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Abstract: Despite III-nitride and silicon carbide being the materials of choice for a wide range of
applications, theoretical studies on their quaternary alloys are limited. Here, we report a systematic
computational study on the electronic structural properties of (SiC)x (AlN)1−x and (SiC)x (AlN)1−x

quaternary alloys, based on state-of-the-art first-principles evolutionary algorithms. Trigonal (SiCAlN,
space group P3m1) and orthorhombic (SiCGaN, space group Pmn21) crystal phases were as predicted
for x = 0.5. SiCAlN showed relatively weak thermodynamic instability, while that of SiCGaN was
slightly elevated, rendering them both dynamically and mechanically stable at ambient pressure. Our
calculations revealed that the Pm31 crystal has high elastic constants, (C11~458 GPa and C33~447 GPa),
a large bulk modulus (B0~210 GPa), and large Young’s modulus (E~364 GPa), and our results suggest
that SiCAlN is potentially a hard material, with a Vickers hardness of 21 GPa. Accurate electronic
structures of SiCAlN and SiCGaN were calculated using the Tran–Blaha modified Becke–Johnson
semi-local exchange potential. Specifically, we found evidence that SiCGaN has a very wide direct
bandgap of 3.80 eV, while that of SiCAlN was indirect at 4.6 eV. Finally, for the quaternary alloys,
a relatively large optical bandgap bowing of ~3 eV was found for SiCGaN, and a strong optical
bandgap bowing of 0.9 eV was found for SiCAlN.

Keywords: quaternary alloys; (SiC)x(AlN)1−x; (SiC)x(GaN)1−x; DFT; evolutionary algorithms

1. Introduction

Materials known as III-V binary nitrides (III-N = AlN, SiC, and GaN) [1–11] and their
related alloys have recently drawn attention owing to their outstanding optoelectronic
properties making them useful for many practical applications, such light-emitting diode
lasers (LEDs). The reasons for their successful application are their plethora of physical
characteristics, such as their small lattice parameter, large direct bandgap, high hardness,
high temperature stability, good piezoelectric properties, and polytypism. The group-III
nitrides crystallize as a würtzite (WZ, 2H) structure under ambient conditions, and can be
also grown in a cubic zinc blende (ZB, 3C) phase.

As an analog to nitride-based semiconductors, silicon carbide (SiC), the only stable
compound of the IV-IV family, is a wide bandgap material, and it exhibits more than
250 polytypes (in particular, SiC adopts the cubic (3C) and the würtzite hexagonal (2H)
form). Moreover, SiC has particular properties that make it suitable for use in high-power,
high-temperature, and high-speed microelectronic device applications.

Interestingly, making solid solutions from alloys of SiC and III-N compounds offers
excellent options for optoelectronic engineering applications, as this enhances the function-
alities of the SiC and III-N compounds, and not only exploits the difference in bandgap
(EG) in order to tailor the EG and other properties, but may also produce exceptionally
hard coatings.
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Typically, SiCAlN solid solutions have often been synthetized at high temperatures
using magnetron sputtering techniques [12,13]. Thin-film SiCAlN solid solutions with
low temperature growth have been obtained via gas-source molecular beam epitaxy
(GSMBE) [14] and MBE [15,16] methods. Moreover, there is a limited amount of research
dedicated to SiCGaN and SiCAlN quaternary alloy systems [15,17–19].

All previous works [15,17–19] have used first-principle methods and small supercells
of würtzite and/or cubic structures. Such an approach can, in principle, give adequate
results for alloys containing constituents of small size and chemical mismatch, however,
for large mismatched alloys, very large supercells are required to adequately reproduce the
electronic properties of alloys (i.e., a large number of atoms, such as 64 or 128, is needed).
Moreover, these methods require a large number of atoms in order to attain statistical
significance. However, there is a crucial problem concerning the global stability of the hy-
pothetical phase of the alloys designated by the small/large supercell. Generally, this phase
is erroneously taken for granted (i.e., the proposed structure is often considered stable).
The routine calculations [15,17–19] give the wrong structure when their selection is based
upon a few estimated ‘usual-suspect-phases’. The determination of the electronic struc-
tural properties is largely irrelevant if the hypothetical phases of the alloy are not globally
stable—this includes their thermodynamic, mechanical, and, more importantly, dynamic
stabilities. These phases could have exciting and interesting optoelectronic properties, but
equally they could not exist at all.

In the present study, we used an attractive paradigm approach; the global evolutionary
structure optimization (GESO) method was implemented using the high-throughput Open
Quantum Materials Database (OQMD) [20,21]. The GESO avoids the problems associated
with a single starting structure. The prediction of stable crystal structures based only on
the knowledge of the chemical composition has long remained a major unsolved problem
in the condensed matter physics of crystalline solids. In this context, the GESO approach
was targeted in order to find the most stable crystalline structure for a given chemical
composition based on the concepts of the Darwin evolutionary theory.

In the present work, using a first-principles structure search, we explored the atomic
and electronic structural properties of (SiC)x(AlN)1−x, and (SiC)x(GaN)1−x quaternary
compounds. A detailed investigation was performed to elucidate their phase stability
and their mechanical and electronic properties. To further improve their optoelectronic
properties, their bandgap composition dependence was also investigated.

2. Computational Methods

Searches to discover the ground state phases in the (SiC)x(III-N)1−x systems were
performed using the evolutionary algorithm, as implemented in the Material Project
Database [20,21]. Structural optimizations and calculations of total energies were car-
ried out within the framework of a density functional theory (DFT) approach [22], as
implemented in the Plane-Wave Quantum ESPRESSO package [23]. The electron exchange–
correlation effects were approximated using the local density approximation (LDA) [24],
and the projector augmented plane wave (PAW) approach [25] was used to describe the
electron–ion interactions. The electronic wave functions were expanded in plane waves
up to an energy cutoff of 60 Ry. Integrations over the Brilloun zone were sampled with
a 8 × 6 × 6 Monkhorst-Pack [26] k-points grid. Full relaxations of lattice parameters and
atomic positions were performed until forces acting on an atom did not exceed 10−4 eV/Å,
and crystal total energy was converged to 10−5 eV /cell.

The phonon calculations were performed using the density functional perturbation the-
ory (DFTP) [27]. The electronic properties were studied using all electron code WIEN2k [28],
which is based on the full-potential linearized augmented plane wave (FP-LAPW) method.
The product of the smallest atomic spheres radius, RMT, multiplied by the largest K-vector,
Kmax (RMTKmax) was selected as 8. The muffin-tin radius for each of the Al, Ga, C, Si, and
N atoms was chosen to be 1.71, 1.67, 1.51, and 1.63 au, respectively, for SiCAlN, and 1.62,
1.61, 1.54, and 1.40 au, respectively, for SiCGaN.
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The Kohn–Sham DFT within the LDA or GGA has been proven to be efficient in com-
puting the structural properties of materials. However, it is well known that the standard
LDA/GGA procedure severely underestimates band gaps, typically by 50 to 100% (the
so-called ‘band gap problem’). Several methods for overcoming this limitation have been
proposed. One of them is the modified Becke–Johnson exchange potential (TB-mBJ) [29].
The TB-mBJ can give remakably acurrate band gaps for a variety of solids, inclduing wide
band gap insulators, sp-semiconductors, and strongly correlated 3d transition metals [29],
and it competes in accuracy with the more expensive hybrid and GW methods. In this
context, we used the Tran–Blaha modified Becke–Johnson (TB-mBJ) semi-local exchange
potential to study the electronic properties of SiCAlN and SiCGaN quaternary systems.

3. Results and Discussion

The ground-state lattice parameters of the WZ-2H stable structures of the binary III-N
compounds are listed in Table 1. The calculated lattice constants and c/a ratio were in
excellent agreement with experimental measurements, being within 1% and 0.2% of the
experimental data, respectively [30–33].

Table 1. The calculated equilibrium structural parameters, bulk modulus (B0), and its pressure
derivative (B’0) of WZ AlN, GaN and SiC compounds, and the available experimental data [30–33].

a (Å) c/a B0 (GPa) B’0

AlN 3.087 (3.112) a 1.600 (1.600) a 210.5 (185) b 3.1
GaN 3.160 (3.189) a 1.630 (1.626) a 184.7 (188) b 4.2
SiC 3.055 (3.079) c 1.641 (1.641) c 145.6 (223) d 3.8

a: ref. [30], b: ref. [31], c: ref. [32], d: ref. [33].

The ground-state searches (for x = 0.5) produced two low enthalpy structures for the
(SiC)x(III-N)1−x quaternary alloys (Figure 1), namely trigonal SiCAlN (space group, P3m1,
N◦ = 156), and SiCGaN, which adopts the orthorhombic structure (space group Pmn21,
N◦ = 31). The calculated optimized crystalline parameters of SiCAlN and SiCGaN are listed
in Table 2.
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Figure 1. The trigonal (P3M1) and orthorhombic (Pmn21) crystal structures of (a) SiCAlN and
(b) SiCGaN quaternary alloy systems.

Table 2. The calculated equilibrium structural parameters, bulk modulus (B0), and its pressure
derivative (B’0) of trigonal (P3m1) and orthorhombic (Pmn21) crystals.

a (Å) b/a c/a B0 (GPa) B’0

SiCAlN(P3m1) 3.071 1.625 216.4 3.9
SiCGaN(Pmn21) 3.162 1.840 1.658 170.5 3.2
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Next, to ensure that the predicted ground-state phases of SiC–III-N compounds were
dynamically stable, we calculated phonon dispersion curves (Figure 2). The calculated
phonon dispersion curves had no soft modes in the entire Brillouin zone, demonstrating
the dynamical stabilities of the above phases.
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Figure 2. Phonon band structure of SiCAlN, and SiCGaN quaternary alloy systems.

In order to predict whether, and under which conditions, these quaternary alloys can
be synthesized, we assessed the feasibility of doping SiC in AlN and GaN compounds. The
alloy formation enthalpy is defined for x = 0.5 as:

∆H = Etotal(SiC− I I IN)− Etotal(SiC)− Etotal(I I I − N)

We found that ∆H was 67 and 182 meV/atom, respectively, for the SiCAlN and
SiCGaN quaternary alloys. The positive values of ∆H indicate the tendency for phase
separation into binary compounds as relatively weak for SiCAlN, and relatively strong for
SiCGaN. Our ∆H value for SiCAlN was consistent with previous reports [15], where ∆H
was found to be quite small (∆H ∼50 meV/atom). However, to prevent phase separation at
finite temperatures, the metastable phases of SiCAlN and SiCGaN can be stabilized through
entropy. In a regular solution, the miscibility gap temperature is given by Tmis = 2∆H

KR
,

where kB is the Boltzmann constant. We found that the critical temperature, Tmis, above
which complete miscibility is possible, was 1282 and 4224 ◦C for SiCAlN and SiCGaN,
respectively. Our value for SiCAlN is consistent with previously reported experimental re-
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sults, where researchers typically used MBE and GMBE grow techniques with temperatures
of 750–1300 ◦C [14,15]. For SiCGaN, the results suggest that (SiC)x(Ga-N)1−x quaternary
alloys could be stable over a wide range of moderate compositions of x at normal growth
temperatures for poor (SiC) or rich (GaN) compositions. Unfortunately, no experimental
measurements are available for SiCGaN. To understand the thermodynamic instability of
SiCAlN and SiCGaN, we decomposed the formation enthalpy ∆H into two individual physical
mechanisms [34], expressing it as a sum of structural (St) and chemical (Chem) contributions:
∆H = ∆H(St) + ∆H(Chem).

Table 3 lists the decomposition results for SiC–III-N quaternary alloys. The results
reveal that the structural energy ∆H(St) in SiCAlN and SiCGaN is relatively small, and
hence mixing is encouraged. The calculated weak ∆H(St) correlates with the small lattice
mismatch ∆a

a between the SiC and III-N compounds: ∆a
a = 1–3% (SiCAlN, SiCGaN).

Table 3. Calculated structural energy of formation ∆H(St), chemical energy of formation ∆H(Chem),
and total energy of formation ∆H.

∆H(St) (eV/atom) ∆H(Chem)
(eV/atom) ∆H (eV/atom)

SiCAlN −0.087 0.155 0.067
SiCGaN 0.046 0.136 0.183

Our results above lead us to the conclusion that the large positive chemical energy
∆H(Chem) contribution to ∆H is the key factor that is controlling the instability of SiCAlN
and SiCGaN quaternary alloys.

The elastic constants (Cij) of the P3m1 and Pmn21 crystal phases were evaluated
to verify their mechanical stabilities (Table 4). All materials studied were found to be
mechanically stable—the entire set of the elastic constants Cij satisfied the elastic Born–
Hung criteria [35]. Moreover, we found that SiCAlN possesses high elastic constants
(C11~458 GPa, and C33~447 GPa), indicating that the P3m1 crystals exhibit excellent resis-
tance to deformation along the a- and c-axes. The Young’s modulus, E, the shear modulus,
G, and the Poisson’s ratio, v, derived from the calculated Cij values, are listed in Table 5. The
calculated values of B and G for SiCAlN were ~216 GPa and ~149 GPa, respectively, indicat-
ing the strongly incompressible nature of the P3m1 phase. The B/G ratio characterizes the
ductile ( B

g > 1.75) versus brittle ( B
g < 1.75) nature of materials. SiCGaN exhibited ductile

characteristics ( B
G = 2.04), whereas SiCAlN showed some degree of brittleness ( B

G = 1.45).

Table 4. Calculated elastic constants Cij in GPa for P3m1 and Pmn21 crystal phases.

C11 C12 C22 C13 C23 C33 C44 C55 C66

SiCAlN 457.9 125.4 86.5 447.2 166.3
SiCGaN 356.3 84.2 156.8 122.4 153.0 331.1 131.6 106.9 69.6

Table 5. Calculated Young’s modulus E, shear modulus G, and Poisson’s ratio ν for P3m1 and Pmn21

crystal phases.

E (GPa) G (GPa) ν

SiCAlN 364.3 149.2 0.22
SiCGaN 212.9 83.5 0.28

We then estimated the hardness of SiC–III-N compounds using the Microscopic Chen’s

model [36]: Hv = 2
[

G3

B2

]0.585
− 3. The hardness of SiCAlN and SiCGaN at ambient condi-

tions was 21.2 GPa and 8.5 GPa, respectively, suggesting the P3m1 crystal is potentially
a hard material.
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The electronic-mBJ band structure of the trigonal (SiCAlN) and orthorhombic (SiCGaN)
phases are shown in Figure 3. SiCGaN has a wide direct bandgap (Γ → Γ) of 3.80 eV,
whereas SiCAlN has a very wide indirect band gap (Γ→ L) of 4.64 eV. Various calculations
have been performed for this system, for instance Roucka et al. [15], using a plane-wave
pseudopotential method within the GGA, found a lower bandgap of 3.2 eV, whereas
Tang et al. [17], using first-principle pseudopotential calculations within the LDA, found
a bandgap of 2.6 eV. All of these calculations used approximations (LDA/GGA) which
are known to severely underestimate the excited states (i.e., bandgaps). However, no
theoretical or experimental data are available for SiCGaN.
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Figure 3. Electronic band structure of SiCAlN, and SiCGaN quaternary alloy systems.

These electronic properties render SiC–III-N quaternary alloys as appropriate transpar-
ent compounds for use as the window layer in solar cell applications (i.e., they are materials
with bandgap EG > 3 eV). Note that during the growth of wide band gap binaries such as
III-N and SiC, some defects [37,38] can be created, which originate from the atomic layout
imperfection caused by growth temperature fluctuation or strain. These intrinsic defects,
including vacancies and their associated complexes, have different charge configurations,
and can be located in the forbidden band, which can directly impact the electronic prop-
erties of the host material. It should be noted that the current DFT-based investigation of
AlN, GaN, SiC and their related quaternary systems was conducted without taking into
account the presence of defects—the materials studied were considered to be ideal crystal
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structures. This question will be addressed and explored in depth in the near future as part
of a separate study.

To understand the electronic structure of the studied compounds, the partial density
of states (PDoS) of SiCAlN and SiCGaN are illustrated in Figures 4 and 5. It was found that
the top of the valence bands originates mainly from the coupling of the Al-p (Ga-d, and
Ga-p) and N-p states, and the Si and C p states. Note also, the unusual ‘bad’ bonding states
(i.e., where the total number of valence electrons deviates by Zv = −1 from the normal
octet, such in the ‘normal’ Ga-N bond), induced by the interaction between the Al-p (Ga-d,
and Ga-p) and C-p states, and between the Si-p and N-p states.
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Finally, the calculated band gaps of the III-N compounds were used along with
the calculated values of SiC–III-N to obtain the variation in the direct energy gap of the
quaternary alloys:

EG(x) = (1− x)EG(I I I − N) + xEG(SiC)− bx(1− x)

where b is known as the bowing parameter. We found, for x = 0.5, a relatively large optical
bandgap bowing of b = 0.9 eV for SiCAlN, and a strong optical bandgap bowing of 2.98 eV
for SiCGaN.

Our calculated bandgap bowing value for SiCAlN is much lower than both the mea-
sured value of ~2.7 eV [12] and the DFT-calculated values of ~6 eV [17] and ~8.8 eV [15].
However, no theoretical or experimental data are available for SiCGaN.
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4. Conclusions

In summary, we explored the electronic structural properties of (SiC)x (III-N)1−x
quaternary alloys based on structure searching and density functional theory methods.
Two ordered trigonal (SiCAlN, space group P3m1) and orthorhombic (SiCGaN, space group
Pmn21) phases were determined for x = 0.5. The thermodynamic stability calculations
evinced that SiCAlN has a weak formation enthalpy of 67 meV/atom, and that that of
SiCGaN is moderate at 183 meV/atom).

The results showed that the P3m1 and Pmn21 crystal phases are dynamically and
mechanically stable at ambient conditions, as determined by examining the phonon spectra
and elastic constants. Furthermore, SiCAlN was found to potentially be a hard material
with strong elastic constants (C11~458 GPa, and C33~447 GPa), a high bulk modulus
(B0~210 GPa), a Young’s modulus of E~364 GPa, and a Vickers hardness of 21 GPa.

Analysis of the electronic properties demonstrated that SiCGaN is a wide direct
bandgap semiconductor, measured at 3.80 eV, and that SiCAlN is an indirect bandgap
semiconductor, measured at 4.60 eV. Moreover, for these quaternary alloys, a relatively
large optical bandgap bowing of b = 0.9 eV was found for SiCAlN, and a strong one of
2.98 eV was found for SiCGaN.
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