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Abstract: The dimensions of material extrusion 3D printing filaments play a pivotal role in determin-
ing processing resolution and efficiency and are influenced by processing parameters. This study
focuses on four key process parameters, namely, nozzle diameter, nondimensional nozzle height,
extrusion pressure, and printing speed. The design of experiment was carried out to determine
the impact of various factors and interaction effects on filament width and height through variance
analysis. Five machine learning models (support vector regression, backpropagation neural network,
decision tree, random forest, and K-nearest neighbor) were built to predict the geometric dimension
of filaments. The models exhibited good predictive performance. The coefficients of determination
of the backpropagation neural network model for predicting line width and line height were 0.9025
and 0.9604, respectively. The effect of various process parameters on the geometric morphology
based on the established prediction model was also studied. The order of influence on line width and
height, ranked from highest to lowest, was as follows: nozzle diameter, printing speed, extrusion
pressure, and nondimensional nozzle height. Different nondimensional nozzle height settings may
cause the extruded material to be stretched or squeezed. The material being in a stretched state leads
to a thin filament, and the regularity of processing parameters on the geometric size is not strong.
Meanwhile, the nozzle diameter exhibits a significant impact on dimensions when the material is in a
squeezing state. Thus, this study can be used to predict the size of printing filament structures, guide
the selection of printing parameters, and determine the size of 3D printing layers.

Keywords: material extrusion 3D printing; processing parameters; filament dimension; design of
experiment; machine learning

1. Introduction

Additive manufacturing (AM), also known as rapid prototyping, 3D printing, and
freeform fabrication, is an advanced manufacturing method founded upon 3D model
data. This method constructs intricate structures or parts by depositing materials layer-by-
layer [1,2]. In contrast to traditional manufacturing technologies, AM exhibits significant
advantages, including its capacity to handle intricate structures, low waste generation, and
heightened production efficiency [3]. Presently, massive methods for AM are prevalent,
including vat photopolymerization [4], material inkjet [5], binder jetting [6], powder bed
fusion [7], and direct energy deposition [8], among others. Material extrusion, also known
as direct ink writing (DIW) or robot-casting, is a processing technology that uses pneumatic
pressure or mechanical loads as driving forces to extrude a semi-solid material from a
nozzle, then solidifies the extruded material and bonds it to the previously extruded
material to form a solid structure [9,10]. The processed materials are referred to as ‘inks’,
which typically manifest as viscoelastic non-Newtonian fluids characterized by shear

Micromachines 2023, 14, 2091. https://doi.org/10.3390/mi14112091 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi14112091
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0001-9789-2110
https://orcid.org/0009-0008-4650-047X
https://orcid.org/0000-0001-5655-6196
https://orcid.org/0000-0002-1619-4319
https://doi.org/10.3390/mi14112091
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi14112091?type=check_update&version=1


Micromachines 2023, 14, 2091 2 of 19

thinning behavior [11,12]. The material viscosity decreases, causing it to flow out of
the nozzle, when subjected to high shear strain rates. Subsequent to deposition, the
viscosity recovers at a zero shear force and the material maintains its shape. This processing
method shows good material compatibility, simple operation, and an economical equipment
cost [13–15]. It has also been widely applied in the processing of flexible robots [16,17],
wearable sensors [18,19], tissue engineering [20,21], electronic components [22,23], and
food materials [24,25], exhibiting its huge application potential across diverse domains.

The success of material extrusion and the dimension of extruded filaments are subject
to the influence of various process parameters, including extrusion pressure, printing
speed, nozzle diameter, printing nozzle height, and printing temperature, among others.
Materials with different viscosities exhibit their own ‘printability windows’ during printing.
Only with reasonable printing parameters can the material achieve a uniform and stable
extrusion. Additionally, the width and height of the printed filament under different
process parameters are quite different. Effectively foreseeing the geometric dimensions
of the printed line structure can be used to guide the slicing of 3D models and improve
the manufacturing performance of 3D structures [25]. The determination of extrusion
parameters tends to rely on experiential approaches or extensive trial and error tests, often
entailing a significant time and labor investment [26].

Establishing mathematical models and theoretical calculations is a method for de-
termining process parameters. Udofia and Zhou [27] summarized numerous parameters
influencing filament width and height, encompassing extrusion pressure, printing speed,
nozzle diameter, nozzle height, nozzle length, ink viscosity, surface tension surface prop-
erty (e.g., contact angle, θ), etc. However, the interplay of these factors is intricate, and an
integral functional equation describing the above variables has not yet been established.
To streamline a model, a functional relationship linking the geometric dimensions of the
printed line with the extrusion flow rate and printing speed should be devised, grounded
in the extruded material’s adherence to the law of volume conservation [28,29]. However,
this volume conservation model would exclusively pertain to filaments of a uniform and
stable structure. The volumetric flow rate of printed ink emerges as a pivotal factor in the
calculation process yet the control of the flow rate in pneumatic extrusion 3D printing poses
challenges, given its intrinsic difficulty. Although plunger extrusion allows for flow rate
adjustment, the viscoelastic nature of the ink, coupled with its compressibility, introduces
inaccuracies in flow control [13,20].

Numerous parameters wield influence over the dimensional attributes of 3D printing
structures, and their distribution spans a broad spectrum. The design of experiment (DoE)
has become a powerful tool for studying the relationship between the printing structure
size and various factors [30]. As a statistical analysis method, factorial design can reveal
the degree of influence of printing parameters on response variables through statistical
results [31]. Zhang et al. [22] investigated the effects of extrusion pressure, nozzle head
height, and substrate moving speed on printed filament width by orthogonal experimental
design. The results of the range analysis unveiled a descending hierarchy of effects for
these three factors: printing speed, extrusion pressure, and nozzle height. Caputo et al. [31]
performed an exploration of the surface roughness of fused filament fabrication (FFF) parts
by the DoE approach; the analysis of variance and Pareto chart clearly showed that the
nozzle temperature had a significant impact.

Machine learning constitutes yet another avenue for exploring the intricate nexus
between the dimensions of 3D printing structures and their process parameters. It is a
branch of artificial intelligence that focuses on developing statistical models and algo-
rithms, enabling computers to learn adaptively from existing data and evolve without
hard coding [32]. Machine learning has been successfully applied in various fields such as
healthcare, energy, materials, and manufacturing [33–36]. Well-regarded machine learning
methods include the artificial neural network (ANN), support vector machine (SVM), deci-
sion tree (DT), random forest (RF), K-nearest neighbors (KNN), and extreme gradient boost
(XGBoost), among others. A comprehensive overview of machine learning’s applications
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in additive manufacturing, including predictions of mechanical properties, dimensional
attributes, defect detection, and in situ monitoring, has been meticulously presented in
Ref. [9]. Machine learning techniques have also been used to optimize the design param-
eters of 3D-printed composite layers [37–39]. Goh et al. [37] used neural networks and
genetic algorithms to predict the shore hardness and compressive modulus, outperforming
the surface response method by 3.5%. McGregor et al. [40] selected the SVM model to
study the relationship between part geometry, quality, and different printing parameters.
Subsequent to training, the model attained a root mean squared error (RMSE) of 53 µm,
demonstrated a feature classification accuracy of 95%, and achieved a commendable part
classification accuracy of 81%. Chen et al. [41] employed the ANN method to unravel the
relationship between the printing pressure, nozzle height, and printing speed of SiC slurries
and the printed filament width and height, yielding a predictive relative error of 0.045 for
width and 0.100 for height. Ma et al. [42] chose an RF regression algorithm to predict the
printing line width and height using a dataset of material viscosity and printing parameters,
showcasing a predicted coefficient of determination (R2) ranging from 0.93 to 0.94. Machine
learning is mainly aimed at data processing and analysis, is capable of discovering trends
in large and nonlinear datasets, and reveals previously unknown or unclear relationships
in high-dimensional data [40]. Given the divergence in model performance, scholars often
undertake comparisons across various models while addressing the same problem and
employing identical datasets. Ali et al. [32] selected Gaussian process regression models,
DT regression models, SVM models, and XGBoost regression models to predict the tensile,
compressive, and flexural strength of 3D-printed concrete materials, and their SVM model
demonstrated the most favorable performance. Similarly, Wang et al. [30] studied the
drug loading efficiency of 3D-printed drugs using five methods: DT, RF, KNN, XGBoost,
and a light gradient boosting machine (LightGBM), with the DT model emerging as the
top performer.

In this study, we present an investigation into the interplay between the geometric
dimensions of pneumatic extrusion filament structures and printing parameters. Barium
titanate/polydimethylsiloxane (BaTiO3/PDMS), which is a representative printing ink with
shear thinning characteristics, was selected as the printing material. Due to its excellent
dielectric properties, this material finds widespread utility in domains such as flexible
sensors [43], energy storage materials [44], and terahertz technology [45]. DoE and machine
learning methods were used to systematically evaluate the relationship between the printed
filament dimension and main process parameters, including the extrusion pressure, nozzle
diameter, printing speed, and nondimensional nozzle height. The significance of each
factor was then studied through DoE statistical analysis. Five machine learning methods,
including support vector regression (SVR), back-propagation neural network (BPNN),
DT, RF, and KNN, were used to establish a model that illuminates the nexus between
the geometric dimensions of printed filaments and printing parameters. Among these
approaches, we identified the BPNN model as the most proficient performer, which we
then leveraged to dissect the influence of varied process parameters on filament width and
height. This analysis extended to deciphering the underlying patterns of influence, thereby
offering guidance in the judicious selection of process parameters.

2. Materials and Methods
2.1. Three-Dimensional Printing and Dimension Measurement

BaTiO3 powder was purchased from Aladdin (Shanghai, China). PDMS Sylgard 184
and SE 1700 were obtained from Dow Corning. Before preparing composite materials, the
base and curing agents of PDMS Sylgard184 and SE1700 were mixed in a weight ratio
of 10:1. Subsequently, BaTiO3 powder, PDMS Sylgard184, and SE1700 were combined
in a mass ratio of 3:4:8 for use as the printing material. To create the ink, the composite
mixture was stirred at 2000 r/min within an ice–water bath for 15 min. This was followed
by a 30-min vacuum treatment to eliminate any entrapped bubbles resulting from the
stirring process. The filament structures were fabricated using an extrusion-based 3D
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printer. Different printing parameters were selected, which are described in the DoE study
section and the machine learning section. After printing, the materials were cured in an
oven at 80 ◦C for 6 h. The filament width and height were measured using a white light
interferometer (Optical Surface Profile, Zygo, NewViewTM 8200 Series, Zygo Corporation,
Middlefield, CT, USA).

2.2. DOE Study

Numerous factors intricately influence extrusion performance, with each parameter
exhibiting a broad distribution range. We used the fractional factor design method in
our experiment. This statistical analysis technique enables the systematic exploration
of the impact of diverse process parameters on the dependent variable. In this study,
we selected four process parameters: nozzle diameter, nondimensional nozzle height,
extrusion pressure, and printing speed as factors for factorial design. Among them, the
nondimensional nozzle height refers to the ratio of the nozzle height from the substrate
to the nozzle diameter. We set three levels for each of these four factors and the DoE was
carried out by Minitab 20 software, obeying the following two rules: the frequency of each
factor at each level is the same and the frequency of any combination of two factors at any
level is equal. The process parameters used in the experiment are shown in Table 1. After
measuring the printed geometric dimensions of each parameter, we conducted an analysis
of variance (ANOVA) to determine the magnitude of the interaction between the filament
width and height and various factors.

Table 1. List of the process parameters and respective sample numbers for the factorial design.

Number Nozzle
Diameter (mm)

Nondimensional
Nozzle Height

Extrusion
Pressure (kPa)

Printing Speed
(mm/s)

1 0.33 0.8 350 5.0
2 0.33 0.8 425 2.5
3 0.33 0.8 500 7.5
4 0.33 1.0 350 2.5
5 0.33 1.0 425 7.5
6 0.33 1.0 500 5.0
7 0.33 1.2 350 7.5
8 0.33 1.2 425 5.0
9 0.33 1.2 500 2.5

10 0.41 0.8 350 7.5
11 0.41 0.8 425 5.0
12 0.41 0.8 500 2.5
13 0.41 1.0 350 5.0
14 0.41 1.0 425 2.5
15 0.41 1.0 500 7.5
16 0.41 1.2 350 2.5
17 0.41 1.2 425 7.5
18 0.41 1.2 500 5.0
19 0.51 0.8 350 2.5
20 0.51 0.8 425 7.5
21 0.51 0.8 500 5.0
22 0.51 1.0 350 7.5
23 0.51 1.0 425 5.0
24 0.51 1.0 500 2.5
25 0.51 1.2 350 5.0
26 0.51 1.2 425 2.5
27 0.51 1.2 500 7.5

We performed polynomial regression fitting to establish the relationship between
the filament width and height, focusing specifically on parameters with a substantial
impact. To increase the diversity of the data and enhance the precision of the fitting process
and machine learning model, we conducted an additional set of 43 printing experiments.
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We kept three levels for the nozzle diameter and added another two levels for the other
three factors. A comprehensive full-factor table was compiled, from which we randomly
selected 43 parameters for the purpose of printing with the help of Minitab software. The
detailed information on these selected parameters is presented in Table S1 (Supplementary
Material). We used a total of 70 groups of parameters for regression and evaluated the
fitting performance by calculating the coefficient of determination.

2.3. Machine Learning

We employed five different machine learning methods, namely, SVR, BPNN, DT,
RF, and KNN, for prediction. For training and testing, we used a dataset containing
70 groups of data, with 20% of the data used as the test set to evaluate the accuracy of
the model’s prediction of unknown data. Given the limited size of the dataset, to obtain
more reliable results, we adopted a 5-fold cross-validation strategy to ascertain the optimal
hyperparameters for each model. During each calculation, four subsets were utilized
for training the model, while the remaining subset was reserved for validation purposes.
Hyperparameters with the smallest average root mean square error (RMSE) were chosen
as the best ones and were selected for model training. This process is shown in Figure 1.
All machine learning algorithms were implemented using Jupyter Notebook 6.5.4, Python
version 3.8.12, and were constructed using the scikit-learning package. Given the disparate
value ranges of the input variables, a standardization procedure was employed to mitigate
the potential influence of these variations on the model outcomes. We standardized the four
input parameters by adjusting the data to a distribution with a mean of 0 and a variance
of 1. This approach was adopted to promote a balanced impact of distinct variables on the
model. The calculation formula is provided below:

xscale =
x− µ

S
(1)

where, x and xscale are the data before and after standardization, and µ and S refer to the
mean and variance of the data.
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Three indicators were used for model performance evaluation, namely, root mean
square error (RMSE), mean absolute error (MAE), and the coefficient of determination (R2).
The formulae for calculating these evaluation metrics are provided below [46,47]:

RMSE =

√
1
m

m

∑
i=1

( fi − yi)
2 (2)

MAE =
1
m

m

∑
i=1
| fi − yi| (3)

R2 = 1−

m
∑

i=1
( fi − yi)

2

m
∑

i=1
(yi − y)2

(4)

where f i and yi refer to the prediction value and the true value, y is the mean of true value,
and m is the total number of samples.

3. Results and Discussion
3.1. DOE and ANOVA Results

A filament can be fabricated smoothly and uniformly by using the given printing
parameters, which proves that the selected parameters have good printing performance.
The average values of the printed filament width and height under distinct parameters are
presented in Table S2 (Supplementary Material). The span of the printed filament widths
ranged from 0.3749 mm to 2.2892 mm, while the filament heights ranged from 0.1496 mm
to 0.8541 mm. It can be seen that the printing parameters have a significant influence on the
size of the filament. The interaction plots containing the average filament width and height
values of the four process parameters at each of the three levels are shown in Figure 2. The
figure reveals consistent rules in filament width and height variation as the four factors
undergo changes, i.e., an increased nozzle diameter or pressure yields an augmented width
and height, whereas an elevated printing speed corresponds to a diminished width and
height. The impact of nozzle diameter and printing speed on the filament’s geometric
dimensions surpasses that of printing pressure. When the nozzle diameter increased from
0.33 mm to 0.51 mm, the average width increased from 0.8745 mm to 1.5691 mm, and the
average height increased from 0.2820 mm to 0.5624 mm. Similarly, an increase in printing
speed from 2.5 mm/s to 7.5 mm/s elicits a reduction in the line width from 1.4973 mm to
0.8910 mm and line height from 0.5261 mm to 0.2944 mm. The effect of the nondimensional
nozzle height on filament dimensions is slightly different: the line width decreased with the
increase in the nondimensional nozzle height, while the line height experienced an initial
increase followed by a subsequent decrease. Generally, the line height should also decrease
with the increase in the nondimensional nozzle height. However, during printing, an
excessively low nozzle height leads to material squeezing, causing it to flow in the normal
direction along the printing direction [48,49], resulting in the actual filament height falling
below the ideal state, as depicted by the green line in Figure 2b. Overall, the impact of the
nondimensional nozzle height on geometric dimensions is notably smaller in comparison
to the other three factors. Nondimensional nozzle height is used to describe the nozzle-
to-substrate distance instead of the nozzle height by many scholars [50,51]. This research
adopts the nondimensional nozzle height for two primary reasons: firstly, the variation
range of nozzle diameter in the study is large, and fixed height values will lead to different
printing states (material stretching or squeezing) for different nozzle diameters, which
weakens the statistical regularity; secondly, the range of reasonable nozzle heights varies
with different nozzle diameters, introducing complexity to the level setting.
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ANOVA serves as a significance testing method used to compare the mean differences
across multiple samples. In this study, Minitab software was used to perform signifi-
cance tests on the four response variables, with a significance level of 95% (α = 0.05).
Tables 2 and 3 show the results of the ANOVA for filament width and line height, and
Figure 3a,b is the Pareto chart. The critical value of the standardization effect is 2.45, calcu-
lated by Minitab software. When the standardization effect is greater than this value, the
p-value is less than 0.05, indicating this factor’s significant effect. Larger bars within the
chart signify a greater statistical significance and correspondingly smaller p-values [30].
It can be observed from the Pareto chart that the impact of response variables on the line
width and line height is very similar. The factors that have a significant impact ranked
in order of their degree of influence are the nozzle diameter, printing speed, extrusion
pressure, and nozzle diameter× printing speed; the former two factors wield a significantly
greater influence on the response variables than the latter two. From the ANOVA results
in Tables 2 and 3, it can be seen that the p-values of the nozzle diameter, printing speed,
extrusion pressure, and nozzle diameter × printing speed are all less than 0.05, indicating
that these factors have a significant impact on filament width and height. Conversely, the
p-value of the nondimensional nozzle height is greater than 0.05, indicating an absence of
significant influence. This may be attributed to the small difference between the selected
levels in the experiment. Within this narrow range, changing the parameters exerts minimal
effects on the line width and height. Except for the single-factor and 2-way interaction
effects listed in the figure, the impact of other 2-way interaction effects and multi-factor
interactions is comparatively modest and not reflected in the figure.

Table 2. ANOVA results of filament width.

Factors Degrees
of Freedom Sum of Squares Mean Square F-Value p-Value

Nozzle diameter 2 2.36995 1.18497 529.79 <0.001
Nondimensional nozzle height 2 0.01681 0.00840 3.76 0.088

Extrusion pressure 2 0.29132 0.14566 65.12 <0.001
Printing speed 2 1.71309 0.85655 382.95 <0.001

Nozzle diameter × Nondimensional nozzle height 4 0.01710 0.00427 1.91 0.228
Nozzle diameter × Extrusion pressure 4 0.02985 0.00746 3.34 0.092

Nozzle diameter × Printing speed 4 0.13787 0.00224 15.41 0.003
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Table 3. ANOVA results of filament height.

Factors Degrees
of Freedom Sum of Squares Mean Square F-Value p-Value

Nozzle diameter 2 0.392581 0.196291 569.85 <0.001
Nondimensional nozzle height 2 0.000719 0.000360 1.04 0.408

Extrusion pressure 2 0.042933 0.021466 62.32 <0.001
Printing speed 2 0.253553 0.126776 368.04 <0.001

Nozzle diameter × Nondimensional nozzle height 4 0.002018 0.000505 1.46 0.321
Nozzle diameter × Extrusion pressure 4 0.004460 0.001115 3.24 0.097

Nozzle diameter × Printing speed 4 0.021411 0.005353 15.54 0.003
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Figure 4a,b shows the factor interaction plot of filament width and height. There is a
significant interaction between the nondimensional nozzle height and extrusion pressure;
for changes in extrusion pressure, different nondimensional nozzle heights exhibit different
trends. Specifically, when the nondimensional nozzle height is set at 0.8, an increase
in extrusion pressure from 350 kPa to 425 kPa yields little rise in the filament width
and height, which is different from the change at a nondimensional nozzle height of
1.0. This disparity may arise from the accumulation of printed materials, leading to the
embedding of the nozzle tip at the lower nondimensional nozzle height of 0.8. Analogously,
when the nondimensional nozzle height is 1.0 and extrusion pressure is elevated from
425 kPa to 500 kPa, an analogous circumstance occurs. That is to say, the difference in
the nondimensional nozzle height and extrusion pressure can lead to different printing
states. When selecting printing parameters, especially when the pressure is high and the
printing speed is low, it is necessary to pay attention to the accumulation of materials on
the substrate. If the nondimensional nozzle height is low, the nozzle may exert a squeezing
effect on the material, resulting in differences in the forming performance compared to
when there is no squeezing. Therefore, it should be avoided as much as possible or studied
separately from the non-squeezing situation.

3.2. Regression Analysis

To specifically describe the relationship between the printing filament width/height
and process parameters, we conducted a polynomial regression analysis. We utilize A, B,
C, and D to represent nozzle diameter, nondimensional nozzle height, extrusion pressure,
and printing speed, respectively, consistent with the abbreviations used in the ANOVA
mentioned above. In the regression equation, four single factors A, B, C, and D were
considered, along with their squared terms A2, B2, C2, and D2. Moreover, we integrate the
double interaction terms A × B, A × C, and A × D, all of which exhibit a significant impact
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on the results. By regression fitting 70 sets of data, we obtained regression models for the
line width and height, as shown in Equations (5) and (6):

W = 4.66 − 7.76 × A − 1.98 × B − 0.0084 × C − 0.1302 × D + 16.79 × A2 + 1.20 × B2 + 0.000011 × C2 + 0.02172 × D2 −
1.24 × A × B + 0.00384 × A × C − 0.473 × A × D

(5)

H = 1.413 − 3.43 × A − 0.009 × B − 0.00307 × C − 0.0485 × D + 6.21 × A2 + 0.089 × B2 + 0.000003 × C2 + 0.00787 ×
D2 − 0.370 × A × B + 0.002481 × A × C − 0.1696 × A × D

(6)

where W and H refer to the filament width and height.
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The coefficient of determination R2 for the filament width and height are 0.8996 and
0.9641. Figure 5 illustrates the relationship between the predicted values of the regression
equation and the true values. The data points that closely align with the dashed line
indicate a strong agreement between the predicted and actual values. Obviously, the
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prediction accuracy for the filament height is notably higher, which aligns cohesively with
the coefficient of determination outcomes. These polynomial regression models offer a
more comprehensive perspective on the influence of the printing parameters over the
filament width and height. This mathematical representation aids in achieving a deeper
comprehension of this intricate relationship.
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Furthermore, we conducted an analysis that considers the interaction between all two
factors and establishes a polynomial regression equation containing complete quadratic
terms. The coefficient of determination of the line width and height were 0.9044 and 0.9685,
respectively. The results can be found in Equations (S1) and (S2) (Supplementary Materials).
The fitting results containing the complete quadratic terms introduced three additional
parameters, but the improvement in the regression coefficient was less than 0.5%. This
further proves that the main effect factors we previously obtained from ANOVA dominate.

3.3. Machine Learning Result Analysis

Five machine learning models were built, and optimal hyperparameters were deter-
mined by 5-fold cross-validation. We used the average RMSE as the evaluation criterion.
The selected hyperparameter values are as follows:

For the SVR model, the radial basis function (RBF) kernel was employed, with the
penalty coefficient C 41.46, gamma 0.0127, and epsilon value 0.1487 for the line width
prediction, and a penalty coefficient C 21,544, gamma 0.00038, and epsilon value 0.00464
for the line height prediction. For the BPNN model, the activation function used was the
rectified linear unit (ReLU), with 50 and 25 hidden layers for the filament width prediction
and a learning rate of 0.03; 80 and 40 hidden layers for the filament height model and a
learning rate of 0.1. Both models were trained over 1000 iterations. For the DT model, the
minimum number of samples required to split an internal node for line width prediction
was set to seven, the minimum numbers per leaf for each leaf node was selected as three, and
the hyperparameters for the line height prediction were set to five and two, respectively. In
the RF model, the number of trees predicted by the line width, the maximum tree depth per
tree, the minimum number of samples required to split an internal node, and the minimum
numbers per leaf were set to 50, 5, 3, and 2, respectively. The four hyperparameters used
for the line height prediction were 75, 24, 3, and 1, respectively. The sampling with the
replacement method was then used. For the KNN model, the Manhattan distance was
used, and inverse distance weight for each point was applied, which means the weight for
each point is inversely proportional to their distance. The number of nearest neighbors
used for the line width prediction was five, and the number of nearest neighbors used for
the line height prediction was four.
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After determining the hyperparameters, the machine learning models were trained,
and both the training data and test data were predicted by the models. We calculated the
RMSE, MAE, and R2, as shown in Tables 4 and 5. For the prediction of filament width, the
R2 of the five different algorithms on the test dataset ranged from 0.7734 to 0.9025, while
the R2 of the filament height prediction ranged from 0.9205 to 0.9604. It is evident that the
prediction accuracy of the filament height outperforms that of the filament width. We then
made some comparisons to previously reported studies. Ali et al. [32] predicted the tensile
strength and flexural strength of 3D-printed concrete materials by four machine learning
methods, with R2 values ranging from 0.7253 to 0.8785. Wang et al. [30] predicted the drug
loading efficiency of 3D-printed drugs in relation to material and process parameters, with
R2 values ranging from 0.678 to 0.93. In contrast, the model established in this article has a
similar performance for filament width prediction, while it performs more accurately with
filament height prediction.

Table 4. Statistical measures of different machine learning models for filament width prediction with
the training and testing set.

ML
Algorithms

Training Set Testing Set
RMSE MAE R2 RMSE MAE R2

SVR 0.1381 0.1244 0.8969 0.1407 0.1329 0.8677
BP NN 0.1188 0.0955 0.9237 0.1209 0.0943 0.9025

DT 0.1483 0.1182 0.8812 0.1843 0.1597 0.7734
RF 0.1258 0.0999 0.9145 0.1671 0.1369 0.8139

KNN 0.0 0.0 1.0 0.1284 0.1168 0.8900

Table 5. Statistical measures of different machine learning models for filament height prediction with
the training and testing set.

ML
Algorithms

Training Set Testing Set
RMSE MAE R2 RMSE MAE R2

SVR 0.0286 0.0203 0.9657 0.0382 0.0250 0.9205
BP NN 0.0186 0.0144 0.9855 0.0270 0.0171 0.9604

DT 0.0283 0.0210 0.9664 0.0377 0.0272 0.9227
RF 0.0250 0.0174 0.9739 0.0378 0.0306 0.9221

KNN 0.0 0.0 1.0 0.0270 0.224 0.9602

Figure 6 shows the relationship between the predicted values and true values of the
five machine learning methods. Combining the data in Tables 4 and 5, it can be seen that
the prediction performance of the BPNN and KNN methods is significantly higher than
the other three methods. The neural network method excels at addressing the challenges
posed by the non-smooth and non-linear features [46,52] and showed good prediction
results in this study. The KNN method hinges on predicting the filament dimensions
based on their proximity to processing parameters. Given that the variations in the printed
line width and height tend to be relatively gradual within the ‘printability windows’, and
our experiment maintains a fairly uniform distribution of process parameters, the KNN
method yields commendable prediction results. The R2 of the training set is 1, which is
mainly attributed to our model’s utilization of inverse distance weight weighting, that is,
the weight of the nearest neighbor points is inversely proportional to their distance from
the predicted data points [53]. In this case, the model overfits the training set because the
closest sample to the training set data is itself, which has a large weight and presents a
perfect prediction effect. The performance of the DT and RF models in predicting the results
is not as good as the BPNN and KNN methods. The DT model employs a hierarchical
structure and information entropy to create binary or multi-branched forks, resembling a
tree-like structure [54]. The RF model is composed of DT as the basic unit and integrates a
large number of DTs, obtaining results by averaging the predictions of each parallel tree
through statistical analysis [55]. In this study, due to limited training data, the complexity
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and prediction accuracy of the DT or RF model were limited, especially in the filament
width prediction, with an R2 of only around 0.8. In addition, the noticeable gap between
the R2 of the two algorithms on the test set and the training set is significant, indicating the
models’ weak generalization capabilities. Although the SVR model can perform well in
solving nonlinear problems, its prediction results in this study are inferior to the prediction
results of the BPNN and KNN methods.
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3.4. Printing Process Parameter Analysis

The BPNN model performs the best of all the five models. Therefore, we utilize
the BPNN model to further analyze the impact of the 3D printing process parameters.
According to the DoE analysis results, the nozzle diameter and printing speed have the
greatest impact on the filament width and height. Therefore, we choose these two process
parameters as variables to draw contour maps for different combinations of other process
parameters. Figures 7 and 8 show the line width and height at different printing nozzle
diameters (0.33 mm to 0.51 mm) and printing speeds (2.5 mm/s to 7.5 mm/s), with a fixed
extrusion pressure of 420 kPa and nondimensional nozzle heights of 0.85 and 1.15. The
trend of changes in the line width and height is similar under different printing heights.
This consistency indicates that the effect of the nondimensional nozzle height on the line
width and height is small, aligning with the DoE analysis results. When the nozzle diameter
is small and speed is high (top left corner of each figure), the filament width and height
are small and the contour lines are sparse, indicating that the size of the line structure is
not very sensitive to changes in the nozzle diameter and printing speed. However, the
filament width shows slightly different rules at low speeds and large nozzle diameters
under different nondimensional nozzle heights. As shown in the local enlarged drawing
of Figure 7a,b, for a low nozzle height, the filament width increases faster as the nozzle
diameter increases (as shown by the blue arrow). This phenomenon could be attributed
to the material experiencing squeezing effects at lower nozzle heights. A wider nozzle
diameter corresponds to a larger squeezing area, resulting in a more significant increase in
filament width. When the nozzle height is elevated, the squeezing effect decreases, and the
influence of nozzle diameter is weakened. The nozzle height (or nondimensional nozzle
height) is an important processing parameter in material extrusion. Han et al. [49] showed
that different nondimensional nozzle heights can lead to various line states, including
sawtooth, beeline, meandering, and discontinuous. Yuk and Zhao [50] conducted a more
detailed study on various phenomena in the structure of printed lines through experiments.
Jin et al. [29] similarly documented varied line structures at different nozzle heights. A
smaller height might lead to uncontrollable width due to material over-deposition, while
excessive height might cause delay time before material deposition, during which the
gravity-induced dragging effect becomes significant and the material breaks into drops
to form a broken filament, causing printing failure. They also found that in the optimal
printing height range, the change in filament width is very small, which is consistent with
the conclusion in this paper that the impact of the dimensionless nozzle height on filament
width and height is small.
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For the analysis of extrusion pressure, we systematically varied the extrusion pressures
at 360 kPa, 400 kPa, 440 kPa, and 480 kPa. To reduce the potential impact of nozzle
squeezing, we set the nondimensional nozzle height to 1.1, while the nozzle diameter
and printing speed retained their prior ranges. Figures 9 and 10 show the relationship
between the filament width/height with different printing speeds and nozzle diameters
under different pressures. It can be observed that as the extrusion pressure increases,
the printing line width and height also increase. Regardless of the difference in extrusion
pressure, the interplay between the nozzle diameter and printing speed remains remarkably
consistent. In scenarios where the printing speed is high and the nozzle diameter is small
(top left corner of each figure), the changes in the line width and height are relatively
slow, but the shape of the contour line is intricate. This may be attributed to finer fibers
being extruded which are disturbances from equipment vibrations, airflow, and other
influences before deposition onto the substrate. Macroscopically, these manifest as a lack of
regularity between the printing filament width and height and process parameters. The
dimensions in this area are relatively small, which means that the printing resolution is
high, so high-resolution printing requires strict control of disturbances. In the case of a
low speed and large nozzle diameter (bottom right corner of each figure), the changes
in the line width and height are more severe. As the printing speed decreases and the
nozzle diameter increases, the contour lines gradually tend to be parallel, and the density
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gradually becomes consistent. In this area, the printed line width and height are relatively
large, making it suitable for efficient printing.
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For the analysis of the nozzle diameter and printing speed, a nondimensional nozzle
height of 1.1 and a moderate printing pressure of 420 kPa were selected. The trend of
extrusion filament width and height with printing speed under different nozzle diameters
is shown in Figure 11. The findings indicate that the line width and height decrease with
increasing printing speed; the filament width and height are more sensitive to printing
speed changes at low levels. While at high speeds, especially with small nozzle diameters,
the line width and height trend changes are relatively stable, exhibiting minimal influence
from heightened printing speeds. The line width and height increase with the increase in
nozzle diameter, which is consistent with the results of the DoE analysis. Under identical
printing speeds, uniform alterations in the nozzle diameter yield commensurate shifts in
line width, revealing a muted interaction between the printing speed and nozzle diameter.
The variation pattern of the line height is slightly different. Under constant printing speeds,
when the nozzle diameter undergoes uniform variation, the augmentation in line height
remains modest for small nozzle diameters. Conversely, a substantial increase in line
height transpires with larger nozzle diameters. This means that the line height is more
sensitive to changes in the nozzle diameter when the nozzle diameter is large. The filament
width calculated by the BPNN model spans the range of 0.4747 mm to 1.7936 mm and
the height ranges from 0.2026 mm to 0.6610 mm, when the nozzle diameter is between
0.35 mm–0.50 mm and the printing speed between 2.5 mm–7.5 mm/s, with a fixed printing
pressure and nondimensional nozzle height. Compared with the filament width and height
measured in our 70 experiments, these calculated ranges encapsulate 68.9% of the line
width values and 65.1% of the line height values. Furthermore, the comparison with the
printable range of other 2-way interaction parameter combinations is shown in Table S3. By
comparison, it can be found that different parameter combinations of nozzle diameter and
printing speed can print the largest range of line width and line height, which confirms the
conclusion in the DoE analysis that printing speed and nozzle diameter play a dominant
role in line width and line height.
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Figure 11. (a) Influence of extrusion pressure and nozzle diameter on the printed filament width and
(b) influence of extrusion pressure and nozzle diameter on the printed filament height.

4. Conclusions

This research investigated the relationship between the geometric dimensions of
material extrusion 3D printing filaments and process parameters (nozzle diameter, nondi-
mensional nozzle height, extrusion pressure, and printing speed). By employing a com-
prehensive approach encompassing DoE and ANOVA, the influence of various factors has
been revealed. Machine learning models were established for predicting filament width
and height, and the laws of various process parameters are analyzed based on the predicted
results. The main conclusions of this research are summarized below:

(1) Based on the findings of the DoE and ANOVA results, the processing parameters
affect the formation dimension in the order of nozzle diameter > printing speed >
extrusion pressure > nondimensional nozzle height.
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(2) Among the five machine learning prediction models trained, the BPNN and KNN
methods have good performance, and the BPNN has the best coefficient of determi-
nation R2 for filament width and height prediction on the test set, being 0.9025 and
0.9604, respectively. All machine learning models have better filament height predic-
tion results than width prediction. These models can be used for predicting printed
structure dimensions, offering guidance for optimal parameter selection, informing
the creation of 3D printing slices, and determining suitable layer sizes.

(3) Utilizing the BPNN model, the impact of printing process parameters on the line
width and height was studied. The rules and reasons for the changes in filament
width and height under different process parameter combinations were analyzed.
The filament width and height are small and change slowly with a small nozzle
diameter and high speed, making it suitable for high-resolution printing, while the
filament width and height are large and change rapidly with a large nozzle diameter
and low speed, making it suitable for high-efficiency printing. The interaction and
coupling law between the nondimensional nozzle height and other factors are complex.
Different nondimensional nozzle height settings may cause the extruded material
to be stretched or squeezed. The material in the stretched state will lead to a thin
filament, and the regularity of processing parameters on geometric size will not be
strong. In addition, the nozzle diameter exhibits a significant impact on dimensions
when the material is in a squeezed state. This study can be used to predict the size of
printing filament structures, guide the selection of printing parameters, and determine
the size of 3D printing layers.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/mi14112091/s1, Table S1: List of the process parameters and respective
sample number as the supplement of the DoE; Table S2: List of the average filament width and
height for each 3D-printed sample; Table S3: The printed filament width and height range of different
parameter combinations.
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