
Citation: Oh, S.; An, J.; Min, K.-S.

Area-Efficient Mapping of

Convolutional Neural Networks to

Memristor Crossbars Using

Sub-Image Partitioning.

Micromachines 2023, 14, 309.

https://doi.org/10.3390/

mi14020309

Academic Editor:

Nam-Trung Nguyen

Received: 28 December 2022

Revised: 21 January 2023

Accepted: 22 January 2023

Published: 25 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Area-Efficient Mapping of Convolutional Neural Networks to
Memristor Crossbars Using Sub-Image Partitioning
Seokjin Oh, Jiyong An and Kyeong-Sik Min *

School of Electrical Engineering, Kookmin University, Seoul 02707, Republic of Korea
* Correspondence: mks@kookmin.ac.kr

Abstract: Memristor crossbars can be very useful for realizing edge-intelligence hardware, because
the neural networks implemented by memristor crossbars can save significantly more computing
energy and layout area than the conventional CMOS (complementary metal–oxide–semiconductor)
digital circuits. One of the important operations used in neural networks is convolution. For
performing the convolution by memristor crossbars, the full image should be partitioned into several
sub-images. By doing so, each sub-image convolution can be mapped to small-size unit crossbars,
of which the size should be defined as 128 × 128 or 256 × 256 to avoid the line resistance problem
caused from large-size crossbars. In this paper, various convolution schemes with 3D, 2D, and 1D
kernels are analyzed and compared in terms of neural network’s performance and overlapping
overhead. The neural network’s simulation indicates that the 2D + 1D kernels can perform the
sub-image convolution using a much smaller number of unit crossbars with less rate loss than the 3D
kernels. When the CIFAR-10 dataset is tested, the mapping of sub-image convolution of 2D + 1D
kernels to crossbars shows that the number of unit crossbars can be reduced almost by 90% and 95%,
respectively, for 128 × 128 and 256 × 256 crossbars, compared with the 3D kernels. On the contrary,
the rate loss of 2D + 1D kernels can be less than 2%. To improve the neural network’s performance
more, the 2D + 1D kernels can be combined with 3D kernels in one neural network. When the
normalized ratio of 2D + 1D layers is around 0.5, the neural network’s performance indicates very
little rate loss compared to when the normalized ratio of 2D + 1D layers is zero. However, the number
of unit crossbars for the normalized ratio = 0.5 can be reduced by half compared with that for the
normalized ratio = 0.

Keywords: area-efficient mapping; convolutional neural networks; memristor crossbars;
sub-image partitioning

1. Introduction

Memristor crossbars can be used for computing MAC (Multiplication and Accumula-
tion) operation in their memory array, because the memristor’s current can be calculated
with Ohm’s law of ‘i = G× v’ [1–4]. Here, ‘G’ is the memristor’s conductance in the crossbar,
which can be programmed by applying voltage or current pulse [5–8]. In Ohm’s law, ‘i’ and
‘v’ are the memristor’s current and voltage, respectively. If ‘v’ is applied as an input voltage
to the memristor, the memristor’s current, ‘i’, can be thought of as the multiplication result
of memristor’s conductance ‘G’ and input voltage ‘v’. If many input voltages are applied
to the crossbar’s rows simultaneously, the crossbar’s column current can be thought as
the summation of multiplications, which can be calculated with icol,j = ∑

m
Givrow,i. In this

equation, ‘icol,j‘ is column(j)’s current. ‘m’ is the number of rows in the crossbar. ‘Gi’ and
‘vrow,i’ are memristor(i)’s conductance and input voltage(i), respectively. ‘j’ and ‘i’ are the
indices of crossbar’s column and row, respectively.

By doing so, the vector matrix multiplication can be calculated physically using the
memristor crossbar’s current–voltage relationship, where each column current is the MAC
operation result of the corresponding column. The physical MAC calculation by memristor

Micromachines 2023, 14, 309. https://doi.org/10.3390/mi14020309 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi14020309
https://doi.org/10.3390/mi14020309
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0003-3793-028X
https://orcid.org/0000-0002-1518-7037
https://doi.org/10.3390/mi14020309
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi14020309?type=check_update&version=1

Micromachines 2023, 14, 309 2 of 14

crossbars can consume smaller energy than the conventional computing using CMOS
digital circuits [9–11]. Moreover, if memristors can store multi-values such as 7-8 bits,
the layout area for the physical computing by memristors can be much smaller than the
digital CMOS circuits for performing the MAC operation. These advantages of low energy
and small layout area of computing are very beneficial for implementing neural network
hardware especially at edge devices such as Internet of Things (IoT) devices [12,13].

Figure 1a shows a conceptual block diagram of artificial neural networks. In Figure 1a,
the input neurons are connected to the hidden ones through synapses. Each synaptic
connection has its weight. Similarly, the hidden neurons are connected to the output ones
though synapses, too. Here, the input, hidden, and output neurons are represented with
X, Y, and Z, respectively. ‘m’, ‘n’, and ‘k’ are the numbers of input, hidden, and output
neurons, respectively. The neural networks in Figure 1a can be realized by memristor
crossbars, as indicated in Figure 1b. More specifically, layer #1 between the input and
hidden neurons in Figure 1a is implemented by the upper crossbar in Figure 1b. Here, the
input and hidden neurons can be designed by CMOS analog circuits. The lower crossbar
in Figure 1b is for layer #2 between the hidden and output neurons in Figure 1a. The two
columns represented with (+) and (-) in Figure 1b can calculate both positive and negative
synaptic weights in neural networks. The two columns in memristor crossbars are needed
because the synaptic weights can be both positive and negative. Each synaptic weight in
the neural networks in Figure 1a can be realized by each memristor’s conductance in the
crossbars in Figure 1b.

Micromachines 2023, 14, x FOR PEER REVIEW 4 of 16

Figure 1. (a) The block diagram of artificial neural networks with input, hidden, and output neurons

(b) The memristor crossbars for implementing the neural networks.

2. Method

As mentioned in the previous section, in this paper, we try to propose an area-effi-

cient mapping method of neural network’s convolution to crossbars. To do so, first, we

consider that the convolution is mapped to one big crossbar without sub-image partition-

ing. Figure 2a shows the convolution of a 28 × 28 MNIST image with a 3 × 3 kernel without

using the sub-image partitioning. In this figure, the 3 × 3 kernel is represented in red. For

performing the convolution, the 3 × 3 kernel is moved from the top-left to the bottom-right

in the 28 × 28 input image to calculate features from the input image. Figure 2b shows a

large-size memristor crossbar for performing the full-image convolution without the use

of sub-image partitioning. Here, the number of crossbar’s rows is the same with the num-

ber of input pixels involved in the convolution. Similarly, the number of crossbar’s col-

umns is equal to the number of output pixels calculated from the convolution. Thus, for

performing the convolution of 28 ×28 MNIST image with a 3 × 3 kernel, the crossbar’s row

and column numbers should be 784 and 784, respectively, as indicated in Figure 2b.

One problem of the memristor crossbar in Figure 2b is that the crossbar’s line re-

sistance can be very large because the crossbar’s size is large. As mentioned earlier, the

line resistance is increased more as the crossbar’s size becomes larger. The large line re-

sistance can degrade the crossbar’s MAC calculation accuracy significantly. If so, the MAC

calculation result from the memristor crossbar can be different from the ideal MAC calcu-

lation. Figure 2c shows a memristor crossbar circuit with parasitic resistance. Here, RS, RW,

and RN are the parasitic source, line, and neuron resistance, respectively [15]. VIN,0 is input

voltage applied to ‘row #0′. I0 is the column current from ‘column #0′. In Figure 2c, the

input voltages such as VIN,0 are applied to the crossbar’s rows. The currents generated by

the crossbar’s columns can be thought of as the MAC results calculated physically from

the memristor crossbar.

Figure 2d indicates that the MAC calculation accuracy is affected significantly due to

the parasitic resistance such as RW. Here, the crossbar is assumed to have 784 cells per

column, as shown in Figure 2c. The RW means line resistance per cell. If the column has

784 cells and RW = 1.1 Ω, the total line resistance becomes as large as 862 Ω. In this figure,

memristor

X0

Xm

Y0

-

Yn

-

(+) (-) (+) (-)

Y1

-

(+) (-)

Zk-

Z0-
(+)

(-)

Z1-
(+)

(-)

(+)

(-)

...

...

...

Layer#1

Layer#2

(b)(a)

X0 Xm

Y0 Yn

Z0 Zk

I0+ I0-

G0+ G0-

Gm+ Gm-

I0+-I0-A

B

Figure 1. (a) The block diagram of artificial neural networks with input, hidden, and output neurons
(b) The memristor crossbars for implementing the neural networks.

Explaining the MAC calculation by memristor crossbars more in detail, in Figure 1b,
G0+ and G0- represent the memristor’s conductance on plus and minus columns, respec-
tively, for ‘row #0′. X0 is input voltage applied to ‘row #0′. Similarly, Gm+ and Gm- are the
memristor’s conductance for ‘row #m’. Xm is the input voltage to ‘row #m’ in Figure 1b.
Here, I0+ can be calculated with G0+X0 + ‖+ Gm+Xm. I0- is G0−X0 + ‖+ Gm−Xm. The
difference of I0+ and I0- is calculated with I0+ − Io− by circuit (A). The calculated I0+ − Io−
enters the voltage amplifier (B), where Y0 is obtained and delivered to the next crossbar.
Here, G0+ − Go− can be regarded as a synaptic weight. If G0+ is larger than G0-, the weight

Micromachines 2023, 14, 309 3 of 14

is positive. If G0+ is smaller than G0-, the weight is negative. Similarly, Gm+ − Gm− can be
regarded as the other synaptic weight. By doing so, both positive and negative weights can
be represented using the (+) and (-) columns as shown in Figure 1b [14].

One thing to consider in implementing the neural networks in Figure 1a by the cross-
bars in Figure 1b is that the crossbar’s size should be limited due to the line resistance
problem [15–19]. If the crossbar’s size is too large and the line resistance becomes com-
parable to the LRS (Low Resistance State) value, the MAC calculation accuracy can be
degraded significantly [15,19,20]. For example, the recently fabricated 40 nm RRAM array
has 128 × 128 cells, and the line resistance per cell was measured ~1.1Ω. Thus, the total
line resistance can be as large as 141Ω. In this case, the voltage drop on line resistance can
be negligible if the memristor’s LRS (Low Resistance State) is as large as 10KΩ [19]. If the
crossbar’s size becomes as large as, for example, 1024 × 1024, the line resistance becomes
~1.1KΩ. This large line resistance can degrade the MAC calculation accuracy severely if
the LRS is as small as a few kilo ohms.

From the previous publications about the experimental line resistance measured
from academia and industries, the crossbar’s size can be 128 × 128 or 256 × 256 [19,21].
Unfortunately, however, these crossbar’s sizes are too small to process most of the deep-
learning image datasets such as CIFAR-10 (32 × 32 × 3), IMAGENET (224 × 224 × 3),
etc. [22,23]. Thus, a full image with a very large number of pixels should be divided into
small sub-images for processing them in unit crossbars, where the crossbar’s size can be
defined as 128 × 128 or 256 × 256. By doing so, the line resistance problem can be avoided
in the sub-image partitioning instead of using the full image.

One of the important operations used in neural networks is convolution operation.
Similarly with the previous discussion, for performing the convolution by memristor cross-
bars, the full-image convolution should be partitioned into several sub-image convolution
blocks. By doing so, each sub-image convolution can be mapped to the unit crossbar instead
of the large-size crossbar [24]. In this paper, the crossbar’s size is assumed as 128 × 128
and 256 × 256 to avoid the line resistance problem caused from large-size crossbars [19,21].
When the sub-image convolution is mapped to unit crossbars, the overlapping overhead
can be caused from the borderline pixels between two neighboring sub-images. This is
because the borderline pixels should be involved in both the convolution calculations
of two neighboring sub-images to avoid the edge effect. The overlapping between two
neighboring sub-images due to the borderline pixels can increase the number of crossbar’s
rows needed in the sub-image convolution.

In this paper, to mitigate the overlapping overhead caused from the mapping of sub-
image convolution to unit crossbars, various convolution schemes using 3D, 2D, and 1D
kernels are investigated and compared, because the overlapping overhead can be different
for the different convolutions with 3D, 2D, and 1D kernels. The 3D kernel is composed of
width, length, and height. In the sub-image convolution with 3D kernels, the overlapping
overhead becomes significantly large, because two neighboring sub-images can share many
borderline pixels in the both lateral and vertical dimensions, as will be explained in the
next section. The 2D kernel composed of only width and length is used in depthwise
convolution, where the overlapping can be found only in the lateral direction, not in the
vertical direction. By doing so, the overlapping overhead of 2D convolution can be smaller
than the convolution with 3D kernel. The 1D kernel can perform pointwise convolution.
In this case, no overlapping overhead can occur in the both lateral and vertical directions.
Of course, the overlapping overhead due to the 1D kernel is the smallest among the three
kernels. Based on the comparative study on various convolution schemes with the 3D,
2D, and 1D kernels, an area-efficient mapping method of sub-image convolution to unit
crossbars is proposed to minimize the overlapping overhead due to the borderline pixels
shared between two neighboring sub-images in the following section. In Section 3, the
simulation results are shown and discussed to verify that the proposed mapping method
of sub-image convolution can succeed in improving the overlapping overhead due to
borderline pixels. Finally, we summarize this paper in Section 4.

Micromachines 2023, 14, 309 4 of 14

2. Method

As mentioned in the previous section, in this paper, we try to propose an area-efficient
mapping method of neural network’s convolution to crossbars. To do so, first, we con-
sider that the convolution is mapped to one big crossbar without sub-image partitioning.
Figure 2a shows the convolution of a 28 × 28 MNIST image with a 3 × 3 kernel without
using the sub-image partitioning. In this figure, the 3 × 3 kernel is represented in red. For
performing the convolution, the 3 × 3 kernel is moved from the top-left to the bottom-right
in the 28 × 28 input image to calculate features from the input image. Figure 2b shows
a large-size memristor crossbar for performing the full-image convolution without the
use of sub-image partitioning. Here, the number of crossbar’s rows is the same with the
number of input pixels involved in the convolution. Similarly, the number of crossbar’s
columns is equal to the number of output pixels calculated from the convolution. Thus, for
performing the convolution of 28 ×28 MNIST image with a 3 × 3 kernel, the crossbar’s
row and column numbers should be 784 and 784, respectively, as indicated in Figure 2b.

Micromachines 2023, 14, x FOR PEER REVIEW 6 of 16

Figure 2. (a) The convolution of 28 × 28 MNIST image with 3 × 3 kernel without using the sub-image

partitioning. (b) The memristor crossbar for the full-image convolution without using the sub-image

partitioning. (c) The crossbar circuit with parasitic resistance such as source, line, and neuron re-

sistance. (d) The normalized column current with increasing the number of active rows (%), for 1S-

1R and 1T-1R cells. Here, RW means line resistance per cell and the crossbar’s column has 784 cells

per column. When RW = 0.5 Ω and RW = 1.1 Ω, the normalized column currents seem to saturate

rapidly with increasing the percentage active rows over 25%. It means the MAC calculation accuracy

is degraded very much when RW is not zero.

For overcoming the large line resistance problem due to large-size crossbars, the

MNIST image should be partitioned into several sub-images. For example, the 28 × 28

MNIST image can be divided into sixteen 7 × 7 sub-images, as indicated in Figure 3a. Here,

each 7 × 7 sub-image convolution can be mapped to memristor crossbars with much

smaller size than 784 × 784, as shown in Figure 3b. As explained earlier, the number of

crossbar’s rows is the same with the number of input pixels involved in the convolution.

Similarly, the number of crossbar’s columns is equal to the number of output pixels cal-

culated from the convolution. By doing so, the crossbar’s row and column numbers for 7

× 7 sub-image convolution can be calculated with 81(=9 × 9) and 49(=7 × 7), respectively,

as shown in Figure 3b.

(b)(a)

(c)

28 columns

28
rows

3x3 kernel

28x28 MNIST image

RS

RN

RW

RS RW

RS RW

RS RW

RW

I0

...

VIN,0

VIN,1

VIN,2

VIN,783

LRS

HRS

RM,00

RN

RW

RW

RW

RW

RW

I1 RN

RW

RW

RW

RW

RW

I783

...

...

...

...

...

784x784 memristor crossbar

R0
G G G G G G G G G G G

VIN,0

VIN,1

VIN,2

VIN,783

VIN,3

VIN,782

VIN,781

VIN,780
784

rows

784 columns

...

LRS,resultHRS
VOUT,0 VOUT,783

...

One big memristor crossbar

Crossbar
mapping without

sub-image
partitioning

0 25 50 75 100

0.00

0.25

0.50

0.75

1.00

 N
o
rm

a
liz

e
d
 c

o
lu

m
n

 c
u
rr

e
n
t
(a

.u
.)

of activate rows (%)

 Rw = 0 Ω(1S-1R)

 Rw = 0 Ω(1T-1R)

 Rw = 0.5 Ω(1S-1R)

 Rw = 1.1 Ω(1S-1R)

(d)

Figure 2. (a) The convolution of 28 × 28 MNIST image with 3 × 3 kernel without using the sub-
image partitioning. (b) The memristor crossbar for the full-image convolution without using the
sub-image partitioning. (c) The crossbar circuit with parasitic resistance such as source, line, and
neuron resistance. (d) The normalized column current with increasing the number of active rows
(%), for 1S-1R and 1T-1R cells. Here, RW means line resistance per cell and the crossbar’s column has
784 cells per column. When RW = 0.5 Ω and RW = 1.1 Ω, the normalized column currents seem to
saturate rapidly with increasing the percentage active rows over 25%. It means the MAC calculation
accuracy is degraded very much when RW is not zero.

Micromachines 2023, 14, 309 5 of 14

One problem of the memristor crossbar in Figure 2b is that the crossbar’s line resis-
tance can be very large because the crossbar’s size is large. As mentioned earlier, the line
resistance is increased more as the crossbar’s size becomes larger. The large line resistance
can degrade the crossbar’s MAC calculation accuracy significantly. If so, the MAC calcula-
tion result from the memristor crossbar can be different from the ideal MAC calculation.
Figure 2c shows a memristor crossbar circuit with parasitic resistance. Here, RS, RW, and
RN are the parasitic source, line, and neuron resistance, respectively [15]. VIN,0 is input
voltage applied to ‘row #0′. I0 is the column current from ‘column #0′. In Figure 2c, the
input voltages such as VIN,0 are applied to the crossbar’s rows. The currents generated by
the crossbar’s columns can be thought of as the MAC results calculated physically from the
memristor crossbar.

Figure 2d indicates that the MAC calculation accuracy is affected significantly due
to the parasitic resistance such as RW. Here, the crossbar is assumed to have 784 cells per
column, as shown in Figure 2c. The RW means line resistance per cell. If the column has
784 cells and RW = 1.1 Ω, the total line resistance becomes as large as 862 Ω. In this figure,
the normalized column current means the MAC calculation result is plotted with increasing
the percentage number of active rows among 784 rows. The ‘active rows’ means the row’s
input voltage is high. If the percentage number of active rows is 50%, 392 rows are applied
by high voltage and the other 392 are driven by 0V, among the total 784 inputs. Here, 1T-1R
means the crossbar composed of 1 transistor and 1 memristor. 1S-1R is the array made of a
self-rectifying memristor. For 1T-1R, the effective LRS resistance considering both LRS and
transistor’s ON resistance is assumed to be 26.3 KΩ in the circuit simulation of Figure 2d.
The effective HRS resistance considering both HRS and the transistor’s ON resistance can
be the same with HRS = 1 MΩ, because the HRS is much larger than the transistor’s ON
resistance, as explained later in Section 3. In 1S-1R, the selector may be united with the
memristor not using an external transistor as the selector.

When RW = 0 Ω, the normalized column current seems very linear upon increasing the
percentage of active rows among 784 rows for both 1S-1R and 1T-1R cells. It indicates clearly
that the MAC calculation accuracy is not degraded regardless of 1S-1R and 1T-1R cells.
However, when RW = 0.5 Ω and RW = 1.1 Ω, the normalized column currents seem to
saturate rapidly with increasing the percentage active rows over 25%. It means the MAC
calculation accuracy is degraded very much when RW is not zero. If RW becomes larger,
the MAC calculation accuracy becomes degraded more, as shown in Figure 2d. From the
circuit simulation of MAC calculation by the crossbar’s column current, the line resistance
shows that it can degrade MAC calculation accuracy significantly. Based on the analysis of
Figure 2d, we discuss how to mitigate the line resistance problem in memristor crossbars in
the following paragraphs.

For overcoming the large line resistance problem due to large-size crossbars, the MNIST
image should be partitioned into several sub-images. For example, the 28 × 28 MNIST image
can be divided into sixteen 7 × 7 sub-images, as indicated in Figure 3a. Here, each 7 × 7
sub-image convolution can be mapped to memristor crossbars with much smaller size than
784 × 784, as shown in Figure 3b. As explained earlier, the number of crossbar’s rows is the
same with the number of input pixels involved in the convolution. Similarly, the number of
crossbar’s columns is equal to the number of output pixels calculated from the convolution.
By doing so, the crossbar’s row and column numbers for 7 × 7 sub-image convolution can be
calculated with 81(=9 × 9) and 49(=7 × 7), respectively, as shown in Figure 3b.

Here, it should be noted that the borderline pixels overlapping between two neighboring
sub-images should be considered in counting the crossbar’s row number as many as 81(=9× 9).
In Figure 3a, if we look at the borderline pixel ‘#1′ between two neighboring sub-images of ‘#2′

and ‘#3′, the borderline pixel ‘#1′ is involved in the convolution for both the sub-images of ‘#2′

and ‘#3′. This overlapping overhead due to the borderline pixels can increase the crossbar’s row
number. On the contrary, when the crossbar’s column number is considered, only the number
of output pixels calculated from the convolution should be counted. By doing so, the crossbar’s
column number is equal to the sub-image size of 49(=7 × 7).

Micromachines 2023, 14, 309 6 of 14

Micromachines 2023, 14, x FOR PEER REVIEW 7 of 16

Here, it should be noted that the borderline pixels overlapping between two neigh-

boring sub-images should be considered in counting the crossbar’s row number as many

as 81(=9 × 9). In Figure 3a, if we look at the borderline pixel ‘#1′ between two neighboring

sub-images of ‘#2′ and ‘#3′, the borderline pixel ‘#1′ is involved in the convolution for both

the sub-images of ‘#2′ and ‘#3′. This overlapping overhead due to the borderline pixels can

increase the crossbar’s row number. On the contrary, when the crossbar’s column number

is considered, only the number of output pixels calculated from the convolution should

be counted. By doing so, the crossbar’s column number is equal to the sub-image size of

49(=7 × 7).

Comparing the crossbar size for between the full-image convolution (784 × 784) in

Figure 2a and sub-image convolution (81 × 49) in Figure 3a indicates clearly that the cross-

bar’s size of sub-image convolution can be ~10x smaller than that of full-image convolu-

tion. This crossbar’s size reduction can decrease the line resistance by 90%, resulting in

improving the MAC calculation accuracy significantly.

Figure 3. (a) The convolution of 28 × 28 MNIST image with 3 × 3 kernel using the sub-image parti-

tioning. (b) The memristor crossbar for the sub-image convolution using the sub-image partitioning.

Here, the borderline rows and columns between two neighboring sub-images are included in the

crossbar’s row number of 81(=9 × 9). When the crossbar’s column number is calculated, only the

number of output pixels of the convolution should be considered. By doing so, the crossbar’s col-

umn number is equal to the sub-image size of 49(=7 × 7).

As explained earlier, the memristor’s size should be very large for performing the

full-image convolution. If the memristor’s size is very large, the line resistance can be very

large, too. If so, the MAC calculation accuracy can be degraded significantly. To avoid the

line resistance problem, the full image should be partitioned into smaller sub-images.

Each sub-image convolution can be performed by each unit crossbar, where the unit cross-

bar’s line resistance can be much smaller than the crossbar of full-image convolution.

However, when the sub-image convolution is mapped to small-size unit crossbars, the

borderline pixels overlapping between two neighboring sub-images can cause the over-

lapping overhead, because the crossbar’s row number is increased.

The overlapping overhead mentioned just earlier can be different for various convo-

lution schemes with different kernels. Figure 4a–c show the sub-image convolution with

3D, 2D, and 1D kernels, respectively. Here, the borderline pixels overlapping between the

two neighboring sub-images of ‘#1′ and ‘#2′ are shown in green. As shown in Figure 4a,

the sub-image convolution with 3D kernels can increase the overlapping overhead very

severely, because the overlapping due to 3D kernels can occur in both the lateral and ver-

tical directions. Figure 4b indicates the overlapping overhead due to 2D kernels can occur

only in the lateral direction. By doing so, the overlapping overhead due to the convolution

with 2D kernels can be much smaller than the overlapping overhead due to the convolu-

tion with 3D kernels. Figure 4c shows that no overlapping overhead can be found for the

(a)

28 columns

28
rows

3x3 kernel

28x28 MNIST image

7

7

Convolution
on the

borderline
pixel #1

Crossbar mapping
with sub-image partitioning

(b)

G G G G G

VO,1 VO,2 VO,48
...

81
rows

49 columns

16 unit crossbars

sub-
image

#2

sub-
image

#3
#1

Figure 3. (a) The convolution of 28 × 28 MNIST image with 3 × 3 kernel using the sub-image parti-
tioning. (b) The memristor crossbar for the sub-image convolution using the sub-image partitioning.
Here, the borderline rows and columns between two neighboring sub-images are included in the
crossbar’s row number of 81(=9 × 9). When the crossbar’s column number is calculated, only the
number of output pixels of the convolution should be considered. By doing so, the crossbar’s column
number is equal to the sub-image size of 49(=7 × 7).

Comparing the crossbar size for between the full-image convolution (784 × 784)
in Figure 2a and sub-image convolution (81 × 49) in Figure 3a indicates clearly that
the crossbar’s size of sub-image convolution can be ~10x smaller than that of full-image
convolution. This crossbar’s size reduction can decrease the line resistance by 90%, resulting
in improving the MAC calculation accuracy significantly.

As explained earlier, the memristor’s size should be very large for performing the full-
image convolution. If the memristor’s size is very large, the line resistance can be very large,
too. If so, the MAC calculation accuracy can be degraded significantly. To avoid the line
resistance problem, the full image should be partitioned into smaller sub-images. Each sub-
image convolution can be performed by each unit crossbar, where the unit crossbar’s line
resistance can be much smaller than the crossbar of full-image convolution. However, when
the sub-image convolution is mapped to small-size unit crossbars, the borderline pixels
overlapping between two neighboring sub-images can cause the overlapping overhead,
because the crossbar’s row number is increased.

The overlapping overhead mentioned just earlier can be different for various convo-
lution schemes with different kernels. Figure 4a–c show the sub-image convolution with
3D, 2D, and 1D kernels, respectively. Here, the borderline pixels overlapping between the
two neighboring sub-images of ‘#1′ and ‘#2′ are shown in green. As shown in Figure 4a,
the sub-image convolution with 3D kernels can increase the overlapping overhead very
severely, because the overlapping due to 3D kernels can occur in both the lateral and vertical
directions. Figure 4b indicates the overlapping overhead due to 2D kernels can occur only
in the lateral direction. By doing so, the overlapping overhead due to the convolution with
2D kernels can be much smaller than the overlapping overhead due to the convolution with
3D kernels. Figure 4c shows that no overlapping overhead can be found for the sub-image
convolution with 1D kernels. This pointwise convolution with 1D kernels does not suffer
any overlapping overhead, because the kernel’s lateral dimension is as small as only one
pixel. By doing so, the sub-image convolution with the pointwise 1D kernels does not make
any overlapping between two neighboring sub-images.

Micromachines 2023, 14, 309 7 of 14

Micromachines 2023, 14, x FOR PEER REVIEW 8 of 16

sub-image convolution with 1D kernels. This pointwise convolution with 1D kernels does

not suffer any overlapping overhead, because the kernel’s lateral dimension is as small as

only one pixel. By doing so, the sub-image convolution with the pointwise 1D kernels

does not make any overlapping between two neighboring sub-images.

Figure 4. (a) The sub-image convolution with 3D kernels. (b) The sub-image convolution with 2D

kernels. (c) The sub-image convolution with 1D kernels.

The comparison of 3D, 2D, and 1D kernels in Figure 4a–c indicates that the sub-image

convolution with 3D kernels is worse than the 2D and 1D ones in terms of the overlapping

overhead. Thus, to mitigate the overlapping overhead, it is better to use the 2D and 1D

kernels more than the 3D ones in mapping the sub-image convolution to the memristor

crossbars. Based on the analysis of sub-image partitioning and convolution schemes ex-

plained earlier, we propose an area-efficient mapping method of sub-image convolution

to unit crossbars in this paper, as indicated in Figure 5.

In the mapping method in Figure 5, we start the design of convolutional neural net-

works from the target dataset of training and testing. First, the layers and kernels used in

the convolutional neural networks should be defined. Here, the 3D kernels are assumed

to be used in the networks. After defining the neural network’s architecture, the convolu-

tion layers with 3D kernels can be replaced with 2D and 1D kernels layer by layer, in order

to reduce the overlapping overhead caused from the sub-image convolution. As the 3D

layers are replaced with the 2D and 1D ones layer by layer, the area of crossbars can be

reduced, but the neural network’s performance is degraded. Based on the trade-off rela-

tionship between the neural network’s performance and crossbar’s area, the iteration goes

on until the satisfaction of the target specification. In the following step, the full-image

convolution is partitioned into the sub-image convolution according to the unit crossbar’s

size. Then, the sub-image convolution can be finally mapped to the unit crossbars for per-

forming the convolution physically.

2D

kernel

1D

kernel
3D

kernel

(b)(a) (c)

sub-image

#1

sub-image

#2

sub-image

#1

sub-image

#2

sub-image

#1

sub-image

#2

Figure 4. (a) The sub-image convolution with 3D kernels. (b) The sub-image convolution with 2D
kernels. (c) The sub-image convolution with 1D kernels.

The comparison of 3D, 2D, and 1D kernels in Figure 4a–c indicates that the sub-image
convolution with 3D kernels is worse than the 2D and 1D ones in terms of the overlapping
overhead. Thus, to mitigate the overlapping overhead, it is better to use the 2D and 1D
kernels more than the 3D ones in mapping the sub-image convolution to the memristor
crossbars. Based on the analysis of sub-image partitioning and convolution schemes
explained earlier, we propose an area-efficient mapping method of sub-image convolution
to unit crossbars in this paper, as indicated in Figure 5.

Micromachines 2023, 14, x FOR PEER REVIEW 9 of 16

Figure 5. The area-efficient mapping method of convolutional neural networks to memristor cross-

bars using sub-image partitioning.

3. Results

Tables 1a and b show the convolutional neural networks using 3D kernels and 2D +

1D ones, respectively. The convolutional neural networks relying on 2D and 1D kernels

rather than 3D kernels have been known as Depthwise Separable Neural Networks [25].

The neural networks in Tables 1a and b are composed of 16 layers [26]. The fully connected

layer is used at the final stage, where 1024 hidden neurons are connected to 10 output

ones. In Table 1a, ‘CONV’ means the convolution layer by 3D kernels. ‘S1′ and ‘S2′ mean

the stride numbers are 1 and 2, respectively. In Table 1b, ‘DW CONV’ and ‘PW CONV’

mean the convolution layers by 2D and 1D kernels, respectively.

Define the layers and kernels of convolutional neural networks
based on 3D kernels

Replace 3D kernels with 2D and 1D kernels layer by layer in the
convolutional neural networks

Can the designed neural networks satisfy
a target area and recognition rate ?

Start to design convolutional neural networks
with training and test dataset

End of the design of convolutional neural networks
using memristor crossbars

Partition full-image convolution into sub-image convolution
according to unit crossbar's size

Mapping sub-image convolution to unit crossbars

No

Yes

Figure 5. The area-efficient mapping method of convolutional neural networks to memristor crossbars
using sub-image partitioning.

Micromachines 2023, 14, 309 8 of 14

In the mapping method in Figure 5, we start the design of convolutional neural
networks from the target dataset of training and testing. First, the layers and kernels
used in the convolutional neural networks should be defined. Here, the 3D kernels are
assumed to be used in the networks. After defining the neural network’s architecture, the
convolution layers with 3D kernels can be replaced with 2D and 1D kernels layer by layer,
in order to reduce the overlapping overhead caused from the sub-image convolution. As
the 3D layers are replaced with the 2D and 1D ones layer by layer, the area of crossbars
can be reduced, but the neural network’s performance is degraded. Based on the trade-off
relationship between the neural network’s performance and crossbar’s area, the iteration
goes on until the satisfaction of the target specification. In the following step, the full-image
convolution is partitioned into the sub-image convolution according to the unit crossbar’s
size. Then, the sub-image convolution can be finally mapped to the unit crossbars for
performing the convolution physically.

3. Results

Table 1a,b show the convolutional neural networks using 3D kernels and 2D + 1D
ones, respectively. The convolutional neural networks relying on 2D and 1D kernels rather
than 3D kernels have been known as Depthwise Separable Neural Networks [25]. The
neural networks in Table 1a,b are composed of 16 layers [26]. The fully connected layer
is used at the final stage, where 1024 hidden neurons are connected to 10 output ones. In
Table 1a, ‘CONV’ means the convolution layer by 3D kernels. ‘S1′ and ‘S2′ mean the stride
numbers are 1 and 2, respectively. In Table 1b, ‘DW CONV’ and ‘PW CONV’ mean the
convolution layers by 2D and 1D kernels, respectively.

Table 1. (a) The neural network’s architecture of sub-image convolution using 3D kernels. (b) The
neural network’s architecture of sub-image convolution using 2D and 1D kernels.

Layer # Type/Stride Kernel Shape Input Size

(a)
1 CONV/S1 (3 × 3 × 3) × 32 32 × 32 × 3

2 CONV/S1 (3 × 3 × 32) × 64 32 × 32 × 32

3 CONV/S2 (3 × 3 × 64) × 128 32 × 32 × 64

4 CONV/S1 (3 × 3 × 128) × 128 16 × 16 × 128

5 CONV/S2 (3 × 3 × 128) × 256 16 × 16 × 128

6 CONV/S1 (3 × 3 × 256) × 256 8 × 8 × 256

7 CONV/S2 (3 × 3 × 256) × 512 8 × 8 × 256

8 ~ 12 CONV/S1 (3 × 3 × 256) × 512 4 ×4 × 512

13 CONV/S2 (3 × 3 × 512) × 1024 4 ×4 × 512

14 CONV/S1 (3 × 3 × 1024) × 1024 2 × 2 × 1024

15 AVG POOL/S2 (2 × 2) 2 × 2 × 1024

16 FC (1024 × 10) 1024

(b)

1 CONV/S1 (3 × 3 × 3) × 32 32 × 32 × 3

2
DW CONV/S1 (3 × 3 × 1) × 32 (32 × 32 × 1) × 32

PW CONV/S1 (1 × 1 × 32) × 64 32 × 32 × 32

3
DW CONV/S2 (3 × 3 × 1) × 64 (32 × 32 × 1) × 64

PW CONV/S1 (1 × 1 × 64) × 128 16 × 16 × 64

4
DW CONV/S1 (3 × 3 × 1) × 128 (16 × 16 × 1) × 128

PW CONV/S1 (1 × 1 × 128) × 128 16 × 16 × 128

5
DW CONV/S2 (3 × 3 × 1) × 128 (16 × 16 × 1) × 128

PW CONV/S1 (1 × 1 × 128) × 256 8 × 8 × 128

Micromachines 2023, 14, 309 9 of 14

Table 1. Cont.

Layer # Type/Stride Kernel Shape Input Size

6
DW CONV/S1 (3 × 3 × 1) × 256 (8 × 8 × 1) × 256

PW CONV/S1 (1 × 1 × 256) × 256 8 × 8 × 256

7
DW CONV/S2 (3 × 3 × 1) × 256 (8 × 8 × 1) × 256

PW CONV/S1 (1 × 1 × 256) × 512 4 × 4 × 256

8 ~ 12
DW CONV/S1 (3 × 3 × 1) × 512 (4 × 4 × 1) × 512

PW CONV/S1 (1 × 1 × 512) × 512 4 × 4 × 512

13
DW CONV/S2 (3 × 3 × 1) × 512 (4 × 4 × 1) × 512

PW CONV/S1 (1 × 1 × 512) × 1024 2 × 2 × 512

14
DW CONV/S1 (3 × 3 × 1) × 1024 (2 × 2 × 1) × 1024

PW CONV/S1 (1 × 1 × 1024) × 1024 2 × 2 × 1024

15 AVG POOL/S2 (2 × 2) 2 × 2 × 1024

16 FC (1024 × 10) 1024

Figure 6a compares the neural network’s performance of the sub-image convolution
between the 3D and 2D+1D kernels. The sub-image convolution with 3D kernels is used
in the neural network’s architecture in Table 1a. The 2D and 1D kernels are used in the
neural network’s architecture in Table 1b. In the neural network’s simulation, the CIFAR-10
dataset was used [22]. In the CIFAR-10 dataset, the number of training images is 50,000
and the number of test images is 10,000. The number of image categories is 10. Here, the
simulation was performed by MATLAB and pytorch. In Figure 6a, the FW-FN means that
both the synaptic weight and the neuron’s output are calculated with floating numbers.
The TW-FN means the synaptic weight is represented with ternary values and the neuron’s
output is calculated with floating numbers. For the FW-FN, the sub-image convolution
with 3D kernels shows the recognition rate as high as 92% for the CIFAR-10 dataset. The
convolutional network with 2D and 1D kernels shows the rate of 91%. The gap between
the 3D and 2D+1D kernels is as small as 1%. For the TW-FN, the synaptic weight can be
either -1, 0, or 1. In this case, the sub-image convolution with 3D kernels shows the rate of
89%. Similarly, the 2D and 1D kernels indicate the rate as high as 87%. The gap between
the 3D and 2D+1D kernels is still as small as 2%.

Micromachines 2023, 14, x FOR PEER REVIEW 11 of 16

The convolutional network with 2D and 1D kernels shows the rate of 91%. The gap be-

tween the 3D and 2D+1D kernels is as small as 1%. For the TW-FN, the synaptic weight

can be either -1, 0, or 1. In this case, the sub-image convolution with 3D kernels shows the

rate of 89%. Similarly, the 2D and 1D kernels indicate the rate as high as 87%. The gap

between the 3D and 2D+1D kernels is still as small as 2%.

Figure 6b compares the number of unit crossbars used in the 3D and 2D+1D kernels.

Here, the unit crossbar’s size is assumed to be 128 × 128 and 256 × 256. When the sub-

image convolution with 3D kernels is mapped to 128 × 128 unit crossbars, the number of

unit crossbars becomes as large as 43,264. This large number of unit crossbars is due to

the overlapping overhead of 3D kernels. As indicated in Figure 4a, the overlapping over-

head of 3D kernels can be found both in the vertical and lateral directions. As the 3D ker-

nel’s depth becomes deeper, the overlapping overhead in the vertical direction is in-

creased more. Compared to the 3D kernels, the 2D kernels produce the overlapping over-

head only in the lateral direction. The 1D kernels do not make the overlapping overhead.

By doing so, the sub-image convolution with 2D and 1D kernels in Table 1b needs a much

smaller number of unit crossbars than that with 3D kernels in Table 1a. Specifically, when

the unit crossbar’s size is assumed to be 128 × 128, the sub-image convolution with 2D +

1D kernels can save the number of unit crossbars used in the neural networks by 90%

compared to the sub-image convolution with 3D kernels. When the unit crossbar’s size

becomes as large as 256 × 256, the percentage gap between the 2D + 1D and 3D kernels

becomes larger, as shown in Figure 6b. For the 256 × 256 unit crossbar, the number of unit

crossbars used in the sub-image convolution with 2D and 1D kernels is smaller by 95%

than that of the sub-image convolution with 3D kernels.

Before ending the discussion of Figures 6a and b, it should be noted that the full-

image convolution is not considered in the simulation of Figure 6a. This is because the

full-image convolution without sub-image partitioning needs very large size crossbars, as

explained in the previous section. In this case, the line resistance should become very

large, too. The large line resistance can degrade the MAC calculation accuracy severely,

as explained in Figure 2d. Thus, the recognition rate of the full-image convolution is much

worse than that of the sub-image convolution, when the convolution operations are per-

formed by memristor crossbars. This is the reason why the recognition rate of the full-

image convolution is not considered as a baseline reference in Figure 6a.

Figure 6. (a) The comparison of the recognition rate between the 3D and 2D+1D kernels. Here, the

FW-FN means the floating-point weights and floating-point neurons used in the simulation. The

TW-FN means the ternary weights and floating-point neurons. (b) The comparison of the number

of unit crossbars used in the sub-image convolution between the 3D and 2D+1D kernels. Here, the

unit crossbar’s size is assumed to be 128 × 128 and 256 × 256.

As explained in Figure 6a and b, the sub-image convolution with 3D kernels shows

better recognition rate than the 2D + 1D kernels. However, the number of unit crossbars

(b)(a)
FW-FN TW-FN

60

70

80

90

100

R
e

c
o

g
n

it
io

n
 r

a
te

 (
%

)

 Sub-image conv. with 3D kernels

 Sub-image conv. with 2D and 1D kernels

~1%~1%~1%~1%

~2%

128x128 256x256
0

10k

20k

30k

40k

50k

#
 o

f
u

n
it
 c

ro
s
s
b

a
rs

 Sub-image conv. with 3D kernels

 Sub-image conv. with 2D and 1D kernels

~90%

~95%

Figure 6. (a) The comparison of the recognition rate between the 3D and 2D+1D kernels. Here, the
FW-FN means the floating-point weights and floating-point neurons used in the simulation. The
TW-FN means the ternary weights and floating-point neurons. (b) The comparison of the number of
unit crossbars used in the sub-image convolution between the 3D and 2D+1D kernels. Here, the unit
crossbar’s size is assumed to be 128 × 128 and 256 × 256.

Micromachines 2023, 14, 309 10 of 14

Figure 6b compares the number of unit crossbars used in the 3D and 2D+1D kernels.
Here, the unit crossbar’s size is assumed to be 128 × 128 and 256 × 256. When the sub-
image convolution with 3D kernels is mapped to 128 × 128 unit crossbars, the number of
unit crossbars becomes as large as 43,264. This large number of unit crossbars is due to the
overlapping overhead of 3D kernels. As indicated in Figure 4a, the overlapping overhead
of 3D kernels can be found both in the vertical and lateral directions. As the 3D kernel’s
depth becomes deeper, the overlapping overhead in the vertical direction is increased more.
Compared to the 3D kernels, the 2D kernels produce the overlapping overhead only in
the lateral direction. The 1D kernels do not make the overlapping overhead. By doing
so, the sub-image convolution with 2D and 1D kernels in Table 1b needs a much smaller
number of unit crossbars than that with 3D kernels in Table 1a. Specifically, when the unit
crossbar’s size is assumed to be 128× 128, the sub-image convolution with 2D + 1D kernels
can save the number of unit crossbars used in the neural networks by 90% compared to the
sub-image convolution with 3D kernels. When the unit crossbar’s size becomes as large
as 256 × 256, the percentage gap between the 2D + 1D and 3D kernels becomes larger, as
shown in Figure 6b. For the 256 × 256 unit crossbar, the number of unit crossbars used
in the sub-image convolution with 2D and 1D kernels is smaller by 95% than that of the
sub-image convolution with 3D kernels.

Before ending the discussion of Figure 6a,b, it should be noted that the full-image
convolution is not considered in the simulation of Figure 6a. This is because the full-image
convolution without sub-image partitioning needs very large size crossbars, as explained
in the previous section. In this case, the line resistance should become very large, too.
The large line resistance can degrade the MAC calculation accuracy severely, as explained
in Figure 2d. Thus, the recognition rate of the full-image convolution is much worse
than that of the sub-image convolution, when the convolution operations are performed
by memristor crossbars. This is the reason why the recognition rate of the full-image
convolution is not considered as a baseline reference in Figure 6a.

As explained in Figure 6a,b, the sub-image convolution with 3D kernels shows better
recognition rate than the 2D + 1D kernels. However, the number of unit crossbars can be
saved very much when the 2D + 1D kernels are used instead of the 3D kernels. To improve
the neural network’s performance better, the convolution layers with 2D + 1D kernels can
be combined with the layers with 3D kernels in one neural network. In Figure 7a,b, the
recognition rate and the normalized number of unit crossbars are obtained with varying
the ratio of convolution layers with 2D + 1D kernels among all the neural network’s layers.
Here, the normalized ratio shown in the x-axis of Figure 7a and b is calculated with the
number of 2D + 1D layers divided by the total number of convolution layers. As shown in
Figure 7a, the recognition rate seems little changed until the normalized ratio of 2D + 1D
layers becomes as small as around 0.5. In Figure 7b, when the normalized ratio of 2D + 1D
layers is around 0.5, the number of unit crossbars can be almost half the normalized ratio =
0. Here, the normalized ratio = 0 means that the 2D + 1D convolution layer is not used in the
networks. Figure 7c shows one example of the convolutional neural network’s architecture,
when the numbers of 2D + 1D and 3D convolution layers are 7 and 7, respectively, among
the total 14 convolution layers. In Figure 7c, the normalized ratio of 2D + 1D layers can be
calculated with 0.5. One thing to note here is that the 2D + 1D convolution layers should be
used in latter stages in the neural network’s architecture, as shown in Figure 7c, to achieve
a better recognition rate.

Micromachines 2023, 14, 309 11 of 14

Micromachines 2023, 14, x FOR PEER REVIEW 12 of 16

can be saved very much when the 2D + 1D kernels are used instead of the 3D kernels. To

improve the neural network’s performance better, the convolution layers with 2D + 1D

kernels can be combined with the layers with 3D kernels in one neural network. In Figure

7a and b, the recognition rate and the normalized number of unit crossbars are obtained

with varying the ratio of convolution layers with 2D + 1D kernels among all the neural

network’s layers. Here, the normalized ratio shown in the x-axis of Figure 7a and b is

calculated with the number of 2D + 1D layers divided by the total number of convolution

layers. As shown in Figure 7a, the recognition rate seems little changed until the normal-

ized ratio of 2D + 1D layers becomes as small as around 0.5. In Figure 7b, when the nor-

malized ratio of 2D + 1D layers is around 0.5, the number of unit crossbars can be almost

half the normalized ratio = 0. Here, the normalized ratio = 0 means that the 2D + 1D con-

volution layer is not used in the networks. Figure 7c shows one example of the convolu-

tional neural network’s architecture, when the numbers of 2D + 1D and 3D convolution

layers are 7 and 7, respectively, among the total 14 convolution layers. In Figure 7c, the

normalized ratio of 2D + 1D layers can be calculated with 0.5. One thing to note here is

that the 2D + 1D convolution layers should be used in latter stages in the neural network’s

architecture, as shown in Figure 7c, to achieve a better recognition rate.

Figure 7. (a) The recognition rate with varying the ratio of 2D + 1D convolution layers from 0 to 1.

The ratio of convolution layers with 2D + 1D kernels is calculated with the number of 2D + 1D layers

divided by the total number of convolution layers. Here, it is assumed that the unit crossbar’s size

is 128 × 128 and floating-point neurons and ternary synaptic weights are used in the neural net-

work’s simulation. (b) The normalized number of unit crossbars used in the neural networks with

varying the ratio of 2D + 1D convolution layers. (c) One example of the convolutional neural net-

work’s architecture, when the numbers of 2D + 1D and 3D convolution layers are 7 and 7,

0.00 0.25 0.50 0.75 1.00
86

88

90
Unit crossbar's size = 128x128

TW-FN

R
e

c
o

g
n

it
io

n
 r

a
te

 (
%

)

Normalized ratio of 2D+1D layers (a. u)
(b)(a)

(c)

3D

C

O

N

V

2D

+

1D

C

O

N

V

F

C

3D

C

O

N

V

3D

C

O

N

V

3D

C

O

N

V

3D

C

O

N

V

3D

C

O

N

V

3D

C

O

N

V

2D

+

1D

C

O

N

V

2D

+

1D

C

O

N

V

2D

+

1D

C

O

N

V

2D

+

1D

C

O

N

V

2D

+

1D

C

O

N

V

2D

+

1D

C

O

N

V

Total # of convolution layers = 14

I

N

P

U

T

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00 Unit crossbar's size = 128x128

TW-FN

N
o

rm
a

liz
e

d

#
 o

f
u

n
it
 c

ro
s
s
b

a
rs

 (
a

.u
.)

Normalized ratio of 2D+1D layers (a. u)

of convolution layers with 3D kernels= 7 # of convolution layers with 2D+1D kernels= 7

Figure 7. (a) The recognition rate with varying the ratio of 2D + 1D convolution layers from 0 to 1.
The ratio of convolution layers with 2D + 1D kernels is calculated with the number of 2D + 1D layers
divided by the total number of convolution layers. Here, it is assumed that the unit crossbar’s size is
128 × 128 and floating-point neurons and ternary synaptic weights are used in the neural network’s
simulation. (b) The normalized number of unit crossbars used in the neural networks with varying
the ratio of 2D + 1D convolution layers. (c) One example of the convolutional neural network’s
architecture, when the numbers of 2D + 1D and 3D convolution layers are 7 and 7, respectively, among
the total 14 convolution layers. The normalized ratio of 2D + 1D layers in this architecture is 0.5.

Here, it should be noted that the MATLAB and pytorch simulation results were
verified by the circuit simulation results of CADENCE SPECTRE. Because the circuit
simulation is much slower than the MATLAB and pytorch, in this paper, only a part of the
hybrid circuit composed of memristors and CMOS devices is simulated for MNIST testing
vectors. From the simulation, it was observed that the MAC result calculated from the
circuit simulation is the same with the MATLAB and pytorch simulation. Here, the circuit
simulation was performed by CADENCE SPECTRE software [27]. In the simulation of the
hybrid circuit of memristors and CMOS devices, SAMSUNG 65nm SPICE parameters are
used. For simulating memristors, the Verilog-A model presented in the previous reference
is used [28].

Figure 8a shows a memristor circuit composed of 1T(transistor)-1R(memristor). Here,
‘Vrow’ means a row voltage applied to the crossbar. ‘Icol’ is a column current that calculates
the MAC result. ‘Msel’ is a selector made of the CMOS transistor. As mentioned earlier, we
used SAMSUNG 65nm CMOS process parameters in the circuit simulation. In Figure 8a,
the memristor used in the circuit simulation was modeled using Verilog-A [7]. In the bottom
of Figure 8a, the memristor’s top electrode is made of platinum. The memristive film is
LaAlO3. The bottom electrode is SrTiO3. A butterfly curve from the device in Figure 8a is
shown in Figure 8b [7,29]. The block box and red line in Figure 8b indicate the experimental

Micromachines 2023, 14, 309 12 of 14

measured data and the Verilog-A model, respectively, in Figure 8b. The High-Resistance
State (HRS) and Low-Resistance State (LRS) measured in Figure 8b are around 1MΩ and
10KΩ, respectively [28], when the read voltage is as large as 1V. Considering a transistor as
the selector, when the transistor is on, the effective resistance considering both LRS and the
transistor’s ON resistance can be as small as 26.3 KΩ. The effective resistance due to HRS
and the transistor’s ON resistance is very similar with HRS, because the ON resistance
is much smaller than HRS. Thus, if the transistor’s ON resistance is comparable to LRS
but much smaller than HRS, the MAC calculation accuracy of 1T-1R crossbars cannot be
degraded. When the transistor is turned off, its OFF resistance is much larger than HRS.
By doing so, the sneak leakage for unselected cells can be negligibly small in memristor
crossbars.

Micromachines 2023, 14, x FOR PEER REVIEW 14 of 16

Figure 8. (a) The memristor circuit with a 1T(transistor)-1R(memristor) cell. The memristor is com-

posed of a top electrode, memristive film, and bottom electrode. (b) The memristor’s butterfly

curves from the experimental data (black box) and Verilog-A model (red line). (c) The simulated

waveforms of memristor circuit [28].

From the circuit simulation using CADENCE SPECTRE, the LRS read current is esti-

mated around 38 μA per cell, when the read voltage is 1V and a 1T-1R crossbar is used. If

the memristor has HRS, the read current can be as small as 1 μA per cell. For the memris-

tors not selected, the memristor’s current can be negligibly small, because the selector’s

OFF resistance is larger than HRS by three orders of magnitude. For the transient charac-

teristic of memristors, the programing and read pulse widths were measured around

~100ns [30]. The power consumption of neural networks is estimated using the hybrid

circuit of memristors and CMOS devices for 10,000 MNIST test vectors. Here, the input,

hidden, and output neurons are 784, 250, and 10, respectively, in the neural networks. The

neural networks are implemented with memristor crossbars of 1T-1R, as shown in Figure

8a. The simulation indicates that the crossbar’s current consumption is as large as 11.9 mA

on average, when the read pulse width is 100 ns and the operation frequency is 1 MHz.

Here, LRS and HRS are assumed 10 KΩ and 1 MΩ, respectively, as indicated in Figure 8a.

4. Conclusions

Memristor crossbars can be very useful for realizing edge-intelligence hardware, be-

cause the neural networks implemented by memristor crossbars can save significantly

more computing energy and layout area than the conventional CMOS digital circuits. One

of the important operations used in neural networks is convolution. For performing the

convolution by memristor crossbars, the full image should be partitioned into several sub-

images. By doing so, each sub-image convolution can be mapped to small-size unit cross-

bars, where the crossbar’s size should be defined as a fixed size such as 128 × 128 or 256 ×

256 to avoid the line resistance problem of large-size crossbars.

To propose the area-efficient mapping method of sub-image convolution to unit

crossbars, the various convolution schemes with 3D, 2D, and 1D kernels were investigated

and compared in terms of the neural network’s performance and overlapping overhead

in this paper. Based on the investigation and comparison, the 2D+1D kernels indicated

that they could perform the convolution using a much smaller number of unit crossbars

with less rate loss than the 3D kernels. When training and testing the CIFAR-10 dataset,

the mapping of sub-image convolution of 2D+1D kernels to unit crossbars could save the

number of unit crossbars almost by 90% and 95%, for the unit crossbar’s size of 128 × 128

and 256 × 256, respectively, compared with the 3D kernels. On the contrary, the rate loss

of 2D+1D kernels was less than 2%. To minimize the rate loss more, the 2D+1D kernels

could be combined with 3D kernels in one neural network. When the normalized ratio of

2D+1D layers is around 0.5, the neural network’s performance indicated very little rate

loss using only half of unit crossbars compared to the normalized ratio of 2D+1D layers of

zero.

-3 -2 -1 0 1 2 3

-100

0

100

200

300

O
u

tp
u

t
C

u
rr

e
n

t
(μ

A
)

Input Voltage (V)

 Experiment

 Model

0

1.5

3

0

1.5

3

0 20 40 60

0

50

100

P
R

G
 (

V
)

V
p
 (

V
)

1/LRS = 100μS

M
e
m

ri
s
to

r

c
o
n
d
u
c
ta

n
c
e

(μ
S

)

Time (a.u.)

1/HRS = 1μS

(c)(b)

Vrow

Icol

Vsel

Top electrode
Pt

Memristive film
LaAlO3

Bottom electrode
SrTiO3

Msel

(a)

Figure 8. (a) The memristor circuit with a 1T(transistor)-1R(memristor) cell. The memristor is
composed of a top electrode, memristive film, and bottom electrode. (b) The memristor’s butterfly
curves from the experimental data (black box) and Verilog-A model (red line). (c) The simulated
waveforms of memristor circuit [28].

Figure 8c indicates that the memristor modeled by the Verilog-A model in Figure 8b
can be programmed by applying voltage pulses [7,30]. Here, the upper row in Figure 8c
shows an enable signal of the memristor’s programming. If ‘PRG’ is high, programming
pulses generated from the pulse generator circuit are delivered to the memristor. If ‘PRG’ is
low, the programming pulses are blocked from being delivered to the device. In the middle
row in Figure 8c, ‘VP’ represents programming pulses with their amplitudes increased
gradually. The pulse amplitude modulation was used in the circuit simulation in order to
accelerate the programming speed. The lower row in Figure 8c shows that the memristor’s
conductance changed according to the programming pulses applied to the device. As
the programming pulses are delivered to the device, the memristor’s conductance can be
changed from 1/HRS to 1/LRS, as shown in Figure 8c.

From the circuit simulation using CADENCE SPECTRE, the LRS read current is
estimated around 38 µA per cell, when the read voltage is 1V and a 1T-1R crossbar is
used. If the memristor has HRS, the read current can be as small as 1 µA per cell. For
the memristors not selected, the memristor’s current can be negligibly small, because the
selector’s OFF resistance is larger than HRS by three orders of magnitude. For the transient
characteristic of memristors, the programing and read pulse widths were measured around
~100ns [30]. The power consumption of neural networks is estimated using the hybrid
circuit of memristors and CMOS devices for 10,000 MNIST test vectors. Here, the input,
hidden, and output neurons are 784, 250, and 10, respectively, in the neural networks. The
neural networks are implemented with memristor crossbars of 1T-1R, as shown in Figure 8a.
The simulation indicates that the crossbar’s current consumption is as large as 11.9 mA on
average, when the read pulse width is 100 ns and the operation frequency is 1 MHz. Here,
LRS and HRS are assumed 10 KΩ and 1 MΩ, respectively, as indicated in Figure 8a.

Micromachines 2023, 14, 309 13 of 14

4. Conclusions

Memristor crossbars can be very useful for realizing edge-intelligence hardware,
because the neural networks implemented by memristor crossbars can save significantly
more computing energy and layout area than the conventional CMOS digital circuits. One
of the important operations used in neural networks is convolution. For performing the
convolution by memristor crossbars, the full image should be partitioned into several
sub-images. By doing so, each sub-image convolution can be mapped to small-size unit
crossbars, where the crossbar’s size should be defined as a fixed size such as 128 × 128 or
256 × 256 to avoid the line resistance problem of large-size crossbars.

To propose the area-efficient mapping method of sub-image convolution to unit
crossbars, the various convolution schemes with 3D, 2D, and 1D kernels were investigated
and compared in terms of the neural network’s performance and overlapping overhead
in this paper. Based on the investigation and comparison, the 2D+1D kernels indicated
that they could perform the convolution using a much smaller number of unit crossbars
with less rate loss than the 3D kernels. When training and testing the CIFAR-10 dataset,
the mapping of sub-image convolution of 2D+1D kernels to unit crossbars could save the
number of unit crossbars almost by 90% and 95%, for the unit crossbar’s size of 128 × 128
and 256 × 256, respectively, compared with the 3D kernels. On the contrary, the rate loss of
2D+1D kernels was less than 2%. To minimize the rate loss more, the 2D+1D kernels could
be combined with 3D kernels in one neural network. When the normalized ratio of 2D+1D
layers is around 0.5, the neural network’s performance indicated very little rate loss using
only half of unit crossbars compared to the normalized ratio of 2D+1D layers of zero.

Author Contributions: Conceptualization, K.-S.M.; Methodology, S.O. and J.A.; Software, S.O.;
Validation, J.A.; Investigation, S.O. and J.A.; Writing—original draft, S.O. and K.-S.M.; Writing—
review & editing, K.-S.M.; Supervision, K.-S.M. All authors have read and agreed to the published
version of the manuscript.

Funding: The work was financially supported by NRF-2022R1A5A7000765, NRF-2021R1A2C1011631,
NRF-2021M3F3A2A01037972, and SRFC-TA1903-01.

Acknowledgments: The CAD tools were supported by the IC Design Education Center (IDEC),
Daejeon, Republic of Korea.

Conflicts of Interest: The authors declare that they have no competing interest.

References
1. Hu, M.; Graves, C.E.; Li, C.; Li, Y.; Ge, N.; Montgomery, E.; Davila, N.; Jiang, H.; Williams, R.S.; Yang, J.J.; et al. Memristor-Based

Analog Computation and Neural Network Classification with a Dot Product Engine. Adv. Mater. 2018, 30, 1705914. [CrossRef]
[PubMed]

2. Li, B.; Gu, P.; Shan, Y.; Wang, Y.; Chen, Y.; Yang, H. RRAM-Based Analog Approximate Computing. IEEE Trans. Comput. Des.
Integr. Circuits Syst. 2015, 34, 1905–1917. [CrossRef]

3. Xia, L.; Gu, P.; Li, B.; Tang, T.; Yin, X.; Huangfu, W.; Yu, S.; Cao, Y.; Wang, Y.; Yang, H. Technological Exploration of RRAM
Crossbar Array for Matrix-Vector Multiplication. J. Comput. Sci. Technol. 2016, 31, 3–19. [CrossRef]

4. Chen, J.; Li, J.; Li, Y.; Miao, X. Multiply accumulate operations in memristor crossbar arrays for analog computing. J. Semicond.
2021, 42, 013104. [CrossRef]

5. Suh, K.D.; Suh, B.H.; Lim, Y.H.; Kim, J.K.; Choi, Y.J.; Koh, Y.N.; Lee, S.S.; Kwon, S.C.; Choi, B.S.; Yum, J.S.; et al. A 3.3 V 32 Mb
NAND flash memory with incremental step pulse programming scheme. IEEE J. Solid-State Circuits 1995, 30, 1149–1156.

6. Van Pham, K.; Tran, S.B.; Van Nguyen, T.; Min, K.-S. Asymmetrical Training Scheme of Binary-Memristor-Crossbar-Based Neural
Networks for Energy-Efficient Edge-Computing Nanoscale Systems. Micromachines 2019, 10, 141. [CrossRef]

7. Truong, S.N.; Van Pham, K.; Yang, W.; Shin, S.; Pedrotti, K.; Min, K.-S. New pulse amplitude modulation for fine tuning of
memristor synapses. Microelectron. J. 2016, 55, 162–168. [CrossRef]

8. Hu, M.; Strachan, J.; Li, Z.; Grafals, E.; Gravevs, C. Dot-product engine for neuromorphic computing: Programming 1T1M
crossbar to accelerate matrix-vector multiplication. In Proceedings of the 2016 53nd ACM/EDAC/IEEE Design Automation
Conference (DAC), Austin, TX, USA, 5–9 June 2016; Volume 1–6.

9. Li, Y.; Wang, Z.; Midya, R.; Xia, Q.; Yang, J.J. Review of memristor devices in neuromorphic computing: Materials sciences and
device challenges. J. Phys. D Appl. Phys. 2018, 51, 503002. [CrossRef]

http://doi.org/10.1002/adma.201705914
http://www.ncbi.nlm.nih.gov/pubmed/29318659
http://doi.org/10.1109/TCAD.2015.2445741
http://doi.org/10.1007/s11390-016-1608-8
http://doi.org/10.1088/1674-4926/42/1/013104
http://doi.org/10.3390/mi10020141
http://doi.org/10.1016/j.mejo.2016.07.010
http://doi.org/10.1088/1361-6463/aade3f

Micromachines 2023, 14, 309 14 of 14

10. Krestinskaya, O.; James, A.P.; Chua, L.O. Neuromemristive Circuits for Edge Computing: A Review. IEEE Trans. Neural Networks
Learn. Syst. 2020, 31, 4–23. [CrossRef]

11. Mao, J.; Zhou, L.; Zhu, X.; Zhou, Y.; Han, S. Photonic Memristor for Future Computing: A Perspective. Adv. Opt. Mater. 2019, 7,
1900766. [CrossRef]

12. Akopyan, F.; Sawada, J.; Cassidy, A.; Alvarez-Icaza, R.; Arthur, J.; Merolla, P.; Imam, N.; Nakamura, Y.; Datta, P.; Nam, G.-J.; et al.
TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip. IEEE Trans. Comput. Des.
Integr. Circuits Syst. 2015, 34, 1537–1557. [CrossRef]

13. Davies, M.; Srinivasa, N.; Lin, T.-H.; Chinya, G.; Cao, Y.; Choday, S.H.; Dimou, G.; Joshi, P.; Imam, N.; Jain, S.; et al. Loihi: A
Neuromorphic Manycore Processor with On-Chip Learning. IEEE Micro 2018, 38, 82–99. [CrossRef]

14. Van Pham, K.; Van Nguyen, T.; Tran, S.B.; Nam, H.; Lee, M.J.; Choi, B.J.; Truong, S.N.; Min, K.-S. Memristor Binarized Neural
Networks. J. Semicond. Technol. Sci. 2018, 18, 568–577. [CrossRef]

15. Nguyen, T.; An, J.; Min, K.-S. Memristor-CMOS Hybrid Neuron Circuit with Nonideal-Effect Correction Related to Parasitic
Resistance for Binary-Memristor-Crossbar Neural Networks. Micromachines 2021, 12, 791. [CrossRef] [PubMed]

16. Chakraborty, I.; Roy, D.; Roy, K. Technology Aware Training in Memristive Neuromorphic Systems for Nonideal Synaptic
Crossbars. IEEE Trans. Emerg. Top. Comput. Intell. 2018, 2, 335–344. [CrossRef]

17. Xu, W.; Wang, J.; Yan, X. Advances in Memristor-Based Neural Networks. Front. Nanotechnol. 2021, 3, 645995. [CrossRef]
18. Van Nguyen, T.; An, J.; Oh, S. Training, Programming, and Correction Techniques of Memristor-Crossbar Neural Networks

with Non-Ideal Effects such as Defects, Variation, and Parasitic Resistance. In Proceedings of the 2021 IEEE 14th International
Conference on ASIC (ASICON), Kunming, China, 26–29 October 2021; pp. 1–4. [CrossRef]

19. Murali, G.; Sun, X.; Yu, S.; Lim, S.K. Heterogeneous Mixed-Signal Monolithic 3-D In-Memory Computing Using Resistive RAM.
IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020, 29, 386–396. [CrossRef]

20. Sah, M.P.; Yang, C.; Kim, H.; Muthuswamy, B.; Jevtic, J.; Chua, L. A Generic Model of Memristors With Parasitic Components.
IEEE Trans. Circuits Syst. I Regul. Pap. 2015, 62, 891–898. [CrossRef]

21. Chou, C.-C.; Lin, Z.-J.; Tseng, P.-L.; Li, C.-F.; Chang, C.-Y.; Chen, W.-C.; Chih, Y.-D.; Chang, T.-Y.J. An N40 256K×44 embedded
RRAM macro with SL-precharge SA and low-voltage current limiter to improve read and write performance. In Proceedings of
the 2018 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 11–15 February 2018; pp. 478–480.
[CrossRef]

22. Krizhevsky, A.; Nair, V.; Hinton, G. CIFAR-10 and CIFAR-100 Datasets. 2018. Available online: https//www.cs.toronto.edu/
~{}kriz/cifar.html (accessed on 20 October 2018).

23. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings
of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.
[CrossRef]

24. Gopalakrishnan, R.; Chua, Y.; Sun, P.; Kumar, A.J.S.; Basu, A. HFNet: A CNN Architecture Co-designed for Neuromorphic
Hardware With a Crossbar Array of Synapses. Front. Neurosci. 2020, 14, 907. [CrossRef]

25. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807.

26. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

27. Simulator, V.S.C.; Guide, A.P.S.U. Cadence Design Systems, Inc. 2005. Available online: www.cadence.com (accessed on 12 April
2016).

28. An, J.; Oh, S.; Van Nguyen, T.; Min, K.-S. Synapse-Neuron-Aware Training Scheme of Defect-Tolerant Neural Networks with
Defective Memristor Crossbars. Micromachines 2022, 13, 273. [CrossRef] [PubMed]

29. Jang, J.T.; Ko, D.; Ahn, G.; Yu, H.R.; Jung, H.; Kim, Y.S.; Yoon, C.; Lee, S.; Park, B.H.; Choi, S.J.; et al. Effect of oxygen content of
the LaAlO3 layer on the synaptic behavior of Pt/LaAlO3/Nb-doped SrTiO3 memristors for neuromorphic applications. Solid
State Electron. 2018, 140, 139–143. [CrossRef]

30. Merced-Grafals, E.J.; Dávila, N.; Ge, N.; Williams, R.S.; Strachan, J.P. Repeatable, accurate, and high speed multi-level program-
ming of memristor 1T1R arrays for power efficient analog computing applications. Nanotechnology 2016, 27, 365202. [CrossRef]
[PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TNNLS.2019.2899262
http://doi.org/10.1002/adom.201900766
http://doi.org/10.1109/TCAD.2015.2474396
http://doi.org/10.1109/MM.2018.112130359
http://doi.org/10.5573/JSTS.2018.18.5.568
http://doi.org/10.3390/mi12070791
http://www.ncbi.nlm.nih.gov/pubmed/34357201
http://doi.org/10.1109/TETCI.2018.2829919
http://doi.org/10.3389/fnano.2021.645995
http://doi.org/10.1109/asicon52560.2021.9620330
http://doi.org/10.1109/TVLSI.2020.3042411
http://doi.org/10.1109/TCSI.2014.2373674
http://doi.org/10.1109/isscc.2018.8310392
https//www.cs.toronto.edu/~{}kriz/cifar.html
https//www.cs.toronto.edu/~{}kriz/cifar.html
http://doi.org/10.1109/cvprw.2009.5206848
http://doi.org/10.3389/fnins.2020.00907
www.cadence.com
http://doi.org/10.3390/mi13020273
http://www.ncbi.nlm.nih.gov/pubmed/35208396
http://doi.org/10.1016/j.sse.2017.10.032
http://doi.org/10.1088/0957-4484/27/36/365202
http://www.ncbi.nlm.nih.gov/pubmed/27479054

	Introduction
	Method
	Results
	Conclusions
	References

