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Abstract: Laser process technology provides a feasible method for directly manufacturing surface-
metallized carbon fiber composites (CFCs); however, the laser’s process parameters strongly influence
on the adhesion strength between electroless copper and CFCs. Here, a nanosecond ultraviolet laser
was used to fabricate electroless copper on the surface of CFCs. In order to achieve good adhesion
strength, four key process parameters, namely, the laser power, scanning line interval, scanning
speed, and pulse frequency, were optimized experimentally using response surface methodology,
and a central composite design was utilized to design the experiments. An analysis of variance was
conducted to evaluate the adequacy and significance of the developed regression model. Also, the
effect of the process parameters on the adhesion strength was determined. The numerical analysis
indicated that the optimized laser power, scanning line interval, scanning speed, and pulse frequency
were 5.5 W, 48.2 µm, 834.0 mm/s, and 69.5 kHz, respectively. A validation test confirmed that the
predicted results were consistent with the actual values; thus, the developed mathematical model can
adequately predict responses within the limits of the laser process parameters being used.

Keywords: carbon fiber composites; adhesion strength; response surface methodology; optimization;
laser process parameters

1. Introduction

As appealing materials, carbon fiber composites (CFCs) are extensively applied in
many fields, including the automobile and aircraft/aerospace industries, due to their
unique properties: excellent mechanical performance, low density, high thermal stability,
and so on [1–3]. However, they also have some obvious disadvantages, such as poor
electrical conductivity and low erosion resistance, which limit their further application in
the field of aircraft structure/manufacture, as materials with better electrical conductivity
can effectively avoid damage from lightning strikes [4]. Therefore, there is an urgent need
to establish a project that focuses on protecting the composite outer skin of aircraft against
lightning damage. The protective layer formed via the metallization of CFC surfaces
exhibits excellent electrical conductivity, making it one of the most effective solutions to
solve this problem.

In recent years, there has been growing interest in the surface metallization of CFCs [5].
To make CFCs electrically conductive, metallic materials can be coated onto the polymer
surface [6]. However, the intrinsic hydrophobicity of CFC surfaces leads to poor adhesion
between the metal layer and CFCs, which severely limits their wide application. Therefore,
obtaining a high-strength metal layer has become critical in the fabrication of conductive
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CFCs. Various technologies have been developed to fabricate metal layers with high ad-
hesion to CFC surfaces, including electroless plating, electrodeposition, spraying, and
plasma etching [7–10]. For instance, Chen et al. deposited copper onto CFCs using an
electroless method and obtained copper-coated CFCs with good adhesion and excellent
conductivity [11]. Wang et al. reported a pulse-reverse electrodeposition process to fabri-
cate Ni-coated CFCs, which exhibited good adhesion [12]. Archambault et al. successfully
cold-sprayed copper onto CFCs to prepare Cu-coated CFCs with an adhesion strength
of 2.6 MPa ± 0.8 MPa [13]. Prysiazhnyi et al. employed nitrogen plasma modification for
surface treatment to enhance the adhesion between electroless copper and CFCs [14]. How-
ever, the above-mentioned approaches suffer from inherent disadvantages, e.g., a tedious
operation process, high cost, corrosive or poisonous chemical reagents, poor adhesion
strength, and so on, which have seriously limit their practical applications.

In comparison, laser process technology offers numerous many advantages, includ-
ing noncontact operation, high precision, region selection, controllability, simplicity, and
applicability to a wide range of materials [15–19], which make it a promising method for
preparing metal-coated CFCs with high adhesion. For instance, Gustke et al. proposed a
pulsed laser roughening method for enhancing the adhesion strength between a sprayed
copper layer and CFCs. It was shown that the adhesion strength was increased by 200% [20].
Li et al. investigated the effects of the pretreatment of a picosecond infrared laser and
an excimer ultraviolet laser on improving the shear strength between an aluminum alloy
and CFCs, respectively. It was revealed that the shear strength was determined based on
chemical bonding rather than mechanical interlocking [21]. Palavra et al. studied the effect
of laser surface pretreatment parameters on the adhesion strength between a titanium layer
and CFCs, including the laser power and pulse energy [22]. In summary, most researchers
in this field have primarily focused on the impact of laser treatment on enhancing the adhe-
sion strength between metal layers and CFCs. The influence of the key input parameters of
the laser process, such as the laser power, scanning line interval, scanning speed, and pulse
frequency, on the adhesion strength between metal layers and CFCs have not been taken
into account. In addition, the interactive effects of process input parameters on adhesion
strength have not been studied.

To understand their effects on adhesion strength, laser process parameters should
be extensively analyzed and optimized. Response surface methodology (RSM), used for
experimental design, is among the most effective optimization techniques [23], which
can not only reveal the relationship between the input variables and output responses
but also predict the optimal output responses through numerical optimization under
certain conditions. And, the RSM is often employed in numerous fields to find the optimal
parametric combination from a group of given variables for achieving the desired output
responses [24–26].

Generally, the adhesion strength between electroless copper and CFCs is influenced
by numerous factors. Thus, to obtain excellent adhesion strength with copper plating, it
is necessary to investigate the effect of different laser process parameters on the adhesion
strength. However, to the best of our knowledge, the influence of the key laser process
parameters on the adhesion strength between electroless copper and CFCs is relatively
poorly understood. The interactive effects of laser process parameters on adhesion strength
have not been reported.

Central composite design (CCD) is the primary type of RSM, and it is effective for
obtaining more information about experimental variables and experimental errors with
the fewest experimental cycles. In this study, a standard RSM with a CCD was applied
to develop a model for optimizing the laser process parameters to achieve good adhesion
strength. The key laser process parameters considered were laser power, scanning line
interval, scanning speed, and pulse frequency. An analysis of variance (ANOVA), main
effect plots, contour plots, and the corresponding 3D response surface were employed
to assess the effect of each factor on the adhesion strength between electroless copper
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and CFCs. Furthermore, a mathematical model was developed to predict the optimal
adhesion strength.

2. Materials and Methods
2.1. Materials

Commercial CFC sheets, which had a thickness of 2.0 mm and consisted of carbon fiber
and epoxy polymer, were purchased from Beijing Plastic Manufacturing Co., Ltd. (Beijing,
China). Before laser ablation, the CFC sheet was cut into small pieces (30.0 mm × 30.0 mm).
Next, the samples were rinsed ultrasonically with acetone for 15 min, followed by rinsing
with deionized water for an additional 15 min. Pentahydrate copper sulfate (CuSO4·5H2O)
and EDTA disodium (Na2EDTA) were purchased from Sinopharm Chemical Reagent
Co., Ltd. (Shanghai, China). Formaldehyde (HCHO), sodium hydroxide (NaOH), and
potassium sodium tartrate tetrahydrate (C4H12KNaO10) were purchased from Aladdin
Reagent (Minneapolis, Michigan, USA). All chemicals were analytical grade and used
directly without further purification.

2.2. Fabrication of Electroless Copper on CFCs

Figure 1 illustrates the fabrication process of electroless copper on the CFC surface,
including formation, coarsening, removal and electroless plating: (1) The CFC sheet could
not initiate the process of electroless plating itself due to the lack of catalytically active
centers (i.e., active seeds). Many precious metals, such as gold (Au), palladium (Pd), and
silver (Ag), are usually used as active seeds. Among them, Pd is optimal due to its excellent
catalytic activity. As shown in Figure 1, the CFC sheets were first immersed in a 1.0 g/L
PdCl2 aqueous solution for 10 min and then taken out and dried. Thus, the CFC sheets
coated with PdCl2 films were obtained. (2) The coated CFC sheets were coarsened using
laser direct ablation equipment (Figure 2a). As shown in Figure 2b, the direct laser ablation
system was mainly composed of a 355 nm nanosecond laser, an optical system, a multiaxis
workbench system, and a controlling system. The maximum average laser power was
about 20 W, the highest scanning speed was about 10,000 mm/s, the pulse width was
about 16 ns, the value of the beam quality factor M2 was less than 1.2, and the repetition
rate ranged from 200 kHz to 2 MHz. A two-mirror galvanometric scanner with an F-theta
objective lens was employed to focus and scan the laser beam in the x−y direction. The
Gaussian-profile laser beam at 1/e2 of its maximum intensity had a focused spot diameter
of about 15 µm. During laser direct ablation, the CFC sheet (Figure 3a)-coated PdCl2 films
were mounted on an x-y-z translation stage precisely controlled using a computer. A line-
by-line scanning method in the x direction and then in the y direction was used to fabricate
a rough surface (Figure 3b–f) on the CFC sheets for obtaining the electroless copper with
high adhesion in an atmospheric environment. (3) The ablated CFC sheets were cleaned
ultrasonically in deionized water to selectively remove the active seeds (i.e., PdCl2) in
the non-laser-irradiated zone, while keeping the active seeds in the laser-irradiated zone.
(4) The cleaned CFC sheets were immersed into a commercial copper bath solution for
selective copper plating. The obtained electroless coppers on the surfaces of CFC sheet are
shown in Figure 4.
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2.3. Measurements and Characterization

The morphological structures of the laser-ablated CFC surfaces were analyzed using a
Nova NanoSEM 450 scanning electron microscope (SEM, FEI, Hillsboro, OR, USA). The
adhesion strength between the prepared copper plating layer and CFC sheet was measured
via the vertical pulling force method shown in Figure 5. First, a copper plating layer on
the CFC surface with dimensions of 2.0 mm × 2.0 mm was prepared. Then, it was welded
to a metal wire using lead–tin solder. Next, the pulling force of the dynamometer was
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gradually increased along the direction perpendicular to the CFC sheet, and the maximum
tension pulling force (FM) displayed on the dynamometer was recorded until the copper
metal layer was pulled off. The adhesion strength (YM) of the copper plating layer on the
CFC surface was calculated according to Equation (1) [27].

YM =
FM
S

(1)

where S is the surface area of the electroless copper. For each sample, five parallel tests of
the adhesion strength YM were performed to obtain an average value.
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2.4. Modeling of Pulsed Laser Process
2.4.1. Response Surface Methodology

RSM is a collection of mathematical and statistical techniques, which is usually used
to model and explore a problem in which a response is influenced by multiple variables.
The RSM can predict the relationship between output responses and input independent
variables in a specific range, including optimization methods to explore the optimum values
of the input independent parameters that produce the desirable output responses [28].
Based on measurable, continuous, and controllable input independent variables (x1, x2, x3,
. . ., xk), and when the error is negligible, the linear output response YM can be described
as follows:

YM = ϕ(x1, x2, x3, . . . ,xk) + ε (2)

where ϕ represents the true response function, the accurate form of which is unknown
and very complex; ε is a term associated with other sources of variability not taken into
account in ϕ. Commonly, ε represents the effects of measurement error on response and
background noise, as well as the influence of other variables, and so on. In general, ε is
often applied as a statistical error, which is assumed to have normal distribution with a
mean value of zero and a variance value of σ2.

Generally, the second-order polynomial regression Equation (3) is used in RSM.

YM = β0 +
m

∑
i=1

βixi+
m

∑
i=1

m

∑
j=1

βijxixj+
m

∑
i=1

βiix2
i +ε (3)

where xi and xj are the coded parameter variables; β0 is a constant; βi, βij, and βii represent
the coefficients of the linear, quadratic, and interactive effects, respectively. These coeffi-
cients can be obtained through the fitting of experimental data [29]. The fitting precision of
the mathematical model was evaluated using, the coefficient of determination R2, adjusted
R2, predicted R2, and adequate precision. The F-test and p-value were applied to check the
significance of the regression coefficients.

2.4.2. Experimental Design

Based on previous single-factor experiments, the laser power (A), scanning line interval
(B), scanning speed (C), and laser pulse frequency (D), were chosen as parameter variables
and the adhesion strength as the response variable. A standard RSM design with CCD was
applied to evaluate the effects of the laser process parameter variables (A, B, C, and D) on
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the response variable (YM). Incorporating the five coded levels (−2, −1, 0, 1, 2) for each of
the four variables resulted in a total of 30 experiments. The laser process parameters and
their levels investigated in this study are shown in Table 1.

Table 1. Laser process parameters and their levels used in RSM design.

Parameter Unit Notation
Level

−2 −1 0 1 2

Laser power W A 1.0 2.5 4.0 5.5 7.0
Scanning line interval µm B 20 35 50 65 80

Scanning speed mm/s C 200 600 1000 1400 1800
Pulse frequency kHz D 20 40 60 80 100

The statistical software Design-Expert V11.0 was employed to establish the correlations
between the variation in the laser process parameters and the adhesion strength (YM). The
results obtained from experiments are listed in Table 2.

Table 2. Design matrix and measured responses.

Std Order Run Order
Laser Process Parameter Adhesion Strength

YM (MPa)A (W) B (µm) C (mm/s) D (kHz)

1 21 2.5 35 600 40 7.48
2 8 5.5 35 600 40 7.78
3 18 2.5 65 600 40 7.32
4 4 5.5 65 600 40 8.53
5 7 2.5 35 1400 40 6.79
6 28 5.5 35 1400 40 8.14
7 15 2.5 65 1400 40 5.55
8 16 5.5 65 1400 40 7.56
9 11 2.5 35 600 80 7.71

10 1 5.5 35 600 80 9.28
11 19 2.5 65 600 80 6.45
12 2 5.5 65 600 80 10.11
13 24 2.5 35 1400 80 6.03
14 30 5.5 35 1400 80 9.48
15 22 2.5 65 1400 80 5.19
16 6 5.5 65 1400 80 9.63
17 20 1.0 50 1000 60 4.81
18 25 7.0 50 1000 60 10.43
19 26 4.0 20 1000 60 7.38
20 27 4.0 80 1000 60 6.88
21 9 4.0 50 200 60 8.51
22 10 4.0 50 1800 60 5.57
23 29 4.0 50 1000 20 6.60
24 3 4.0 50 1000 100 6.43
25 12 4.0 50 1000 60 9.91
26 23 4.0 50 1000 60 9.87
27 5 4.0 50 1000 60 10.01
28 14 4.0 50 1000 60 9.69
29 13 4.0 50 1000 60 10.31
30 17 4.0 50 1000 60 9.48

3. Results and Discussion
3.1. Analysis of Variance

The analysis of variance is a well-known and powerful statistical analysis method [30].
In this study, ANOVA was applied to test whether the laser process parameters had
a significant effect on the adhesion strength to investigate the prediction ability of the
developed regression models in the design space. The ANOVA table for the adhesion
strength (YM) of electroless copper on CFCs is shown in Table 3.

The associated p-value for the model was less than 0.05, indicating that the model term
was statistically significant [31]. In Table 3, the ANOVA results show that the laser power
(A), scanning speed (C), the quadratic effect of the laser power(A2), scanning line interval
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(B2), scanning speed (C2), and laser pulse frequency (D2), along with the interaction effect
of laser power and laser pulse frequency (AD), were the significant model terms associated
with adhesion strength. The other terms of the mathematical model were not significant,
and they needed to be eliminated through a backward elimination process to improve the
adequacy of the model.

Table 3. ANOVA for the adhesion strength model before stepwise elimination.

Source Sum of
Squares df Mean

Square F-Value p-Value
Prob > F

Model 79.09 14 5.65 18.06 <0.0001 significant
A 35.60 1 35.60 113.84 <0.0001
B 0.47 1 0.47 1.50 0.2403
C 6.17 1 6.17 19.73 0.0005
D 0.80 1 0.80 2.57 0.1299

AB 1.35 1 1.35 4.32 0.0621
AC 1.27 1 1.27 4.07 0.1116
AD 4.25 1 4.25 13.60 0.0022
BC 0.45 1 0.45 1.42 0.2512
BD 7.563 × 10−4 1 7.563 × 10−4 2.418 × 10−3 0.9614
CD 1.406 × 10−3 1 1.406 × 10−3 4.497 × 10−4 0.9474
A2 5.86 1 5.86 18.75 0.0006
B2 9.38 1 9.38 30.00 <0.0001
C2 10.12 1 10.12 32.36 <0.0001
D2 14.96 1 14.96 47.85 <0.0001

Residual 4.69 15 0.31
Lack of fit 4.29 10 0.43 2.45 0.2100 Not significant
Pure error 0.40 5 0.080
Core total 83.78 29

Standard deviation = 0.56 R2 = 0.9440
Mean = 7.96 Adjusted R2 = 0.8918

Coefficient of variation = 7.02 Predicted R2 = 0.6981
Predicted residual error of sum of squares (PRESS) = 25.30 Adequate precision = 14.968

The ANOVA table for the simplified quadratic model is shown in Table 4. The fitness
of the adhesion strength model R2 was 0.9074, the adjusted R2 was 0.8657 and the predicted
R2 was 0.7149. The values of all three terms are close to one, which indicates the established
model had excellent predictive performance [32]. The adequate precision, which represents
the signal-to-noise ratio, is greater than four, implying adequate model discrimination [33].
The F-value of the lack of fit is 2.18, which means that lack of fit was not significant by
comparison with pure error.

Table 4. ANOVA for the adhesion strength model after stepwise elimination.

Source Sum of
Squares df Mean

Square F-Value p-Value
Prob > F

Model 76.02 9 8.45 21.77 <0.0001 Significant
A 35.60 1 35.60 91.74 <0.0001
B 0.47 1 0.47 1.20 0.2854
C 6.17 1 6.17 15.90 0.0007
D 0.80 1 0.80 2.07 0.1658

AD 4.25 1 4.25 10.96 0.0035
A2 5.86 1 5.86 15.11 0.0009
B2 9.38 1 9.38 24.18 <0.0001
C2 10.12 1 10.12 26.08 <0.0001
D2 14.96 1 14.96 38.56 <0.0001

Residual 7.76 20 0.39
Lack of fit 7.36 15 0.49 2.18 0.2273 Not significant
Pure error 0.40 5 0.080
Core total 83.78 29

Standard deviation = 0.62 R2 = 0.9074
Mean = 7.96 Adjusted R2 = 0.8657

Coefficient of variation = 7.82 Predicted R2 = 0.7149
Predicted residual error of sum of squares (PRESS) = 23.89 Adequate precision = 14.394
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The final reduced mathematical predicted model in terms of coded factors for the
adhesion strength (YM), which was obtained after eliminating the insignificant terms, is
given as follows:

YM = 9.88 + 1.22A − 0.14B − 0.51C + 0.18D + 0.52AD− 0.46A2 − 0.58B2 − 0.61C2 − 0.74D2 (4)

where the final reduced empirical model in terms of actual factors is as follows:

YM = −8.29124 + 1.42477A + 0.25065B + 6.32474 × 10−3C + 0.16199D + 0.017188AD
− 0.20551A2 − 2.59954 × 10−3B2 − 3.79622 × 10−6C2 − 1.84661 × 10−3D2 (5)

In addition, according to the sum of squares of the laser process parameter variables
in Table 4, the effect of the laser process parameters on adhesion strength are as follows:
laser power (A) > scanning speed (C) > pulse frequency (D) > scanning line interval (B).

3.2. Effect of Process Parameters on the Responses

Figure 6 is a perturbation plot that illustrates the effect of four key laser process
parameters at the center point on the adhesion strength in the design space. It can be
clearly seen from the figure that the laser power has a large positive effect on adhesion
strength, while scanning speed has a large negative effect on adhesion strength. This is
consistent with the previous work reported by Xu et al. [34]. This phenomenon can be
explained as follows: The adhesion strength between electroless copper and CFCs largely
depends on the surface roughness of the CFC sheet, and a greater roughness results in a
higher adhesion strength [35]. The surface roughness is directly related to the laser energy
density and the irradiation time. As shown in Figure 3a, the pristine CFC sheet had a very
smooth surface. Following nanosecond laser ablation, numerous microcavity structures
(Figure 3b) interspersed with irregular granular nanoprotrusions (Figure 3c) emerged on
the CFC surface. Additionally, a higher laser power meant that more energy was absorbed
by the CFC sheet, leading to the formation of more micro/nanostructures on the surface of
the CFC sheet (Figure 3d–f) and an increased adhesion strength between the electroless
copper and CFCs. However, a higher scanning speed shortened the laser irradiation time,
causing less energy to be input to the CFC sheet and reduced adhesion strength. At the
same time, it can be observed from Figure 6 that the scanning line interval (B) had a little
effect on the adhesion strength. Simultaneously, the adhesion strength increased with
the scanning line interval until it reached its central value and then started to decrease
as scanning line interval increased beyond its center limit; this result is consistent with
the previous results reported by Qin et al. [36]. It is well known that the laser line-by-line
scanning method usually creates a groove structure on the sample [37]. For low scanning
line intervals, closer areas of laser line-by-line scanning were generated, resulting in an
incomplete groove structure and a reduced surface roughness, thus causing weak adhesion
strength. Further increasing the scanning line interval towards the center value, the
adhesion strength increased with the roughness of the CFC surface. However, increasing
the scanning line interval beyond the central value resulted in a smaller laser ablation area,
leading to reduced surface roughness, subsequently decreasing the adhesion strength. In
Figure 6, it can also be seen that both too-low or too-high pulse frequency caused low
adhesion strength, and the change trend was consistent with the effect of the scanning line
interval on adhesion strength.
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Figure 7a,b show the interaction effect of laser power and scanning line interval on
adhesion strength. It is evident that the adhesion strength between the metal layer and
CFCs tended to increase the higher the laser power. This is because the increase in the laser
power led to an increase in laser energy density. Then, the CFC sheet absorbed enough laser
energy and formed more micro/nanostructures on the CFC surface. Therefore, the adhesion
strength increased gradually until the laser power increased to the limit. Moreover, it can
be seen from Figure 7a,b that the adhesion strength increased first and then decreased
with the increase in the scanning line interval. A lower scanning line interval reduced the
roughness of the CFC surface. This may have been due to the cumulative thermal effects
resulting from the high overlap percentage of the laser scanning line interval. At the same
time, a higher scanning line interval meant that more areas between adjacent scanning lines
were not ablated by the laser, so the roughness of CFC surface was naturally lower, and the
adhesion strength was poor.
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The interaction effect of laser power and scanning speed on adhesion strength is
presented in Figure 8a,b. It is clear that the adhesion strength tended to increase for higher
laser powers and lower scanning speeds. The increase in laser power and the decrease
in scanning speed resulted in the increase in the laser energy density, which effectively
improved the roughness of the CFC surface and accordingly increased the adhesion strength
of the electroless copper.
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The interaction effect of laser power and pulse frequency on adhesion strength is illus-
trated in Figure 9a,b. The optimal adhesion strength was attained with an appropriate pulse
frequency and high laser power. Higher laser power caused more micro/nanostructures to
form on the surface of the CFC sheet, which was beneficial for the bond strength.
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Figure 10a,b show the interaction effect of scanning line interval and scanning speed
on adhesion strength. The optimal scanning line interval and appropriate scanning speed
are advantageous for achieving higher adhesion strength. The reasons are the same as
those discussed above.

Micromachines 2023, 14, x FOR PEER REVIEW 11 of 14 
 

 

are advantageous for achieving higher adhesion strength. The reasons are the same as 
those discussed above. 

  
Figure 10. Interaction effect of scanning line interval and scanning speed on adhesion strength: (a) 
contour plot and (b) 3D surface plot. 

Figure 11a,b present the interaction effect of scanning speed and pulse frequency on 
adhesion strength. The adhesion strength was relatively low at higher or lower scanning 
speed and pulse frequency. Thus, the adhesion strength was enhanced in the near-central 
levels of scanning speed and pulse frequency. 

  
Figure 11. Interaction effect of scanning speed and pulse frequency on adhesion strength: (a) contour 
plot and (b) 3D surface plot. 

Figure 12a,b show the interaction effect of scanning line interval and pulse frequency 
on adhesion strength, which is similar to that of scanning speed and pulse frequency on 
adhesion strength shown in Figure 11. 

  
Figure 12. Interaction effect of scanning line interval and pulse frequency on adhesion strength: (a) 
contour plot and (b) 3D surface plot. 

  

Figure 10. Interaction effect of scanning line interval and scanning speed on adhesion strength:
(a) contour plot and (b) 3D surface plot.

Figure 11a,b present the interaction effect of scanning speed and pulse frequency on
adhesion strength. The adhesion strength was relatively low at higher or lower scanning
speed and pulse frequency. Thus, the adhesion strength was enhanced in the near-central
levels of scanning speed and pulse frequency.
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Figure 12a,b show the interaction effect of scanning line interval and pulse frequency
on adhesion strength, which is similar to that of scanning speed and pulse frequency on
adhesion strength shown in Figure 11.
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3.3. Validation of the Developed Model

To validate the developed model derived from multiple regression analysis, three
groups of optimized laser parameters were chosen randomly within the ranges in Table 1 to
conduct confirmation experiments. The actual values of the results in terms of the average
of three trials were calculated. Table 5 shows the actual values, predicted results, and
calculated percentage error of the confirmation experiments. It shows that the maximum
relative error of the prediction for the optimal parametric combination was less than 5.0%,
indicating that the developed model can yield near-accurate result. The relationship be-
tween the experimental and estimated values of adhesion strength is shown in Figure 13. It
can be found that the percentage error between the actual and predicted values was small,
indicating that the developed models are adequate, and the predicted data were in good
agreement with the measured values. Therefore, it can be concluded that the developed
model could successfully predict adhesion strength. In addition, using a numerical opti-
mization method, Design Expert analysis revealed that the optimal laser power, scanning
line interval, scanning speed, and laser pulse frequency for adhesion strength were 5.5 W,
48.2 µm, 834.0 mm/s and 69.5 kHz, respectively.
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Table 5. Prediction and validation test results.

Exp. No. A (W) B (µm) C (mm/s) D (kHz)
Adhesion Strength (MPa) |Error| (%)

Actual Predicted

1 2 40 500 60 6.63 6.95 4.82
2 6 70 1500 40 6.05 6.26 3.47
3 5 30 1000 70 9.26 9.71 4.86
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4. Conclusions

The effects of laser process parameters on the adhesion strength between electroless
copper and CFCs were investigated using RSM. The following conclusions could be drawn
from this study:

(1) A four-factor, five-level CCD was successfully employed to develop a mathematical
model for optimizing the laser process parameters that affect adhesion strength. The
ANOVA results showed that the developed model could be adequately applied to evaluate
the adhesion strength at a 95% confidence level.

(2) Laser power has a large positive effect on adhesion strength, which is negatively
impacted by scanning speed. The laser pulse frequency and scanning line interval have
little effect on adhesion strength.

(3) The maximum relative error of the prediction at the optimal parametric combination
was less than 5.0%, indicating that the developed models could adequately predict the
results of the adhesion strength within the design space of the laser process parameters
presented in this paper.

(4) Under optimal process conditions (laser power of 5.5 W, scanning line interval
of 48.2 µm, scanning speed of 834.0 mm/s, and pulse frequency of 69.5 kHz), electroless
copper on CFCs could be produced with an adhesion strength of 10.91 MPa.
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