the PDMS
microfluidics channel in preparation for experiments.

2.3. Microgel Synthesis via Microfluidics

Microgels of varying porosity were fabricated using the water-in-oil (W/O) emulsion
technique within a droplet-based microfluidic setup. A Y-shaped microfluidic channel was
employed to generate consistently sized droplets (Figure 2a–d). The oil phase was pumped
to create a continuous phase, and the aqueous phase, including the monomer solution and
initiator, was injected into the channel to form a dispersed phase. The dispersed phase was
then broken off when it met the continuous phase at the intersection of the channel. After
microdroplet formation, the droplets traversed the channel and reached the outlet tubing,
where UV polymerization was initiated. The microgels were collected in a container to
undergo thorough washing steps to eliminate residuals, unreacted monomers, and PEG.

PEGDA, PEGMEMA, and PEG (10 kDa) were dissolved in DI water to prepare the
dispersed phase. To catalyze the polymerization, a photoinitiator, LAP (constituting 2% of
the total monomers), was introduced into this solution. This aqueous solution was then
utilized as the dispersed phase in the microfluidics process, while the mineral oil with 10%
SPAN 80 was employed as the continuous phase (Figure 2b).

2.4. Morphological Analysis Using Scanning Electron Microscopy (SEM)

Scanning electron microscopy (SEM) studies were conducted to characterize the mi-
crogels’ morphologies. SEM images were obtained from dried microgel samples using a
JCM-5000 NeoScop Tabletop SEM with an accelerating voltage of 10 kV.

2.5. Curcumin and HP-β-CD Complexation

The complexation of curcumin and HP-β-CD was achieved through solvent evapo-
ration methods, as described in a previous report [43,44]. Curcumin and HP-β-CD were
dissolved in a 1:2 ratio in ethanol and stirred at 40 β ◦C until the ethanol completely
evaporated. The resulting mixture was re-dissolved in water, filtered, and subjected to
lyophilization. Subsequently, the sample was stored at 4 β ◦C for further analysis.

2.6. Curcumin Loading and Release Studies

Curcumin was loaded into the microgels using a solution absorption method. Micro-
gels (~5 mg) were soaked in 1 mg/mL curcumin–HP-β-CD complex aqueous solution at
37 ◦C with 100 rpm mechanical shaking for 1 hr. The curcumin loading was monitored by
analyzing the curcumin concentration in the soaking solution with a UV-vis spectrometer
at 425 nm. Later, the curcumin-loaded microgels were gently washed with water, and
1 mL release medium was added. The release experiments were performed at 37 ◦C with
100 rpm shaking. At predetermined time intervals, the drug concentration in the collected
media was monitored using a UV-vis spectrometer.

2.7. Drug Release Kinetic Models

Various kinetic models, including zero-order, first-order, Higuchi, and Korsmeyer–
Peppas, were employed to validate and elucidate the underlying mechanism of drug
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release. To predict the release behavior of the drug, it is imperative to analyze diverse
outcomes derived from fitting the data to a range of validated mathematical models [45,46].
These kinetic models elucidate whether the drug release is contingent on dissolution or
diffusion. They also distinguish whether the release aligns with Fickian, non-Fickian, or
super-case-II drug release models.

2.8. Antioxidant Activity

The antioxidant activity of the curcumin-loaded microgels was measured using the
2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity test. It involves exposing
a purple-colored DPPH radical to a sample containing potential antioxidants. Antioxidants
reduce the DPPH radical, causing it to change color from purple to yellow, which is
quantified by measuring the decrease in absorbance at a specific wavelength using a UV
spectrophotometer [47]. The extent of color change reflects the antioxidant capacity of the
tested compound. To assess the antioxidant activity of the curcumin-loaded microgels, we
prepared curcumin-loaded and non-loaded microgels. We measured the absorbance at
517 nm to demonstrate the inhibition of the DPPH radical.

2.9. In Vitro Cytotoxicity and Internalization

The cytotoxicity of drug-loaded microgels was determined using the CCK-8 viability
assay. The U87 MG human glioma cell line (purchased from ATCC (LGC Standards, Wesel,
Germany) was used for cytotoxicity experiments. Cells were grown in DMEM supple-
mented with 10% fetal bovine serum and incubated at 37 ◦C. U87 MG cells (4000 cells/well)
were seeded in a 96-well plate in 100 µL DMEM and incubated at 37 ◦C for 24 h to adhere
completely. Cell-adhered plates were treated with aliquots of drug-loaded microgels at
37 β ◦C for 24 h and 48 h. After 48 h, a CCK-8 solution (10%) was introduced into each
well. Following a two-hour incubation period, the absorbance values were quantified using
a plate reader (Multiscan FC, Thermo Scientific, Waltham, MA, USA) set at 450 nm. The
cell viability of the treated cells was assessed based on the percentage relative to control
cells (cells in media only). The results were analyzed using the GraphPad Prism software
employing a nonlinear regression model. To facilitate cellular internalization, we initially
seeded U-87 MG glioblastoma cells (50,000 cells per well) into a 24-well plate, triplicating
the setup, with each well containing 1 mL of DMEM culture media. These cell cultures
were then incubated at 37 β ◦C for 24 h. The cells were then subjected to three consecutive
washes with 500 µL of PBS each time. Afterward, the cells were fixed by exposure to a
4% formaldehyde solution at 37 β ◦C for 10 min. Following another three rounds of PBS
washing, the cells underwent 15-min incubation at 37 β ◦C for DAPI nuclei staining. We em-
ployed a Zeiss Observer Z1 fluorescence microscope to visualize and document the cellular
state and processed the obtained images using the AxioVision software (Version 4.8.2.0).

3. Results
3.1. Microgel Synthesis and Characterization

Through a photo-initiated polymerization process using PEGDA, PEGMEMA, and
PEG (10 kDa), polymeric microgels were successfully synthesized using microfluidics, as
illustrated in Figure 2d. The gelation was accomplished under UV irradiation at 365 nm in
the presence of the photoinitiator LAP. This approach harnessed the precise manipulation
of fluid dynamics within microchannels by adjusting the flow rates, forming monodis-
persed microdroplets.

The dispersed phase consisted of PEG monomers, which were delivered by one of the
inlets, as summarized in Table 1. The continuous phase consisted of 10 wt% Span 80. All
components were pumped into the microfluidic channel via tubing attached to the tips of
1 mL syringes. Pumping into the channel was achieved using a syringe pump at a flow
rate of 10 µL/min for the continuous phase and 5 µL/min for the dispersed phase. Droplet
formation was observed once a steady flow of both phases had been established. These
microdroplets underwent photopolymerization while traversing the outlet tubing.
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Table 1. Properties of microgels with varying monomers. While P signifies porous, NP signifies
non-porous.

Microgels PEGMEMA
Eq.

PEGDA
Eq.

PEG 10kDa
Eq.

P-PEGMEMA-PEGDA 1.3 1 0.1
NP-PEGMEMA-PEGDA 1.3 1 -

P-PEGDA - 1 0.1
NP-PEGDA - 1 -

After microgel formation, the microgels were collected into an Eppendorf tube. The
microgels were washed with hexane, methanol, DI water, and methanol, respectively, to
remove excess oil. Then, the microgels were dried overnight at room temperature under
a vacuum. Thus, the synthesized microgels were examined using an optical microscope,
allowing for the acquisition of size distributions (Figure 3a,b). Thereafter, SEM was utilized
to probe the surface microstructures of the microgels. The microgels were dried before the
analysis. It is known that porogens, often PEG-based, can be introduced during fabrication
to increase porosity [48–50]. From the SEM images, morphologies with increased pore size
were observed upon adding the chain length of PEG 10 kDa (Figure 4). Additionally, we
inferred that enhanced porosity was obtained upon the incorporation of PEGMEMA as the
monomer, along with the linear PEG (10 kDa). The comparison of Figure 4a,b indicates
that the utilization of PEGMEMA resulted in a significant augmentation in the microgels’
porosity. The impact of incorporating PEG (10 kDa) into the polymeric network was
explored within both PEGMEMA-containing and PEGMEMA-free microgels to elucidate
the effect of individual components in terms of porosity and drug-loading capacities.
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To obtain further insights, water-induced swelling was employed to investigate the
relationship between the volume change of dry microgels and their porosity. Dry microgels
were first prepared and characterized for their initial size and structure. Then, a known
amount of water was gradually introduced to the microgels, and their volume changes
were meticulously recorded using an optical microscope. As water permeated the microgel
network, the polymer chains within the microgels adsorbed water molecules, expand-
ing the microgel structure. The extent of the volume change was directly proportional
to the porosity of the microgels, as seen in Figure 5a, with more porous microgels (P-
PEGMEMA-PEGDA) exhibiting larger volume increases due to the greater accessibility of
water molecules to the internal void spaces. Figure 5b displays optical microscopy images
capturing the swelling behavior of porous microgels upon the addition of 100 µL of water
to the initially dry gels.
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3.2. Curcumin Loading and Release Studies

Microgels’ drug loading and release characteristics were examined using a hydropho-
bic drug, curcumin. The loading of the drug onto the microgel samples was accomplished
through a solution absorption technique. Curcumin loading trials were conducted in deion-
ized (DI) water, and, given curcumin’s hydrophobic nature, a curcumin–(2-hydroxypropyl)-
β-cyclodextrin (HP-β-CD) complex was employed to enhance the drug’s solubility to obtain
better loading, as seen in Figure 6a. Figure 6b demonstrates that using curcumin alone
for loading, without CD complexation, did not yield effective results. This suggests that
the supramolecular complex plays a crucial role in enhancing the loading performance,
which will be important in obtaining sufficient release to induce cytotoxicity. An additional
analysis was conducted to establish the formation of inclusion complexes between CUR
and HP-β-CD through the analysis of FTIR (Figure S1) and 1H NMR (Figure S2) spectra.
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For loading studies, the curcumin–CD complex was dissolved in water (1 mg/mL).
A predetermined amount of dry microgel was weighed and placed in separate vials for
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each microgel system. A calculated volume of the curcumin–CD solution was added to
each vial, and the microgels were allowed to adsorb the complex at 37 ◦C with 100 rpm
gentle mechanical shaking for 1 h. After adsorption, the microgels were separated from
the solution, and the concentration of curcumin in the supernatant was measured using
UV spectrophotometry at 425 nm. It enabled the calculation of the loaded curcumin by
subtracting the initial concentration from the measured concentration. This loading process
was repeated for microgels of varying porosity, and the data were analyzed to understand
the influence of porosity on the curcumin adsorption efficiency, as drawn in Figure 7.

The optimal microgel system with the highest loading performance was employed
to monitor the release profile of curcumin. The curcumin-loaded microgels were carefully
washed with distilled water before introduction into the release medium. Release studies
were conducted in both DI water with 0.5% Tween 20 and cell medium. At specific time
intervals, the release medium was analyzed using a UV spectrophotometer to monitor drug
release. The obtained release profiles demonstrated effective release in cell media, as also
noted by the loss of fluorescence of the microgels upon drug release (Figure 8).
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3.3. Drug Release Kinetic Models

The most suitable kinetic model to predict the release of curcumin from spherical
microgels was determined through curve fitting and the calculation of correlation coef-
ficients. These models help us to understand and predict how drugs are released over
time, influencing their efficacy. Various models, such as zero-order (constant release
rate), first-order (proportional to remaining drug), Higuchi (diffusion-based release), and
Korsmeyer–Peppas (complex release mechanisms), were investigated for curcumin release
by fitting the experimental data to these models using the following equations:

Mt/M = k0t (Zero Order Model)

Mt/M = 1− e−k1t (First Order Model)

Mt/M = kht0.5 (Higuchi Model)

Mt/M = ktn (Korsmeyer-Peppas Model)

The drug release dynamics of the composite hydrogel were investigated using the
Korsmeyer–Peppas model, which characterizes drug release kinetics based on alterations
in the diffusion coefficients of both water and the drug. The diffusion index (n) obtained
from the Korsmeyer–Peppas model was 0.4857, indicative of non-Fickian (anomalous)
diffusion in the range of 0.45 to 0.89. Anomalous transport encompasses a spectrum of
behaviors that lie between simple Fickian diffusion and more intricate processes like erosion,
swelling, relaxation, or chemical reactions. The fitting curves’ correlation coefficients for
the release of curcumin from the spherical microgels were found to be 0.8204, 0.9429, 0.9826,
and 0.9306, as seen in Figure 9. Among these, the Higuchi model exhibited the highest
correlation coefficient. The Higuchi model had the highest correlation coefficient when
fitting the release data of curcumin from the spherical microgels; this suggests that the
release mechanism for curcumin from these microgels is consistent with diffusion-based
release, where the amount released increases with the square root of time.

3.4. Antioxidant Activity of Curcumin-Loaded Microgels

The DPPH radical scavenging activity of curcumin-loaded and non-loaded microgels
was evaluated to assess their potential antioxidant properties. For the DPPH radical
scavenging test, curcumin-loaded and non-loaded microgels were combined with 1 mL
of an ethanolic DPPH solution (0.2 mmol/L). Subsequently, the resultant mixtures were
left to stand for 30 min at room temperature in the dark (Figure 10b). The absorbance
of the resulting supernatants was then measured spectrophotometrically at 517 nm. The
DPPH radical is a stable free radical with a deep purple color in solution, and it changes
color to yellow when it is reduced by an antioxidant compound, which can be observed in
UV spectroscopy, as seen in Figure 10c. These results clearly indicate that incorporating
curcumin into the microgels does not compromise its antioxidant activity. A slight delay in
the quenching of the radical is observed for the curcumin-loaded microgels as compared to
the free and complexed drug, presumably due to the slower release of the drug from the
microgels (Figure S4).

3.5. In Vitro Studies

This study aimed to design microgels to evaluate their potential as biomaterials for the
delivery of the highly hydrophobic therapeutic agent curcumin. Hence, it was crucial to as-
sess the cytotoxicity of these microgels and their resultant drug release products. Therefore,
we evaluated the anti-cancer activity of curcumin-loaded microgels (P-PEGMEMA-PEGDA)
against U-87 MG human glioblastoma cells by assessing their cytotoxicity using the CCK-8
assay. In Figure 11a, it can be observed that the cell viability decreased after a 48 h treat-
ment with various curcumin concentrations. At the lowest concentration of 10 µg/mL,
there was a modest reduction in cell viability, with approximately 85% of cells remaining
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viable. As the concentration of curcumin was increased to 30 µg/mL and 45 µg/mL, cell
viability decreased progressively to 65% and 40%, respectively. These findings suggest that
curcumin exerts a significant inhibitory effect on U87MG cell proliferation, highlighting its
potential as a candidate for further investigation in the context of glioblastoma therapy.
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We also investigated the cellular internalization of the drug using fluorescence mi-
croscopy, since curcumin is inherently fluorescent. Cancer cells were treated with aliquots
from drug-loaded microgels for 6 h. Following incubation, we employed 4′,6-diamino-
2-phenylindole (DAPI), a fluorescent blue dye, to stain the cell nuclei. The results were
analyzed using fluorescence microscopy, as seen in Figure 11b. The high level of green
fluorescence in these experiments indicated the successful internalization of the hydropho-
bic drug.

4. Conclusions

In conclusion, the present study presents an innovative and straightforward method
to create porous microgels through the judicious choice of gel precursors. This approach is
achieved through a single-step procedure within a droplet microfluidics system, offering
enhanced precision and control over the microgel formation process. By harnessing this
technique, we successfully fabricated microgels characterized by their unique porous
structures, which hold great potential for various applications. One of the most important
features of our approach is the ability to adjust the porosity of these microgels by making
specific changes to their composition. By modifying factors such as the concentration or
ratio of components, we can introduce porosity within the microgel structure. Introducing
porosity into microgels is a significant advancement, as it opens the door to various
applications ranging from drug delivery to tissue engineering. The tailored structural
characteristics of these porous microgels ensure efficient drug loading. As a result, the
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work reported here presents a streamlined approach to fabricating these microgels and
underscores the far-reaching implications of their adjustable porosity within materials
science and biomedical engineering.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/mi14101969/s1, Figure S1: FT-IR spectra of the components
of the curcumin–HP-β-CD complex inclusion. Figure S2: H-NMR spectrum of the components of the
curcumin–HP-β-CD complex inclusion in DMSO-d6. (a) Curcumin, (b) HP-β-CD, and (c) Curc–HP-
β-CD inclusion complex. Figure S3: Microscopy images of microgels after release in cell medium.
Figure S4: (a) DPPH solutions introduced to the curcumin and curcumin–HP-β-CD complex, (b) UV
spectroscopy of DPPH solution and DPPH radical scavenging.
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