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Abstract: In this study, UV-curable resin was formed into different patterns through the pro-
grammable control of dielectric force. The dielectric force is mainly generated by the dielectric
chip formed by the interdigitated electrodes. This study observed that of the control factors affecting
the size of the UV resin driving area, current played an important role. We maintained the same
voltage-controlled condition, changing the current from 0.1 A to 0.5 A as 0.1 A intervals. The area of
droplets was significantly different at each current condition. On the other hand, we maintained the
same current condition, and changed the voltage from 100 V to 300 V at 50 V intervals. The area of
droplets for each voltage condition was not obviously different. The applied frequency of the AC
(Alternating Current) electric field increased from 10 kHz to 50 kHz. After driving the UV resin, the
pattern line width of the UV resin could be finely controlled from 224 um to 137 um. In order to form
a specific pattern, controlling the current and frequency could achieved a more accurate shape. In
this article, UV resin with different patterns was formed through the action of this dielectric force,
and after UV curing, tiny structural parts could be successfully demonstrated.

Keywords: dielectric force; UV curable resin; programmable UV resin

1. Introduction

Coplanar interdigitated finger electrodes can be used for a di-electrowetting system [1–6].
The design of electrodes was different with conventional solid square or rectangle shapes
for EWOD (electrowetting-on-dielectric) system. Although the behavior in the contact angle
change in the di-electrowetting system is apparently similar to EWOD system [7–10], its
physics and mechanism are quite different.

MacHale’s team introduced a di-electrowetting concept that is based on liquid di-
electrophoresis (L-DEP) [11–13]. They used coplanar interdigitated finger electrodes for
distinguishing di-electrowetting. Identically, Jones’s also introduced a similar concept
through L-DEP for microfluidics application [14–23]. The driving force of di-electrowetting
is the liquid dielectrophoretic force that is generated from charge diploes induced by
a non-homogeneous electric field. Two adjacent electrode fingers will be generated by
non-homogeneous fringe fields when a voltage is applied.

Brown’ s team [24–26] demonstrated a periodic wrinkle that is formed by dielec-
trophoretic actuation. The thickness of the liquid was very thin and was less than the
penetration depth. This means that the fringe electric field would affect the top liquid–
vapor interface.

In 2009, Fair et al. proposed a scale model of a dielectric wetting actuator [27]. By
considering contact-angle hysteresis, the resistance of the upper and lower plates and the
change in force when driving a droplet to move between the electrodes, the minimum
voltage value to drive the droplet was calculated, which was related to the electrode width,
the thickness of the dielectric layer, and the distance between the upper and lower plates,
which were proportional to the ratio. When the electrode size decreased, the distance
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moved by a droplet generated by the storage tank thus also decreased, which was helpful
for the generation of microdroplets.

In 2013, Hiroyuki Fujita’s team proposed a method to fabricate microfluidic wafers
rapidly using dielectric-wetted array wafers [28]. This method injected liquid paraffin
into the wafer instead of air as the medium during the first step, then injected deionized
water into the array wafer. The final step was to turn on a specific electrode and apply a
voltage 50~150 Vrms/50 kHz to drive the liquid beads so as to form the desired pattern.
After the pattern was formed, the AC (alternating current) signal was maintained on the
selected electrodes so as to maintain the shape of the DI (deionized water) water. The wafer
temperature was lowered by thermoelectric cooling of the wafer; the temperature was in
the range of +45 ◦C to −40 ◦C. The entire solidification took 5 s to complete. With this
wafer for microfluidic patterning, by programming the change in wafer temperature, the
transition from English letter “C” to “A” could be completed in less than 5 min.

In 2015, Papautsky et al. proposed combining continuous microfluidics and digital
microfluidics into a microfluidic platform that could be programmed [29]. This study was
helpful for the application of microfluidics and biomedical clinical diagnosis. The chip was
composed of programmable two-dimensional array electrodes on the bottom plate, with
5 × 8 electrodes in total; the electrode size was 1 mm × 1 mm, the upper cover and the
bottom plate were separated by 100 µm, and a syringe pump was used to inject liquid at the
inlet. The same amount of liquid was injected from the inlet into six of the nine cell array
electrodes in the wafer; the electrodes were turned on with the letter “U”; after two seconds,
the letter “C” formed, and then the letter “T” formed. Finally, the letter “U” formed.

The main purpose of this study is to manipulate UV resin for patterning through
dielectric force. UV resin is an adhesive material that can be solidified through exposure
to UV light, and it is commonly used a glue for paint, coating, and ink. We also discuss
the influence of electric field conditions on UV resin manipulation. Finally, through the
dielectric force applied on the UV resin, the patterned arrangement of UV resin is further
manipulated. After we patterned the UV resin, applied with UV light, we successfully
demonstrated the fabrication of tiny structures.

2. Theory and Experimental Setup
2.1. Theory of Dielectric Force

If droplets are immersed in the other immiscible dielectric liquid with a low dielectric
constant, this phenomenon is called di-electrowetting. The elongation of a droplet could be
calculated by the following equation [30]:

h2 = h2
0 −

(εL − εF)V2
0 Ω

4δγLF
(1)

where h2 is the height of the droplet and h2
0 is the initial height of the droplet, while

V0 = 0 V, Ω = hl, l is the contact length of the droplet in elongation. δ is the penetration
depth of the electric field (=4ω/π). γLF is the interfacial tension between the droplet liquid
and immersion fluid. V0 is the amplitude of applied voltage to the electrodes. εL, εF, and ε0
are the permittivities of the droplet liquid, surround fluid and free space, respectively. The
thickness of the droplet is proportional to the square of V2

0 and the ratio of difference in
permittivity to the liquid–fluid interfacial tension (εL − εF)/γLF. The dielectric model was
shown in Figure 1 [30].

2.2. Dielectric Chip Manipulate System

The experimental setup of this research (shown in Figure 2) included a dielectric chip
holding platform, a UV-curing module (UV mercury lamp (350–450 nm)), a CCD (Charge-
coupled Device) alignment system (Confocal Displacement Sensor, CL 3000, KEYENCE),
a signal generator (33220A, Keysight), a power amplifier (A304, A. A. Lab system Ltd.,
Wilmington, DE, USA), a microscope observation module, load/unload platform, and
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a vacuum module. The designed dielectric chip was placed on the platform and was
connected to the relay. The relay could correspond to 160 sets of independent electrode
switches, and the patterned control electrode could drive the UV resin.
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After the UV resin was driven by the AC electrical field, the UV and vacuum module
picked up the glass substrate through the x-y motion platform with ±0.01 mm repeatability
(R138, Yu-Zhan motion technology, Taichung City, Taiwan). The vacuum module was
moved to just above the dielectric chip, and was in contact with the patterned UV resin.
Then, the UV light was turned on for curing to complete the formation of the first layer
structure. This procedure is shown in Figure 2b.

2.3. UV-Curable Resin

This research used UV-SIL photosensitive polymer material (Agent company in Taiwan
was Heart-bond industrial materials LTD., the manufacturer was Adhetron in USA.) mixed
with propylene carbonated (CAS number: 108-32-7) as a dielectric force driving liquid.

UV SIL is a is non-corrosive, single-component silicone elastomer material that will
cure to a soft rubber after exposure to UV light [31]. The mixing ratio was 80% UV SIL and
20% propylene carbonate. The main purpose for choosing PC (propylene carbonate) was to
ensure the driving liquid would have a good permittivity with 66.1 Tm/A (permittivity),
which is in excellent agreement Equation 1. UV resin composed of UV-SIL and propylene
carbonate is a kind of adhesive material that is cured with UV light (absorption wavelength
was 365 nm) and can be used as a glue for paints, coatings, inks, etc. The principle of
UV resin curing is that the photo-initiator (or photosensitizer) in the UV curing material
generates active free radicals or cations after absorbing ultraviolet light, which initiates
monomer polymerization, cross-linking, and branching chemical reactions. The adhesive
changes from liquid to solid within a few seconds. The scheme of reaction of UV resin after
UV exposure is shown in Figure 3.
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Figure 3. The reaction of UV resin after UV exposure.

2.4. Dielectric Chip Design and Manufacture

The metal-electrode structure was formed through photolithography on a silicon
wafer [32]. Spin coating was used to deposit a dielectric insulation layer (the insulating
layer material can be silicon nitride, SU8 photoresist, etc.) and hydrophobic layer (the
hydrophobic layer material can be Teflon, Cytop, etc.). The manufacture flow is shown in
Figure 4a.

As the hydrophobic layer plays an important role in resin patterning, when a dielectric
chip is made, the hydrophobic characteristics must be analyzed first and the contact angle
must be larger than 90◦.

We used an 8-inch silicon substrate to make electrodes for the dielectric chip (shown
in Figure 4b), with four sets of electrodes in this 8-inch silicon substrate. The electrode size
of each set was 1.2 mm × 1.2 mm, 2.0 mm × 2.0 mm, 2.6 mm × 2.6 mm, 4.6 mm × 4.6 mm.
In addition, the interdigital electrode applied in the dielectric chip increased the driving
force of the resin, making it easier to move and to control the UV resin. Figure 4c shows
that the line width and line distance of each interdigital electrode were 10 µm and 10 µm.
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3. Results and Discussion
3.1. Influence of Current and Voltage on UV Resin Drive by Dielectric Force

The voltage change was set from 100 V to 300 V, at intervals of 50 V. In addition,
current conditions are set for each voltage condition, ranging from 0.1 A to 0.5 A. The
frequency of the AC electric field was fixed at 40 kHz. The sample volume was controlled at
0.2 µL. As Figure 5 shows, the sample was stretched to a square pattern by four electrodes
switched at the same time. The measurement result of the square area was considered as
the influence of voltage and current. When the current condition was fixed and the voltage
change increased from 100 V to 300 V, the shape of the droplet expanded to a specific area.
This means that the voltage increased by 300%, while the shape of the droplet increased
by 200%, as shown in Figure 6. Observing the trend of the results shows that the sample
stretch was affected by the electric current condition.

Under the fixed voltage condition, the current increased from 0.1 A to 0.5 A. As shown
in Figure 7, taking the voltage condition of 150 V as an example, the current increased by
500%, and the shape of the droplet increased by 180%. The resulting trends for changing
the current under different specific voltage conditions were similar. According to the data
observation, the voltage had a positive exponential relationship with the area.
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result with the current condition fixed. (b) Demonstrate the droplet expand situation when the
current ranges from 0.1 A to 0.5 A at a voltage of 150 V.

The final paragraphs provide the pattern result for different driving voltages and
currents. We discovered the relationship for the condition of a fixed current. The area of the
droplet expanded by 28% for every 10 V increase in voltage before the droplet expanded
in the saturation area. On the contrary, under the condition of fixed voltage, the area
of droplet expanded by 1 mm2 for every 0.1 A increase in current. Based on the above
results, in addition to the voltage affecting the area of the droplet, the current also played
an important role.

3.2. Influence of Electric Field Frequency on the Linewidth after UV Resin Drive

Through control of the electric field, the charge distribution on the surface of the
colloid could be further varied. The UV resin could achieve the purpose of patterning. In
addition to the voltage and current that can affect the driving of the UV resin, we found
that the frequency adjustment of the alternating current could affect the appearance of the
line width after the UV resin was driven. This section discusses the relationship between
the frequency of the electric field and line width after UV resin was driven. The voltage
condition of the test was fixed at 200 Vcc and the current was fixed at 0.3 A. The frequency
was adjusted from 10 kHz to 50 kHz at intervals of 10 kHz. The test results in Figure 8a
show that when the frequency condition was 10 kHz, the UV resin could be formed along
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the electrode, but the edge of the UV resin was jagged and could not form a straight line.
The line width of the UV resin after driving was larger than the line width of the electrode
itself, reaching 224 µm. To make the UV resin after driving appear straight and further
decrease the line width, we increased the frequency. The results in Figure 8a–e show
that the line edge and line width after UV resin driving could become straighter and the
line width became smaller as the frequency increased. When the electric field frequency
increased from 10 kHz to 20 kHz, the line edge and line width were obviously different.
The minimum line width could reach 137 µm, which was close to the electrode linewidth
of 100 µm.
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As shown in Figure 9, when the frequency increased from 10 kHz to 50 kHz, the line
width of the UV resin after being driven by dielectric force was significantly reduced from
224 µm to 137 µm. The line width of the electrode design was 100 µm, and the difference
was reduced from 124 µm to 37 µm. From the results, we can see that under the same
voltage and current conditions, increasing the frequency could effectively reduce the line
width of the UV resin after dielectric force was applied. This could improve the driving
precision of the UV resin.

Micromachines 2023, 14, x FOR PEER REVIEW 9 of 12 
 

 

 
Figure 8. Linewidth of UV resin driven by dielectric force at a frequency of (a) 10 kHz, (b) 20 kHz, 
(c) 30 kHz, (d) 40 kHz, and (e) 50 kHz. 

As shown in Figure 9, when the frequency increased from 10 kHz to 50 kHz, the line 
width of the UV resin after being driven by dielectric force was significantly reduced 
from 224 μm to 137 μm. The line width of the electrode design was 100 μm, and the dif-
ference was reduced from 124 μm to 37 μm. From the results, we can see that under the 
same voltage and current conditions, increasing the frequency could effectively reduce 
the line width of the UV resin after dielectric force was applied. This could improve the 
driving precision of the UV resin. 

 
Figure 9. Comparison of electrode linewidth and UV-resin linewidth after being driven. Voltage 
was 200 V and current was 0.3 A. 

Through the dielectric system, this study successfully demonstrated that the pat-
terning of UV resin could be performed using electrode control. Curing through UV 
light and repeated patterning and curing steps produced tiny structural parts of differ-

Frequency(kHz) 

Figure 9. Comparison of electrode linewidth and UV-resin linewidth after being driven. Voltage was
200 V and current was 0.3 A.

Through the dielectric system, this study successfully demonstrated that the patterning
of UV resin could be performed using electrode control. Curing through UV light and
repeated patterning and curing steps produced tiny structural parts of different shapes.
As shown in Figure 10, a structure with a thickness of about 1~2 mm could be formed by
dielectric force and cured by UV light.

The results of this study were compared with conventional 3D printing techniques,
as shown in Table 1. The main difference was that the fabrication of structural electronics
could be carried out through the same system in this study. There was an opportunity to
create conductive layers inside the structure. In addition, the performance of fineness could
be optimized by designing the size of the electrodes and the frequency of the applied electric
field. The fineness could reach a micron level. In the future, there will be opportunities
to apply structural electronic verification in the RD stage, which can accelerate the time
course of product development.

Table 1. Comparison of conventional 3D printing and this study.

Technology This Study

FDM
Fused

Deposition
Modelling

LOM
Laminated

Object
Manufacturing

3DP
3D Printer

DLP
Digital Light

Processing

SLA
Stereo

Lithography
Apparatus

SLS
Selective

Laser
Sintering

LMD
Laser Metal
Depostion

Material
Photopolymers,

conductive
materials

Polymers Paper and metals
Polymer,
metals,

and sand
Photopolymers Photopolymers Polymers

and metals Metals

Structural
electronics
fabrication
possibility

Yes No Maybe No No No Maybe no

Accuracy High Low Low Low Middle High Low Low
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tion Modelling 

LOM 

Laminated 

Object Manu-

facturing 

3DP 

3D Printer 

DLP 

Digital Light 

Processing 

SLA  

Stereo Lithog-

raphy Appa-

ratus 

SLS 

Selective Laser 

Sintering 

LMD 

Laser Metal 

Depostion 

Material 

Photopolymers, 

conductive 

materials 

Polymers 
Paper and met-

als 

Polymer, met-

als, and sand 
Photopolymers Photopolymers 

Polymers and 

metals 
Metals 

Structural elec-

tronics fabrica-

tion possibility 

Yes No Maybe No No No Maybe no 

Accuracy High Low Low Low Middle High Low Low 

4. Conclusions 

Dielectric force-drivable UV resin, a dielectric chip, and manipulation equipment 

were developed in this study. We proposed a control model for the current and voltage 

Figure 10. (a) UV resin patterning using a dielectric chip. (b–e) Different shape of structure fabrication
using a dielectric system. The thickness of each structure was around 1~2 mm.

4. Conclusions

Dielectric force-drivable UV resin, a dielectric chip, and manipulation equipment were
developed in this study. We proposed a control model for the current and voltage of the
electric field that drives the UV resin effectively. Current played an essential role in the
dielectric system. The system provided a pattern instant curing ability with UV treatment.

Through the pattern curing experiment results, the appearance, area, and length of
UV resin were affected by the applied current, voltage, and frequency on the dielectric chip.
Therefore, the manipulation of dielectric force could be used as a reference for subsequent
applications in the fabrication of tiny structures.

We found that current could significantly control the area of the droplet compared
with the voltage. A phenomenon was found, where under a voltage fixed to 150 V, the
droplet area was expended from 4.7 mm2 to 8.4 mm2 with an input current of 0.1 A to 0.5 A.
While the current was set to 0.3 A, the droplet area expended within 5.6 mm2 to 6.5 mm2

with an input voltage of 100 V to 300 V. The test results indicate that the droplet was mainly
affected by the current strength of the electric field. We further increased the morphological
feature fining by a factor. Through the different frequency conditions, a coarse and fining
pattern edge result was displayed. The line edge was relatively straight. The minimum line
width attained was 137 µm.

An embedded conductive circuit inside the structure was accomplished through the
integration of a mature inkjet printing technology in this system. According to the report by
the Global Structural Electronics Market [33], the market will be raising CAGR by 23.8% based
on USD 1.5 billion in 2021 to 2030. Automotive, aerospace, and other electronics industries
are different application fields for structure electronics. A hybrid system is necessary for the
development of structure electronics technology. Therefore, this research has great potential to
be integrated with maskless printing technology and to be applied to structure electronics.
In the future, there will be opportunities to apply structural electronic verification in the RD
stage, which can accelerate the time course of product development.
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