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Abstract: With increasing consumption of energy and increasing environmental pollution, research
on capturing the vibration energy lost during transportation and vehicle driving is growing rapidly.
There is a large amount of vibration energy in the automobile exhaust system that can be recycled.
This paper proposes a self-powered intelligent device (SPID) using a piezoelectric energy generator.
The SPID includes a piezoelectric generator and sensor unit, and the generator is installed at the end
of the automobile exhaust system. The generator adopts a parallel structure of four piezoelectric
power generation units, and the sensing unit comprises light-emitting diode warning lights or low-
power sensors. A simulated excitation experiment verifies the working state and peak power of the
piezoelectric generator unit, which can achieve 23.4 µW peak power. The self-power supply and
signal monitoring functions of the intelligent device are verified in experiments conducted for driving
light-emitting diode lights and low-power sensors. The device is expected to play a crucial role in the
field of intelligent driving and automobile intelligence.

Keywords: piezoelectric generator; self-powered intelligent device; automobile exhaust system;
vibration energy; signal monitoring

1. Introduction

The energy crisis relating to oil shortages and environmental pollution, such as air
pollution, have introduced great challenges to the automobile industry [1,2]. As a result,
research on capturing the energy lost during vehicle transportation is growing rapidly [3–5].
The technology used in collecting the energy loss of each part of the automobile body is
important to the development of the automobile industry in that it improves the energy ef-
ficiency and fuel economy of automobiles. In the process of driving, the released heat, brak-
ing energy, and vibration energy are the main targets of energy collection technology [6–9].
As an important part of the automobile chassis, the exhaust system produces a lot of vi-
bration because it is connected to the engine and must exhaust the exhaust gas [10]. The
vibration energy can be collected for electronic equipment detection and driving sensors
and even more promising applications [11–13]. Additionally, in the past 10 years, there
has been much research on energy collection for low-power power generation, ultimately
for energy recovery or the self-power supply of monitoring elements [14–20]. Such energy
collection poses a good solution for the replacement and maintenance of the battery in a
sensor element, thus reducing the maintenance cost of vehicle sensor equipment and even
various types of engineering equipment [21–27].

In the current research, piezoelectric power generation is a stable traditional microscale
energy capture technology. Piezoelectric materials have a good electromechanical coupling
effect and high energy conversion efficiency. The most well-known piezoelectric materials
are piezoelectric ceramics and piezoelectric polymers [24,28–31]. They have the advantage
of converting energy harvested from the environment into electrical energy, which is
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used to directly or indirectly drive electronic devices [32,33]. For example, piezoelectric
materials collect the vibration energy transmitted to the ground when a person walks,
the energy generated by friction between a person and a backpack, the vibration energy
generated by wind, the longitudinal transverse waves of the sea, and the vibration energy
generated by high-rise buildings [34–37]. To improve the performance of piezoelectric
materials, new composite materials, and new structure designs have been put forth by
several academics [38–41]. Furthermore, piezoelectric materials are widely used in the
aerospace and automotive industries [42–44]. Lafarge et al. used piezoelectric energy
harvesters to collect the vibration energy inside vehicle suspension systems and tires, and
the harvested energy can be used to power embedded wireless sensors [45]. The existing
technology demonstrates that the vibration energy harvester has been widely used to
collect vibration energy in various environments [46,47]. The automobile exhaust system
has a large area of vibration [48,49]. If the vibration energy can be collected, it can be used
in vibration energy harvesting automobile intelligent sensing and condition monitoring.

In view of little research on mechanical vibration energy harvesting of the exhaust
system, this paper proposes a new self-powered intelligent device (SPID) using a piezoelec-
tric energy generator. Taking a light vehicle as the research object, the SPID is installed at
the end of the exhaust system. The system adopts a parallel structure of four piezoelectric
power generation units, including light-emitting diode (LED) warning units or low-power
sensor units. By conducting simulation excitation experiments for different amplitudes
and frequencies, the working state and peak power of the piezoelectric power generation
unit are verified. The piezoelectric power generation unit produces 23.4 µW peak power. A
simulation model of a piezoelectric chip is established and the results are compared with
test results. The operational ability of the SPID is verified in experiments for an LED lamp
and low-power sensor. The SPID effectively realizes the recovery of vibration energy of
automobile exhaust devices and the self-energy supply of sensors and signal monitoring
functions. This device is expected to play a crucial role in the field of intelligent driving
and automobile intelligence [50,51].

2. Results and Discussion
2.1. Structural Design and Working Principle

The components of the self-powered intelligent device (SPID) are a base, piezoelectric
plate, exhaust pipe, splint, sleeve, and sensor (Figure 1c). The integral device is installed
at the end of the automobile exhaust pipe (Figure 1a,b). The base plate is installed on the
vehicle chassis, the four piezoelectric pieces are installed around the base plate, the sleeve
is divided into two parts and installed on the exhaust pipe, and the clamp plate is installed
around the sleeve. Piezoelectric sheets of three sizes are used. The piezoelectric zirconate
titanate (PZT) materials are evenly distributed on each piezoelectric sheet and connected to
applications such as sensors or warning lights through wires (Figure 1d).

Regarding the working principle of the SPID (Figure 2), the piezoelectric pieces are
distributed above and on both sides of the exhaust pipe. The PZT material is uniformly
distributed on the piezoelectric sheet. According to the principle of the generation of
piezoelectric power and the principle of electronic polarization, when the piezoelectric
sheet is deformed, polarization charges appear on the surface of the PZT material. The two
piezoelectric pieces are distributed above the exhaust pipe. When the exhaust pipe shakes
from left to right, the piezoelectric pieces undergo elastic deformation. The other two
piezoelectric pieces are distributed on either side of the exhaust pipe. When the exhaust
pipe vibrates up and down, the piezoelectric pieces undergo elastic deformation (Figure 2a).
The piezoelectric piece can slide between the splints without impeding the vibration in the
other direction. When the piezoelectric sheet deforms, the PZT on its substrate deforms.
After the piezoelectric material deforms, its internal electrons are polarized, and free
electrons transfer to one side of the PZT, such that a current flows in the external circuit.
When the PZT deforms in the opposite direction, the internal electrons are reverse polarized
and move in the opposite direction. The external circuit forms a reverse current (Figure 2b).
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The exhaust pipe drives the piezoelectric piece to swing up and down and left and right,
and the PZT is internally polarized many times. Free electrons move to both ends of the
PZT many times. The external circuit generates a repeated current. Additionally, the stress
under two deformation states of the PZT is simulated utilizing simulation software. The
stress distribution trend of the PZT in different states shows that the electrons in the PZT
are moving in the deformed state. The potential difference drives electrons to form an
electric current in the external circuit.
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Figure 2. Working principle of the SPID: (a) schematic of the operating principle of the intelli-
gent device, (b) deformation demonstration and electron distribution of piezoelectric plates, and
(c) simulated potential distributions of the SPID in the two positional states.

2.2. Output Performance

In the study of the electrical output performance of the SPID, the linear motor drives
the base to move, and the performances of piezoelectric pieces with different specifications
are tested. The piezoelectric pieces are installed on the stator base, and clamping plates
are installed on the movable base. The linear motor drives the movable pieces in a straight
line. The experiment simulates a linear vibration environment. The overall layout of
the experiment is shown in Figure S1. The frequency of the linear motor is set at 1 Hz,
and the excitation amplitude is 1 mm. The output performance of PZT units 1, 2, and
3 (PZT-1, PZT-2, and PZT-3) are tested for different specifications. Because the PZT is
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evenly distributed on the two sides of the piezoelectric sheet, a performance comparison
experiment of the PZT on both sides is carried out to select the best PZT power generation
unit. The voltage performances of sides A and B of PZT-1, PZT-2, and PZT-3 are tested
for a motor stroke of 1 mm (Figure 3a,b) and a motor stroke of 2 mm (Figure 3d,e). A
photograph of linear electrode travel of 1 and 2 mm is shown in Figure 3c. It is seen from
the experimental data that the performance of side A is better for the PZT units of different
sizes at the different motor strokes. Side A and a stroke of 2 mm are thus selected in
subsequent experiments. In addition, under the same excitation stroke, PZT-3 has local
plastic deformation at the fixed end due to the excessive force of the fixing screw, and The
performance of power generation is somewhat decreased. Therefore, PZT-2 has the best
voltage performance. To better compare the performances of PZT-1A, 2A, and 3A, the
power performance of each PZT is tested by means of series resistance. The comparison
experiment shows that the power of PZT-2A can reach 6.6 µW, which is the highest power
among the three specifications of PZT. Therefore, under the current test conditions, PZT-2A
is the best power generation unit (Figure 3f).
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Figure 3. The output performance of the PZT units having different specifications: (a,b) voltage (V)
of the PZT units having different specifications for a stroke of the motor of 1 mm, (c) photograph of
motor strokes of 1 and 2 mm, (d,e) V of the PZT units having different specifications for a stroke of
the motor of 2 mm, (f) power of the different PZT units for a stroke of the motor of 2 mm.

Experiments with different strokes and different excitation frequencies are designed to
further verify the performance of PZT units having different specifications. First, the effects
of the excitation stroke on the power generation performance of the PZT are verified. The
linear motor is set to have strokes of 1, 2, 3, 4, and 5 mm, and excitation tests are conducted
for PZT units having different specifications. The output voltage of the PZT units having
different specifications increases with the loading stroke (Figure 4a–c). A comparison of the
above data reveals that PZT-2 has the best voltage performance. At a stroke of 5 mm, the
voltage reaches 22 V. The current and power performances for the different specifications
of PZT are shown in Figure S2. The vibration amplitude of the automobile exhaust funnel
generally ranges from 1 to 10 mm. This experiment verifies that the deformation degree
of PZT is suitable for collecting the vibration energy of the automobile exhaust funnel.
Furthermore, to verify the response of PZT piezoelectric sheets to the excitation frequency,
voltage performance comparison experiments for the various specifications of PZT under
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different vibration frequencies are designed. A photograph of the test bench is shown
in Figure S3a. The test bench uses a rotor motor to achieve high-frequency vibration.
The output frequency of the vibration platform can reach 1, 5, 10, 20, 30, 40, and 50 Hz,
and the amplitude is 1–5 mm. The vibration environment of the exhaust system can be
simulated under the common speed range of a four-cylinder vehicle [11]. The voltage data
of the different specifications of PZT are obtained under these experimental conditions
(Figure 4d–f). The PZT of each specification has good power generation performance
at different frequencies, which demonstrates that PZT can be applied to the vibration
environment of an exhaust system. Figure 4d–f shows that the PZT generates different
voltages according to the magnitude of the random amplitude. The current and power are
shown in Figure S4 for different specifications of PZT. The comprehensive performance
evaluation shows that PZT-2 has the best voltage, current, and power performance, and
PZT-2 is thus selected as the experimental object for subsequent experiments.
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vibration: (a–c) voltage (V) of PZT units of different specifications for a stroke of the motor of 1, 2, 3,
4, and 5 mm, (d–f) V of PZT units of different specifications for a frequency of excitation of 1, 5, 10,
20, 30, 40, and 50 Hz.

A scheme of multiple PZT power generation units working at the same time is de-
signed to collect more vibration energy from the automobile exhaust system. Through the
reasonable design of the layout and structure, four power generation units are installed
around the device. The performances of PZT power generation units in series and parallel
are tested, and the maximum power output mode is found. The circuit connection modes of
the PZT units in parallel and series are shown in Figure S3b,c. First, the power generation
performance of PZT1–4 single units is shown in Figure S5. Figure 5a,b shows the voltage
and current performance of different numbers of PZT units in parallel. With more parallel
units, the output voltage remains unchanged, but the output current gradually increases.
Figure 5c,d shows the voltage and current performance of different numbers of PZT units
in series. A greater number of units in series increases the output voltage and the output
current slightly. The power output is tested to better compare the performance output
of parallel and series schemes. The power reaches 23.4 µW for four PZT units in parallel
(Figure 5e). The output performance of four PZT units in series is 18.4 µW (Figure 5f).
According to the performance comparison, the four PZT units output the maximum power
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in parallel. Therefore, in the application experiment, the parallel connection method is used
for testing.
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2.3. Demonstration

To reflect the functionality of PZT in the field of vehicle vibration energy collection,
experiments are conducted for driving low-power consumption sensors and driving indi-
cator lamps (Figure 6). Four PZT units are assembled on the linear motor in parallel, and a
vibration environment is simulated using linear motion (Figure 6a). In the warning-light
experiment, 35 LEDs are arranged into the letters BITC through the assembly of a circuit
on a breadboard. The link mode is shown in Figure 6b. Driven by the linear motor, the
LED warning light is successfully lit, as shown in Figure 6c. In further verifying the per-
formance of the piezoelectric generator, commercial capacitors, and rectifier bridges are
used to build the power supply circuit of small sensors. The piezoelectric generator easily
drives the commercial thermometer and hygrometer by charging the capacitor (Figure 6d).
The output performance of the PZT unit is very stable after 430,000 cycles (Figure 6e).
The intelligent device is installed on a light truck. When the truck starts, the vibration
energy at the end of the exhaust pipe is collected by the intelligent device, and the LED
warning light is driven to demonstrate the feasibility of the intelligent device (Figure 6f,g).
Additionally, the signal generated by the piezoelectric generator can be used to monitor the
vibration of equipment. The device can be installed on the vehicle-mounted air pump to
monitor its working frequency. When the onboard air pump starts or is disturbed, vibration
signals with different frequencies and amplitudes appear (Figure 6h,i). More information is
presented in a supporting movie. All the above application experiments demonstrate the
feasibility of the intelligent device to capture vibration energy.
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(b,c) wiring of the LED lamp and photograph after lighting; (d) capacitor charging curve and
sensor are driven; (e) PZT unit operates for 430,000 cycles; (f,g); intelligent device collecting the
vibration energy of the automobile exhaust system and lighting up a warning lamp; (h,i) piezoelectric
generating unit monitoring mechanical vibration signals.

3. Experimental
3.1. Fabrication of the SSAS

The diameter and height of the self-powered intelligent device (SPID) are 210 mm and
110 mm, respectively. The whole device is installed at the end of the automobile exhaust
pipe, wherein the base plate is installed on the automobile chassis, and four piezoelectric
pieces are respectively installed around. The sleeve is divided into two parts and installed
on the exhaust pipe, and the clamp plate is installed around the sleeve. Three sizes of
piezoelectric sheets are used. PZT materials are evenly distributed on each piezoelectric
sheet, which are connected to applications such as electrical appliances or warning lights
through wires. The base plate sleeves are all 3D printed, and the material is polylactic acid
(PLA). The PZT-2 has a thickness of 80 µm. its length and width are 60 mm and 30 mm,
respectively. The thickness of the splint is 50 mm; its length and width are 20 mm and
10 mm, respectively.

3.2. Electrical Measurement

The self-powered intelligent device (SPID) is driven by a linear motor (CP-1100,
LinMot, Lake Geneva, WI, USA) and the basic performance test of SPID is determined by
Oscilloscope (MDO3034, Tektronix, Beaverton, OR, USA). The car is a light truck (D201,
Changan, Chongqing, China).

4. Conclusions

A self-powered intelligent device based on a piezoelectric generator was designed.
The SPID included a piezoelectric power generation unit and an LED warning unit or
sensor unit. The SPID was installed on the automobile exhaust device to provide sensing
and warning functions by collecting vibration energy. The SPID combined a piezoelectric
generator and sensor unit. Testing showed that the overall piezoelectric generator unit
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could work at different amplitudes and frequencies, and the output power of a single PZT
unit was approximately 6.6 µW. Series and parallel tests showed that an output power
of 23.4 µW could be achieved when four generating units were connected in parallel.
Additionally, a demonstration experiment revealed that the piezoelectric generator could
effectively drive 35 LED lamps. Alternatively, commercial temperature and humidity
sensors could be driven by commercial capacitors and rectifier bridges, demonstrating that
the piezoelectric power generation unit was fully capable of driving intelligent sensors, and
the generated electrical signals reflected the operating state of the machine and detected
the operating conditions of the machine. The above experiments demonstrated that the
intelligent device could be used in building an intelligent sensor system outside the vehicle
to recover the vibration energy of the vehicle exhaust system and monitor the driving state.
It may also be used in intelligent vehicles, Internet of Things transportation, and other
fields in the future.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/mi14020491/s1, Figure S1: Physical structure of installation
platform: (a) stator, (b) rotor, (c) assembly drawing. Figure S2: Output performance of the PZT units
having different specifications: (a–c) current of PZT units of different specifications for a stroke of the
motor of 1, 2, 3, 4, and 5 mm, (d) power of different PZT for a stroke of the motor of 1, 2, 3, 4, and
5 mm. Figure S3: (a) Physical structure of high-frequency vibration test bench. (b,c) Circuit diagram
of PZT in series and parallel. Figure S4. Output performance of PZT of different specifications:
(a–c) the current and power of different specifications of PZT. (d) power of different PZT at different
frequencies. Figure S5: (a) Voltage of the PZT 1-4. (b,c) rectified voltage and current. Support Video
S1: The generating unit drives the LED warning light. Supporting Video S2: The generating unit
drives the sensor. Supporting Video S3: The car exhaust system vibrates to drive LED warning lights.
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