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Abstract: This paper introduces a novel 3D NoC router that combines buffered and bufferless routing
with approximate priority comparison when deflecting flits. Our proposal is a modification of an
asymmetrical router that is buffered in the z dimension ports and bufferless in the x and y dimension
ports. Flits that request output ports in the x and y dimensions are granted or deflected based on
approximate, instead of accurate, priority comparison. Experimental results show that the proposed
router, in addition to effectively combining the advantages of both buffered and bufferless routers,
achieves additional performance and area gains due to the reduced logic required for approximate
priority comparison in flit deflections. Experimental results using synthetic and realistic traffic
show that the proposed router begins to saturate at a significantly higher injection rate than a
bufferless router, but at a slightly lower injection rate than when using accurate priority comparison.
Furthermore, the proposed router achieves higher clock frequencies and a reduced area compared to
bufferles routers due to the simpler permutation network. The increased routing efficiency is shown
to also translate to energy gains.
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1. Introduction

As power and heat density limited the growth of clock frequencies compared to
the prediction of Moore’s law, the dominant design paradigm for processors became the
multicore architecture. At the same time, this exchanged the power density problem with
the core communication challenge. Networks-on-Chip was proposed as a scalable solution
providing the communication bandwidth required by multi and many-core architectures
with acceptable area and power consumption [1]. The advance of 3D integration provided
an additional incentive, since 3D integration combined with NoCs led to the emergence of
3D NoC architectures [1]. A key element in the NoC is the router, which is responsible for
forwarding packets through the network, since it has strict requirements for performance
and reliability in the aggressive scaling of CMOS technology [2].

Original NoC routers were on-chip implementations of interconnection network
routers with little regard for the unique conditions and stringent requirements imposed by
the on-chip environment [1,3]. The block diagram of such a router is shown in Figure 1.
Typical router parameters that depend on network conditions and influence performance,
area and power consumption, are flit size, flits per buffer and number of virtual channels.
A routing table or a simple logic-based routing technique is used for routing calculation.
Typically, each input port has its own private buffers with a number of Virtual Channels
(VCs) used to prevent deadlock. The number of input and output ports depends on the
topology. A common instance of the router in Figure 1 is a five-port version for 2D mesh
and torus topologies.
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Later studies considered the distinctive features of the on-chip environment driven
by Moore’s law, which led to efforts to optimize the buffers in the router, since they were
identified as the power and performance bottleneck. On the other hand, unlike the off-chip
environment, wide flits are easy to implement on-chip, leading to higher parallelization.

When buffering is insufficient, NoCs can incorporate hot-potato routing or deflection
routing: deflecting flits when buffered slots are unavailable. An extension of this was the
even more radical suggestion of completely bufferless routing; in other words, forwarding
flits to either the desired port or deflecting them, but never locally storing them in the
router. This approach trades off routing efficiency (since some flits follow non-minimal
paths due to deflections) for router area and power consumption due to the elimination
of buffers. The later development of 3D integration led to adapting the routers originally
proposed for 2D NoCs to 3D topologies.

2. Background and Related Work

In this section, we briefly discuss the evolution of NoC routers in terms of buffer
organization and the emergence of bufferless routing as a viable router architecture, as well
as the challenges imposed on router design by 3D integration.

2.1. Background

Buffering is a key component of router design due to its impact on router power
consumption and area. Various approaches to buffer organization have been proposed,
which can be classified as belonging to one of the following strategies [1]:

• Static approaches [4,5]: In this approach, the buffer sizes are static. Either all routers
are identical in buffer size, or the optimal buffer organization is determined at design
time through design space exploration, usually for a specific application(s).

• Run-time buffer allocation of a shared centralized buffer [6–10]: Typically, a central-
ized or shared buffer is dynamically allocated to VCs according to real-time traffic
requirements. This approach provides adaptivity, unlike the previous one.

• Buffer bypassing [11]: This approach recognizes that buffers often become a perfor-
mance bottleneck and seeks to bypass router buffers as much as possible.

• Deflection routing [12,13]: These approaches seek to reduce buffer size or completely
eliminate buffers by misrouting (deflecting) incoming packets.
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The last approach was introduced in [12], making the claim that completely bufferless
routing demonstrates significant power gains compared to buffered routing, at a reasonable
trade-off of some performance, that would be negligible at low injection rates. However,
buffered router networks outperform bufferless ones at high injection rates as they exhibit
higher network saturation points than buffered ones. In [13,14], the authors made cases
for and against bufferless routing, respectively. It is precisely these trade-offs that have
motivated the authors to search for a “middle” ground between buffered and bufferless
routing that would provide a new solution.

One way to define the network saturation point is the following:

Definition 1. The injection rate for which the network latency is double the zero-load latency of the
same network is the saturation injection rate or saturation threshold of the network.

Definition 2. The value of network latency equal to double the zero load latency is the saturation latency.

Unlike buffered NoCs, saturation in bufferless NoCs is due to a large number of flit
deflections, not overrun buffers; 3D integration imposes additional challenges to NoC
design, since packets must now also travel in the third dimension. This has led to the
extension of both buffered and bufferless routers to the third dimension by adding two
additional ports.

2.2. Related Work

The introduction of 3D NoC topologies added the requirement for efficiently support-
ing the third dimension to existing router designs. Extending the common 2D five-port
router used in 2D mesh and torus topologies to seven ports by adding two additional ports
was the reasonable approach [1]. However, this extension is costly in terms of chip area
because the crossbar area quadratically scales with the number of ports [1]. Therefore, the
3D mesh router 7 × 7 crossbar occupies approximately double the area of the 2D mesh
router 5 × 5 crossbar.

The above holds for both buffered and bufferless crossbar-based routers, such as
3DBASE (Figure 2). Additionally, in order to avoid deadlock, the baseline bufferless router
sorts incoming flits by priority, so that the flit with the highest priority is always assigned
to its preferred port. The usual priority metric is the packet age. This ensures freedom from
the livelock, since packets that have been in the network for a long time will have priority
over “younger” packets. It also requires the packet age field to be updated (incremented)
by every router in the routing path.
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Figure 2. Baseline seven-port router for 3D bufferless NoCs (3DBASE).

In [15], a bufferless router with dual ejection ports for 2D and 3D NoC was proposed.
It is a one-cycle bufferless router that replaces the Flit Ejector module and a MUX module
in a baseline bufferless router with a simple MUX module to achieve higher performance.
This approach reduces the costly deflections that occur when two flits need to be ejected
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at the same time, and therefore, one is deflected back into the network. However, this
approach does not improve the latency in the case of flits that are deflected before reaching
the last router in their path.

In order to overcome the limitations of the crossbar, a single-cycle 3D bufferless router
called 3DPERM with a three-stage permutation network that permutes packets based on
packet age was introduced in [16]. The three-stage permutation network of 3DPERM is
composed of nine permuter blocks, as shown in Figure 3. 3DPERM requires less area
compared to 3DBASE, but features a lower saturation point due to the elimination of
the load computation and priority sort, as well as higher end-to-end latency in cycles,
particularly after crossing the saturation point. However, 3DPERM features lower end-
to-end latency in nanoseconds at the low injection rates, due to the shorter critical path,
and therefore, features a higher operating frequency [16]. Essentially, the permutation
network approach trades-off some routing efficiency and lower saturation point for higher
performance below the saturation point. Note that a permutation network-based 3D router
uses nine permutation blocks instead of four for a 2D one, again requiring more than
double the area.
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We implemented 3DPERM in Nangate 45 nm technology and analyzed its area and
critical path, as shown in Tables 1 and 2.

Table 1. Bufferless router area breakdown.

Sub-Module Area (%)

Permutation network 57.5%

Ejection/injection stage 35.6%

Header updater 2.7%

Other 4.2%

Table 2. Bufferless router critical path breakdown.

Sub-Module Delay (%) of Critical Path

Permutation network 71%

Ejection/injection stage 9.1%

Header updater 7.5%

Port request logic/Other 12.38%

In our previous work [17], an asymmetrical buffered-bufferless hybrid router for 3D
NoC architectures called 3DBUFFBLESS (Figure 4) was proposed. The router was evaluated
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through simulation in terms of latency in cycles and number of hops, and through hardware
implementation; ASIC synthesis resulted in a 45 nm technology in order to demonstrate
that the router was a viable alternative to fully buffered and completely bufferless routers.
Comparisons with 3DBASE and 3DPERM bufferless routers showed that 3DBUFFBLESS
improves the network saturation point and achieves significantly higher performance at
modest area and power costs.
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A different approach to asymetrical buffered/bufferless routing was demonstrated
in [18,19]. In [18], an asymmetric routing approach in bufferless 3D NoC proposed using
interleaved edge routers to increase NoC performance. The approach in [19] was demon-
strated in a 2D network on FPGA. Both approaches featured asymetryat the network level,
combining buffered with bufferless routers in the same network, while our work featured a
hybrid buffered/bufferless router.

In [20], we presented a different approach for improving a permutation network-based
bufferless router: permuting and ejecting flits based on the approximate instead of accurate
comparison of the priority metric (packet age). By only comparing a subset of the bits in
the packet age, flits were classified as old, medium and young, giving priority to one age
class over another while selecting pseudo-randomly between two packets in the same age
class. Experimental results showed that this approach, while simplifying the calculation
of packet priority, still ensures that older packets have priority over younger ones. The
simplified permutation logic led to a higher operating frequency and reduced area at the
cost of slightly reduced routing efficiency, since more packets are misrouted.

Since then, approximate bufferless routing has been used in ABNOC, an approximate
bufferless NoC, proposed in [21], that uses an approximate allocation mechanism and a
packet approximation method to decrease the packet retransmissions and network conflicts.
Evaluation results, under synthetic traffic, guarantee retransmission and latency reduction.
However, the design was evaluated and an improvement in bandwidth was demonstrated
compared to previous work [22].

3. Proposed Hybrid Approximate Priority Router Design

The above innovations presented in [17,20] are essentially orthogonal, a fact that
naturally leads to combining the two into a single router, exploiting the advantages of both.
The proposed router, named 3DHYAP for a 3D Hybrid Approximate Priority Router, is
based on the design in Figure 4, augmented with the approximate priority comparison
of [20]. The proposed router combines the low cost of bufferless routing, augmented with
approximate priority comparison, with the increased routing efficiency of partially buffered
routing. In order to minimize hops on the vertical links (TSVs), the proposed router, like
3DBUFFBLESS, features buffering in the up and down ports and no buffering in the ports
lying on the same plane. This allows a flit to quickly traverse the chip layers without being
deflected, while minimizing the router buffering to only two of the total seven ports.
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The reason the z direction was selected for buffering was the asymmetry imposed in
the z dimension at the silicon level by the vertical links. Two of the most common ways for
implementing vertical links, namely through silicon via (TSV) [23] and near-field inductive
coupling (NFIC), impose an area overhead and also introduce errors and failures, reducing
yield. Therefore, designers often choose to reduce the number of vertical links, leading
to irregular, partially connected 3D architectures [24] (not a full mesh). This includes the
wireless vertical link 3D NoCs in [25,26]. Of course, essentially, the design is dimension-
agnostic, and the final floorplanning and layout connecting routers together selects which
dimension the buffering is connected to. Any dimension can be selected for buffering
without any HDL source code modification.

Since a packet may traverse the z dimension of the network, similarly to wormhole
routing, but may have its flits deflected to different directions when moving in the xy
plane, bufferless routing mechanisms such as livelock prevention and flit reordering are
still required. However, with no horizontal buffer connections, deadlock is not an issue in a
network composed of 3DHYAP routers, because buffered cyclic paths cannot be formed.
Therefore, virtual channels are not required, simplifying the design of 3DHYAP.

The bufferless part of the router is based on a two-stage permutation network, as shown
in Figure 4, but the selector and permutation blocks use approximate priority comparison.

3.1. Quantitative Analysis

The proposed design can be quantitatively analyzed using simple, back-of-the-envelope
calculations and the experimental results in Tables 1 and 2. When it comes to performance,
we expect the permutation network delay to be reduced by one third because it will have
two stages instead of three. Since the contribution of the permutation network to the critical
path is 71% in 3DPERM, according to Ahmdal’s law we expect an improvement of:

tt3DHYAPDHYAP =
2
3
× 71% × tt3DPERMDPERM + 29% × tt3DPERMDPERM = 76.33% × tt3DPERMDPERM (1)

In other words, we expect a reduction in delay and an improvement in clock fre-
quency by 23.66% by the reduction in permutation stages. We expect an additional im-
provement by reducing the complexity of each permutation block by using approximate
priority comparison.

In terms of area, the area gains obtained by having four instead of nine permutation
blocks will be partly offset by the increased size of the injection/ejection stage, which now
will have approximately three times the area of the original. Therefore:

AA3DHYAPDHYAP =

(
3 × 9.1% +

4
9
× 75% + 19%

)
× AA3DPERMDPERM = 80.5% × AAA3DPERMDPERMDPERM (2)

Therefore, we expect an area reduction of approximately 20%. We should have
additional area gains from the approximate priority comparison that will be partly offset
by the addition of buffers. Clearly, the final area gains will depend on buffer size, and we
explore this in the hardware evaluation section.

Integrating a buffered and a bufferless router in a seamless way proved challenging in
the case of 3DBUFBLESS, and adding approximate priority comparison requires additional
appropriate modifications made to the buffered and bufferless baseline router design, as
discussed below.

3.2. General Considerations

Similar to 3DBUFBLESS, 3DHYAP features two additional injection and ejection ports
on the router datapath in addition to the local port. Essentially, the up and down ports
(buffered ports) are similar to the local port. Therefore, the ejection/injection stage is
modified to contain three ports instead of one. Consequently, up to three additional flits
may be injected into the bufferless part of the router at the same time (from the U_in, D_in



Micromachines 2023, 14, 335 7 of 22

and L_in ports). For this purpose, there are three stall signals, one for each port. This
indicates the following possible conditions:

• No deflection output ports are available: This condition occurs when there are already
four incoming flits from the bufferless input ports and neither is to be ejected. Then,
since all incoming flits from bufferless ports must be assigned an output port, no
buffered flits can be injected until the next clock cycle.

• There is one available deflection output port: This occurs when there are three requests
from incoming flits arriving from bufferless ports that are not ejected. In this case, we
make the following distinctions: if one of the ports requesting injection is the local
port, then it is granted and the other(s) port (up or down) is/are stalled. This is meant
to ensure that flits are injected to the network as soon as possible. If the only ports
requesting injection are the up and down ports, we decide between the two flits based
on their age.

• There are two available deflection output ports: In other words, there are two requests
from incoming flits that are not ejected. In this case, up to two flits can be injected. In
the case of all three injection ports making a request, the one flit granted is the local
port’s, and the other one is selected from the other two based on age.

• There are two or more flits to be ejected, with at least one from a bufferless input port:
In this case, a flit from a bufferless port is selected for ejection, so as not to be deflected.
If there is more than one, the oldest is selected.

• There are two flits to be ejected, both from the buffered ports: One flit is selected
according to age, the other remains buffered until the next cycle.

3.3. Priority Classes and Rules

The above considerations are formalized in the following eight ejection/injection rules,
which resolve priority of the various types of incoming flits for ejection and injection. The
first six also apply to 3DBUFFBLESS, with the last two added because of the approximate
priority comparison:

1. If two or more flits incoming from the bufferless ports request ejection to a local, up
or down port, the flit with the highest priority wins, while the rest are injected into
the permutation network.

2. If an incoming flit from a bufferless input port competes for an ejection port with an
incoming flit from a buffered input port, it is ejected while the other remains buffered,
and waits for the next cycle.

3. If two incoming flits from buffered ports compete for an ejection port, one is selected
according to rules 7 and 8, the other remains buffered.

4. Incoming flits from bufferless ports win over flits trying to inject from the local and
up/down ports, which remain buffered.

5. If two or more injection ports are competing, then the local port wins over the
up/down ports.

6. If the up and down ports are competing for injection, then rules 7 and 8 apply.
7. A flit in an “older” age class has priority over a younger flit.
8. Two flits belonging to the same age class are permuted in a permutation block, or one

is pseudorandomly selected in a selector block.

Therefore, we distinguish between two priority classes: priority of an input port over
another input port, and of a flit over another flit.

The priority of ports is resolved first and, if it is equal, then the priority of the individual
flits is taken into account. We distinguish between three classes of ports: bufferless input
ports (N, S, E, W), buffered input ports (U, D) and the local port (L). For injection, the set of
input ports competing are (L, U, D), while, for ejection, the set of ports competing are (N, S,
E, W, U, D). Then, the priority of the port classes is as follows:

Priority between flits is resolved using the following rules:
Ejection: Bufferless ports have higher priority than buffered ones
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Injection: The local port has higher priority than the up and down ports

The rationale behind the ejection priority rule is to prevent flits from bufferless ports
from being deflected when reaching their destination or wish to change layer, while flits
from buffered ports can simply wait for the next cycle.

The ejection rule enforces “hot-potato” routing for flits that cannot be buffered, while
the injection rule ensures that flits are quickly injected to the network and not “trapped” at
the source for long. Since there are equal bufferless input and output ports, incoming flits
from bufferless ports cannot be dropped. The only case when flits may be dropped is in the
case of buffer overrun in the buffered ports.

3.4. Buffered Port Design

The injection/ejection stage is shown in Figure 5. There are two similar ejection
ports for the up and down directions, which have the local port as input. This incurs no
significant performance penalty since the three ejection paths operate in parallel.
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3.5. Injection/Ejection Stage

The ejection stage selects, at most, one flit to be assigned to each of the ejection ports,
U_out (up direction), D_out (down direction) and L_out (local port), based on priority
while forwarding the remaining flits to the injection stage. As shown in Figure 5, the
ejection stage is composed of three trees of flit selector blocks. Each selector accepts two
flits as inputs and outputs the one with the highest priority, as shown in Figure 6. This way,
the flit with the highest priority that has reached its destination is selected for ejection to
the L_out port, while the flit with the highest priority that wishes to exit to the upper layer
is forwarded to U_out, and likewise to the D_out for the lower layer. The remaining flits
are either forwarded to the injection stage or remain buffered.
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3.6. Approximate Priority Permutation Network

A permutation block is similar to a selector block, but requires two multiplexers
instead of one as it permutes two flits, as shown in Figure 7. If the incoming flits are
requesting different outputs, they can both be granted their request. However, when they
both request the same output, either U_out or D_out, the one with the highest age field
value wins, and the other is deflected to the other permuter output.
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3DHYAP adopts the approximate comparison logic of 3DAPBLESS [20], where the
magnitude comparator is replaced with simpler logic that compares a subset of the bits in
the age field of the competing flits. By only comparing the most significant bits, 3DHYAP
essentially separates the flits as belonging to crisp “age classes”.

When competing flits belong to the same age class, they are pseudorandomly per-
muted. We use a single 16-bit PSRNG, with one bit feeding each of the permutation and
ejection blocks. We demonstrate two approximations, as shown in Table 3, using the two
most significant bits, and using only a single most significant bit. Using two bits separates
flit ages into four classes, while using only one separates them into two. Essentially a flit
with an MSB of 1 in the age field is classified as “old”, while a flit with an MSB of 0 is
classified as “young”.
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Table 3. 3DHYAP priority classes.

Priority Class 2-Bit Priority Field 1-Bit Priority Field

young 00 0

fairly young 01

fairly old 10

old 11 1

In our evaluation section, we consider a 4 × 4 × 3 mesh NoC. In this case, the
maximum internode distance is eight hops. Since a reasonable age field would include at
least double that number, we use five bits in our design (Figure 8a). Similar to [20], we
have experimented with two versions of 3DHYAP, one using the two most significant bits
of the age field and one using only one, which we term 3DHYAP_lite.
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We next attempt to estimate the additional performance improvement achieved by
the approximate priority comparison. Figure 8a shows the magnitude comparator for a
5-bit age field (inverters not shown). As can be seen, after breaking down the logic to
four-input logic gates at most, four levels of logic are required. In Figure 8b, the equivalent
circuit with a 2-bit priority field is shown, which requires only two logic levels for each
magnitude comparator (again, inverters are not shown). The proposed approximate priority
magnitude comparator now requires both the greater than and equal outputs to decide
whether to deterministically or pseudorandomly route the packet; however, these operate
in parallel. Finally, in Figure 8c, the equivalent logic using only a single bit for classifying
packet age is shown, leading to a single level of logic.

The above can be used together with the circuit diagram in Figure 7 to estimate the
improvement in the critical path timing. The request logic of the permutation block requires
two logic levels, the grant logic requires two logic levels, since it is a 3-bit boolean function,
as shown from the table in Figure 7, and the two-to-one multiplexer requires two more
levels of logic. Therefore, the original permutation block requires a total of eight logic
levels and the 2-bit priority field permutation block requires six. The 1-bit priority field is
expected to also require six logic levels, since the delay will be dominated by the request
logic, which still requires two logic levels and operates in parallel with the magnitude
comparator. However, it should provide additional area if not performance gains.

We also expect a reduction in the delay of the selector blocks used in the ejection/injection
stage, this time from five logic levels in the original one, to three and two for the 2-bit
and 1-bit priority fields, respectively. Since, according to Table 2, the ejection/injection
stage accounts for 9.1% of the critical path delay, we can estimate the performance gains by
modifying Equation (1) to take this additional analysis into account:

tt3DHYAPDHYAP2 =

(
6
8
× 2

3
× 71% +

3
5
× 9.1% + 19.9%

)
× tt3DPERMDPERM = 60.86% × tt3DPERMDPERM (3)

In other words, we expect an additional improvement of 15% from the reduced com-
plexity of each permutation block for a 2-bit priority field. Similarly, for a 1-bit priority field:

tt3DHYAPDHYAP3 =

(
6
8
× 2

3
× 71% +

2
5
× 9.1% + 19.9%

)
× t3DPERM = 59.04% × tt3DPERMDPERM (4)

4. Experimental Results—High Level Simulation

For presentation purposes, we divide the evaluation section into the high-level simu-
lation results and the hardware implementation results. The high-level simulations explore
the latency in hops under various traffic conditions, while abstracting away irrelevant
hardware details, while hardware implementation is used to obtain clock frequency and
area and power consumption figures. We then present combined evaluation results that
calculate the latency in nanoseconds using a combination of the latency in cycles obtained
by high-level simulation and the clock frequency, respectively, obtained from hardware
implementation. We considered a single-cycle router in order to achieve a fair comparison
between the proposed router and previous work, since many bufferless routers proposed
in previous work [15,16] are single-cycle routers, which is not a coincidence, since low
latency in NoCs is as important as high throughput, and therefore, deep router pipelines
are prohibitive. It would also be unfair to compare single-cycle routers with a pipelined
proposed design. Therefore, we implemented all routers as single-cycle, only registering
the outputs. Considering a number of N pipeline stages, equal for all routers, then the
latency of all routers presented in the following subsections, shown in Figures 8–13, would
be multiplied by the pipeline stages (assuming no pipelining in the links), and therefore,
the figures would be almost identical, scaled by N. Furthermore, in Figures 14–16, where
the cycle time is taken into account after synthesis, in the case of N pipeline stages, the
cycle time would be divided by the pipeline stages (approximately) and the latency in ns
would be the same.
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The proposed design mainly aims to improve bufferless routing performance while in-
troducing minimal overheads. For that reason, reliability and fault tolerance were not
considered. Clearly, methods for addressing transient and permanent faults in both
buffered [27] and bufferless routers [28] can also be employed in the proposed router (as
well as the previous work evaluated), but that is beyond the scope of the proposed work.
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4.1. High-Level Simulation Setup

Regarding high-level simulation, we developed cycle-accurate models of 3DBASE,
3DBUFFBLESS, 3DPERM and 3DHYAP in the HNoCs environment [29]. The simulation
was performed on a 4 × 4 × 3 NoC mesh. The simulation duration was 4 milliseconds
with a warm-up period of 4 microseconds. Synthetic and realistic NoC traffic patterns were
implemented to evaluate the performance of the proposed router. In terms of synthetic traf-
fic patterns, we used uniform random traffic, transpose traffic and hotspot traffic, starting
with an injection rate of 0.04 flits/cycle/node and stopping at the network saturation point.
In uniform random traffic, each source sends to all destinations with equal probability. In
hotspot traffic, each source sends to one of the central routers with a probability of 10%,
and with an equal probability to the rest. Finally, in transpose traffic, the source router with
coordinates (x, y, z) sends to the destination with coordinates (N_x-1-x, N_y-1-y, N_z-1-z),
where N_x, N_y, N_z, are the 3D mesh network dimensions.

4.2. Simulation Using Synthetic Traffic

Figure 9 illustrates the average end-to-end latency per flit in cycles under Uniform
Random Traffic (URF). Specifically, Figure 9a compares 3DBASE, 3DPERM, 3DBUFFBLESS,
3DAPBLESS and 3DHYAP for uniform random traffic. For further clarification, we show
the zero-load and saturation latency as defined above. For injection rates less than 0.2 flits
per cycle per node, all routers are close to the zero-load latency. It can be seen that the most
vulnerable router to saturation is 3DAPBLESS, closely followed by 3DPERM, which begins
to saturate at an injection rate of 0.2 flits/cycle/node. These are the bufferless routers using
nine permutation blocks, and since 3DAPBLESS misroutes flits more than 3DPERM at high
injection rates due to the approximate priority comparison, this result is to be expected.

The next router to begin saturating is 3DBASE at 0.24 flits per cycle per node. This
router has very low latency in cycles at low injection rates, since it centrally sorts flits and,
therefore, features the fewest deflections among bufferless routers. However, its latency
starts rapidly rising after the 0.2 injection point.

3DBUFFBLESS features the lowest saturation overall since it can store some packets
instead of deflecting them, but it has a slightly higher zero-load latency. 3DHYAP provides
a middle ground between 3DBASE and 3DBUFFBLESS, since it stores some flits like
3DBUFFBLESS, but deflects the remaining flits less efficiently than 3DBASE.

Furthermore, it can be observed that 3DHYAP and 3DBUFFBLESS feature somewhat
higher end-to-end latency below 0.2 flits per cycle per node, and significantly lower above.
The reason for the higher end-to-end latency in the low injection rates compared to 3DBASE
is that some flits spend time stored in the 3DBUFFBLESS buffers, while, in 3DBASE, they
are always transmitted in the same cycle. Since the injection rate is low, the deflections are
few and that incurs some latency overhead. However, at an injection rate of 0.2 the two
routers feature virtually the same latency and, at the higher injection rates, this trend is
emphatically reversed with 3DBUFFBLESS featuring significantly lower latency in cycles.
This is due to the fact that 3DBASE deflects many flits, while 3DBUFFBLESS can store
incoming flits from the up and down ports until a port becomes available, leading to fewer
deflections, and thus fewer hops that offset this additional intra-router latency.

3DHYAP and 3DBUFBLESS reach saturation latency at an injection rate of
0.24 hops/flit/node, while the latency in cycles of 3DBASE at the same injection rate
is 30% less than that value. 3DBUFBLESS reaches saturation latency at an injection rate of
0.24 hops/flit/node, while the latency in cycles of 3DBASE at the same injection rate is 30%
less than that value. Furthermore, as will be discussed in the hardware evaluation results,
due to the higher clock frequencies achieved by 3DBUFFBLESS, the gains in latency in ns is
approximately 50% of that value.

Figure 9b separately compares 3DHYAP with 3DHYAP_lite (two versus one bit com-
parison). 3DHYAP_lite shows a slight additional latency compared to 3DHYAP at injection
rates above 0.16, since it tends to misroute some flits compared to 3DHYAP, since its priority
comparison is less accurate than 3DHYAP.
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In Figure 10, we see the same analysis for hotspot traffic. 3DPERM and 3DAPBLESS
saturate very rapidly due to many deflections in the central routers, and are not shown.
Hotspot traffic is, as expected, more demanding on the network, forcing hops and latency
to increase starting from the low injection rates. This has the effect of 3DBASE featuring
higher latency than 3DHYAP almost immediately, the only exception being the very low
injection rate of 0.04. 3DHYAP eventually reaches the saturation threshold at an injection
rate of 0.2 due to many deflections, while 3DBUFFBLESS reaches saturation after 0.24,
proving the least vulnerable to saturation.

Figure 11 presents simulation results for transpose traffic. All router average latencies
are close to the zero-load latency injection rates below 0.12. However, 3DBASE reaches the
saturation threshold at 0.16, while 3DHYAP reaches it at 0.2, which is a relative increase of
the saturation threshold by 25% compared to 3DBASE and 3DBUFFBLESS at approximately
0.22. It must be noted that the differences between 3DHYAP and 3DHYAP_lite, as well as
3DHYAP and 3DBUFFBLESS, for buffer sizes above 1 flit, are imperceptible and are not
shown in the diagram for simplicity. This is likely because, at low injection rates, they are
very close, but when saturation begins they all rapidly saturate.

From the above diagrams, we can generalize that 3DBUFFBLESS and 3DHYAP feature
higher zero-load latency than 3DBASE. However, 3DBUFFBLESS degrades much more
gracefully as injection rate increases than 3DBASE, with 3DHYAP somewhere in the middle.

4.3. Simulation Using Real Traffic Patterns

Real data transmission of NoCs is much less regular than synthetic traffic patterns.
In order to capture the performance of the proposed router under these conditions, we
implemented the Multi-Constraint System-Level (MCSL) NoC Traffic Patterns proposed
in [30] on our 3D design to capture its performance. Due to the long simulation times
required, we only compared 3DBASE with 3DHYAP. We used two applications as bench-
marks, namely “ROBOT”, which is the Newton-Euler dynamic control calculation for the
6-degrees-of-freedom Stanford manipulator, comprising 88 tasks and 131 communication
links, and “H264-1080p_dec”, which is an H.264 video decoder with a resolution of 1080p
comprising 5191 tasks and 7781 communication links.

It should be noted that since NoC architectures are used in many applications, from
edge applications to big data [31], we intend the proposed router to be a general-purpose
router for 3D NoCs. Therefore, the above benchmarks were only used for evaluation and the
proposed architecture was only designed with the limitations of 3D integration in mind and
not a specific application. A specific application would likely afford additional optimization
in the router, or at the network level; for example, different buffering requirements for the
up direction than the down direction, or a preference for deflection, etc.

Figures 12 and 13 show the average end-to-end latency as a function of the injection
rate for the H.264 video decoder application and the Robot application, respectively. In
general, the trends observed using synthetic traffic patterns are present here too: 3DBASE
reaches saturation first, followed by 3DHYAP, with 3DBUFFBLESS being the last to saturate.
One pronounced difference is that 3DBASE features higher latency in cycles from the start,
even at very low injection rates.

5. Experimental Results—Hardware Evaluation

In this section, we show and extensively discuss the implementation results from
synthesizing the proposed router and its counterparts in the Nangate 45 nm library [32].
Then, we combine the hardware performance with the simulations of the previous section
to obtain latency in nanoseconds for each router, instead of cycles.

5.1. Performance Evaluation

Table 4 compares 3DHYAP with 3DPERM, 3DBUFFBLESS and 3DAPBLESS in terms
of maximum operating frequency in GHz for flit widths of 32, 64 and 128 bits.
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Table 4. Maximum Frequency Comparison.

Flit Size (Bits)
Maximum Operating Frequency (GHz)

3DPERM 3DBUFFBLESS 3DAPBLESS 3DHYAP

32 1.115 1.412 1.781 1.710

64 1.114 1.391 1.650 1.619

128 1.100 1.371 1.638 1.607

From the above table, it can be seen that 45 nm implementation results generally agree
with the results of the analysis in Section 3.1. Specifically, 3DHYAP achieves an improve-
ment of about 48% in terms of maximum operating frequency compared to 3DPERM, and
20% compared to 3DBUFFBLESS, depending on flit size. These results are consistent with
the predictions of Equations (1), (3) and (4).

Figures 14 and 15 revisit the simulation results in Section 4.2, Figures 9–11, but the
latency is given in ns after multiplying the cycles of each router by its clock period corre-
sponding to the operating frequencies of Table 4.

Figure 14 shows that 3DHYAP outperforms the other routers until the injection rate
of 0.24 flits per cycle per node, where saturation begins. This includes the state-of-the-art
bufferless routers 3DPERM and 3DAPBLESS, as well as the partially buffered 3DBUFF-
BLESS. In particular, 3DHYAP features an average latency approximately half that of
3DPERM, with only one third of the latency of 3DPERM at an injection rate of 0.24. Com-
pared to 3DAPBLESS, the proposed router is very close in latency at the low injection rate,
but 3DAPBLESS begins to rapidly saturate above 0.16 flits/cycle/node, while 3DHYAP
starts exhibiting signs of saturation at 0.24 flits/cycle/node, where it features less than
half the average latency of 3DAPBLESS. Finally, compared to 3DBUFFBLESS, which is also
partially buffered, 3DHYAP exhibits a latency reduction of about 17% before saturation
begins. This latency reduction is due to the higher clock frequency achieved by 3DHYAP
due to the approximate deflection mechanism.

Similarly, Figure 15 shows that 3DHYAP outperforms 3DBUFFBLESS until the injection
rate of 0.2 flits per cycle per node, where saturation begins. In other words, when clock
period is taken into account, 3DHYAP provides the lowest latency as predicted.

5.2. Area Evaluation

Figure 16 compares routers in terms of area in a 45 nm technology. The proposed
router is demonstrated to be the most area efficient of all designs. The analysis which led to
Equation (2) predicted an area reduction compared to bufferless routing of 20%, and this
is confirmed by the experimental results of Figure 16 for a buffering of one flit. It can be
seen that, with a buffer size of one flit, 3DBUFFBLESS is more area efficient than 3DPERM,
achieving an area reduction of 20%, roughly in accord with Equation (2).

Compared to 3DBUFFBLESS, which is also buffered in a similar way, the proposed
router demonstrates a small area reduction due to the approximate priority comparison,
leading to the simpler permutation logic of Figure 8. Increasing the buffer size to two flits
offsets the gains of using a smaller permutation network due to the size of the buffers,
which are not taken into account in Equation (2), while a buffer size of four flits increases
this even more dramatically, leading to an increase of area of 25% and 40%, respectively.

However, our simulations have shown that even with a buffer size of one flit, 3DHYAP
outperforms 3DBUFFBLESS and 3DPERM in terms of latency; while increasing the buffer
size does not significantly add benefit, the bufferless ports dominated the buffered ones
when saturation begins. This causes the network to saturate at approximately the same
injection rate, independent of buffer size. Therefore, the minimum buffering of one flit is
preferred, since there is no reason to offset the area gains and impose an area overhead
with no performance gains.
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5.3. Power Consumption Evaluation

We measured the power consumption of the proposed router and its counterparts for
flit sizes of 16, 32 and 64 bits at a clock frequency of 1 GHz in the same 45 nm technology.
The results are shown in Figure 17. Figure 17a shows total power consumption, while
Figure 17b shows dynamic power consumption and Figure 17c shows leakage power.
It can be seen that, as expected, the bufferless routers consume about 15% less power
than the buffered ones. It is also evident that, at the target 45 nm technology, power
consumption is heavily dominated by dynamic power, since the Figure 17a,b are almost
identical. Regarding leakage power, the completely bufferless routers are again shown to
be more efficient, with the proposed router and 3DBUFFBLESS consuming about 20% more
leakage power, depending on flit size.
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However, a different picture emerges when considering the total energy efficiency.
Figure 18 combines the results of Figure 14 and power consumption to demonstrate the
average energy required per flit transmission for uniform random traffic. Results are shown
for 64-bit flits. The results are similar for 32- and 128-bit flit sizes, since the energy per flit is
shown to be almost constant (actually slightly decreasing with flit size for all routers). As
shown in Figure 18, at the low injection rates, all routers approximately require the same
energy to send a flit, but, as the injection rate rises, and as bufferless routers saturate earlier,
they also require more energy to send a flit, despite being more power efficient. Therefore,
the power overhead imposed by 3DBUFFBLESS and 3DHYAP shown in Figure 17 translates
to energy efficiency due to more efficient routing.
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6. Conclusions

This paper presented an exploration of combining partially buffered routing in the
z dimension of a 3D router, with approximate priority deflection routing in the x and y
dimensions. From the combination of high-level simulation with hardware implementation,
the key results summarized below were obtained:

Firstly, minimal buffering in the z dimension significantly increases the saturation
threshold in a 3D mesh topology compared to completely bufferless routing. However,
somewhat counterintuitively, additional buffering has minimal effect, as also demonstrated
in [17]. The lower latency is also translated to higher energy efficiency, despite the power
overhead imposed by the partial buffering.

Secondly, the reduction of the bufferless routing to four ports instead of six significantly
reduces the critical path delay, and therefore, increases the clock frequency.

Thirdly, adding an approximate priority comparison further increases clock frequency
and reduces router area at the expense of somewhat lower saturation latency.

Finally, the zero-load latency of the partially buffered routers is somewhat higher than
the bufferless ones due to the buffered ports. However, this is likely to be improved by
adding pipeline stages, which are left for exploration in the future.

Further considering possible future research directions, we plan to evaluate the pro-
posed router, as well as the counterparts discussed in the paper, in terms of reliability and
fault-tolerance using gate-level reliability estimation tools, such as those proposed in [33].
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In fact, to the best of our knowledge, such an analysis and comparison between buffered
and bufferless routers has not yet been attempted.
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preparation, K.T. and S.S; writing—review and editing, C.K. All authors have read and agreed to the
published version of the manuscript.
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NoC Network-on-Chip
URT Uniform Random Traffic
ASIC Application-Specific Integrated Circuit
PSRNG Pseudo-Random Number Generator
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