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Abstract: The online monitoring of a multi-jet electrospinning process is critical to the achievement
of stable mass electrospinning for industrial applications. In this study, the construction of an ejection
state recognition system of a multi-jet electrospinning process based on image processing is reported.
The ejection behaviors regarding multi-nozzle electrospinning were recorded by CMOS industrial
cameras in real time. The characteristic information regarding the multi-jet cone tip was obtained by
processing the images regarding Roberts operator edge detection, Hough transform line detection,
and mask histogram analysis. The jet anomalies of the hanging droplets in the nozzle outlet area
could be obtained and identified by the vision. The identification accuracy towards the target hanging
droplets was more than 85%. This work reports the intelligent control of large-scale multi-nozzle
electrospinning equipment.

Keywords: multi-nozzle electrospinning; open-cv image processing; jet-state identification

1. Introduction

Electrospinning is one of the main methods of preparing ultrafine nanofibrous mate-
rials, which have broad applicational prospects in the fields of air filtration [1], polluted
water purification [2], the development of medical dressings [3], active food packaging [4],
electromagnetic interference shielding [5], and so on. Particularly, in the case of increasingly
serious global water pollution, multifunctional oil–water separation nanofiber membranes
are used to efficiently purify water resources [6–8]. The use of multi-nozzle electrospinning
technology is one of the main methods employed to achieve mass electrospinning in in-
dustrial applications. Different process parameters [9], such as the spinning voltage and
solution concentration, have a great influence on the formation of jets during the stretching
of polymer solutions [10–12]. Abnormal multi-jet ejection behavior is the principal element
impacting the quality and efficiency of nanofiber membrane formation. Therefore, the
online monitoring of multi-nozzle electrospinning and the automatic recognition of jet
anomalies have become core problems in the mass industrial electrospinning domain.

Electrospinning utilizes a high-voltage electric field to induce a charged jet and thus
produces nanofibers from a polymer solution, and typsof this technique include single-
nozzle or multi-nozzle electrospinning and needleless electrospinning. At present, stable
multi-nozzle spinnerets are available; for example, Jiang [13] et al. designed a new spinneret
structure in which the nozzles are arranged in an arc array and simulated and adjusted
the electrical field distribution among the nozzles by using the Ansys software to achieve
a relatively uniform electrical field. In addition, the following work described in this
paper has been carried out based on the spinneret mentioned above. Clearly, online
multi-jet detection and the automatic recognition of multi-jet anomalies is necessary to
guarantee the industrial generation of mass electrospinning. However, there are some
difficulties that must be solved, such as those regarding strong interferences, small size,
and high speed in the electrospinning process. The adjustment of the electrospinning
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current that stems from charge migration is one of approaches used to monitor ejection
behaviors. Samatham [14] et al. established a microcurrent test system and explored a
method to monitor electrospinning states through current changes. Kim [9] et al. studied
the influence of the electrospinning current on the morphology of nanofibers and optimized
the process parameters to increase the uniformity of electrospun nanofibers. Zheng [15]
et al. identified and analyzed the various ejection modes of an Electrohydrodynamic
Direct-Write (EDW) system by introducing image recognition and microcurrent detection.
Nevertheless, because the electrospinning current has the characteristics of small values,
strong interferences, and a low signal-to-noise ratio, it is difficult to determine multi-
nozzle jet states online. Alternatively, visual detection is another great way to realize
online monitoring [16], which offers the advantages of high efficiency and intuitiveness.
Kadomae [17] et al. used industrial cameras to collect images of the liquid’s shape at
the cone tip to study the printing behaviors via monitoring the jet mode. Choi [18] et al.
sprayed zeolite dispersion at a higher position than the Taylor cone and captured dozens of
images of the jet with some particles by using a high-speed camera to successfully measure
the jet velocities. Li [19] et al. used a high-speed camera to record the jet movement in
three different melt electrospinning systems to study the influence of the electric field
distribution on the jets’ movement. Mieszczanek [20] et al. monitored and analyzed the jet
angle and area of the first Taylor cone with a high-resolution camera in melt electrowriting
to further detect and correct the degree of fiber pulsing. Li [21] et al. used a high-speed
camera to capture the images of the Taylor cone and jet motion, proving that different PVP
concentrations in the core and shell could lead to different core and shell thicknesses as
well as various jet modes. The above research mainly focuses on the Taylor cone area and
jet modes of the single-nozzle-electrospinning process, which is quite different from the
monitoring requirements of multi-nozzle electrospinning. In addition, the latter is required
to meet the demand for a larger recognition range, a greater information volume, and the
lower information reliability of multi-jet state images. Meanwhile, the purpose of this
research work is not to accurately identify the jet ejection behavior pattern, but to identify
whether the jet in the nozzle’s exit area is stable.

In this paper, aiming to develop a convenient detection and identification method
for state recognition applied to multi-nozzle electrospinning, an online multi-jet state
identification system was established based on Python and Open-cv, which can identify
the jet anomalies of the nozzle outlet area and display warning signs. If there is a hanging
drop instead of a cone jet at the nozzle outlet, it is judged as abnormal ejection. This work
promotes the development ofan intelligent control technology towards the realization of
mass electrospinning for the efficient production of nanofilms.

2. Materials and Methods

Polyethylene (PEO, Mω = 3 × 105 g·mol−1, Changchun Dadi Fine Chemical Co., Ltd.,
Changchun, China) was selected as the analyzed material. The solvent was deionized
water/ethanol (v:v = 3:1) mixed solvent. The mass concentration of PEO solution is 10 ωt%.

A schematic of a multi-jet-state-monitoring system is shown in Figure 1; notably,
this work only concerns the nozzle outlet area. A precision syringe pump (Pump 11 Pico
Plus Elite, Harvard Apparatus America, Dover, MA, USA) was used to deliver solution
continuously and quantitatively to the spinneret. A DC high-voltage power supply (DW-
SA403-1ACE5, Dongwen high-voltage power source Ltd., Tianjin, China) was used to
generate a strong electric field between the spinneret and the collector. The anode of the DC
high-voltage power supply was connected to the nozzle of the spinneret, and the cathode
was connected to the collector. A complementary metal-oxide-semiconductor (CMOS)
camera (MV-CS050-10GC, Hangzhou Hikvision Digital Technology Ltd., Hangzhou, China)
was used to observe and record the ejection state of the multi-nozzle electrospinning system
in the outlet area.
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Figure 1. Schematic diagram of multi-nozzle electrospinning equipment.

A mass multi-nozzle electrospinning device was equipped with multiple CMOS
industrial cameras for real-time recording. As shown in Figure 1, two multi-jet spinnerets
could be regarded as one group, which was recorded by the same camera. Based on the
recorded images of the electrospinning process, the jet anomalies of the nozzle outlet area,
namely, hanging droplets, have been identified to ensure that the device can produce stable
and uniform nanofibers in the industry.

3. Multi-Jet Image Processing

The monitoring of the multi-jet electrospinning process has been transformed into
obtaining real-time images recorded by a CMOS camera. Based on image-processing
technology, the Regions of Interest (ROI) of the images were established, and the hanging
drops of the cone tips were recognized. The processing flow of the multi-jet electrospinning
imagesis shown in Figure 2.
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3.1. Image Preprocessing

There was little difference in the grey values between the target objects and the
background. In order to obtain more accurate and reliable results, the initial images needed
to be initially adjusted. The preprocessing stage and its results are shown in Figure 3.
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3.1.1. ACE Algorithm

Automatic color enhancement (ACE) is based on the theory of the Retinex algo-
rithm [22,23], and it corrects the final pixel value by combining the brightness degree and
distance between the target pixels and the surrounding pixels in order to achieve good
image contrast adjustment.

The ACE algorithm consists of two steps: (1) the adjustment of the color and space of
the image to complete the correction of color difference; (2) the dynamic expansion of the
corrected image [24]. Its calculation formula is as follows:

Y =
Σ ( g( I(x 0) − I(x) ) · ω(x 0 , x) )

Σ ( ω(x 0 , x) )
(1)

In this formula, ω is the weight coefficient, g is the relative contrast adjustment
parameter g(x) = max (min (ax, 1.0), −1.0), and a is the control parameter.

In this paper, the ACE algorithm was used to process the initial image. Figure 3b
depicts the result after image enhancement. While maintaining the authenticity of the image,
the light and dark degrees of the image were greatly improved, thereby strengthening the
contrast between the target object and the background pixel.

3.1.2. Threshold Processing

The maximum inter-class variance method proposed by the Japanese scholar Nobuyuki
Otsu (OTSU) was used to select a threshold at which to divide the image into foreground
and background parts [25] and then calculate the inter-class variance of the two parts. The
larger the inter-class variance, the more appropriate the selected threshold. The definition
and the calculation formula of interclass variance are as follows:

σ2= P1 (m 1 − mG

)2
+P2 (m 2 − mG)

2 (2)

In this formula, σ is the inter-class variance; P1, P2 are the probability of pixels ap-
pearing as foreground and background regions, respectively; and m1, m2, mG are the
foreground, background, and global average gray values, respectively.

The three-channel image processed by the ACE algorithm was grayed to convert it into
a single-channel image, as shown in Figure 3c. In addition, OTSU threshold processing was
used to automatically select an appropriate threshold to cope with various gray background
values, as shown in Figure 3d.
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3.2. Hough Transform Edge Detection

The Roberts operator is a gradient algorithm based on cross difference, which detects
edge lines by local difference calculation. The algorithm has a remarkable effect on image
edge enhancement of ±45◦. In this paper, the Roberts operator was used to detect the edge
of the spinneret cone wall, and the result is shown in Figure 4a.
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On this basis, the contour information was obtained via Hough transform, which
was widely used for curve detection in image processing. In addition, in this paper, the
cumulative probability Hough transform was adopted. Its basic principle is to transform
the pixels of an image from the Cartesian coordinate system to the polar Hough space
system, and then accumulate and randomly extract the fitting points until the number
of fitting lines reaches the threshold. The polar transformation formula of the Hough
transform is as follows:

r = x · cosθ + ysinθ (3)

In the formula, r is the distance from the origin to the nearest point on a straight line,
and θ is the angle between the x axis and the straight line.

Before initiating line detection, in order to improve the system’s recognition accuracy,
binarization processing and morphological operation were used to remove marginal fine
noise. Then, the target line segments were selected according to the vertical slope and
an appropriate range of length to exclude the interfering curves. The detection results
are shown by the red lines in Figure 4b. Furthermore, the coordinates of the target line
segment’s endpoints were obtained. The appropriate endpoint coordinates were selected
as the center coordinates of the circular area to establish the ROI. In addition, the hanging
drop feature was extracted and analyzed in this area.

4. Results and Discussion

In the nozzle outlet areas of the images, the hanging drops at the spinneret cone
tips could be found. Due to the refraction and scattering of light, there are obvious
pixel changes in this area, which have an approximately waveform-like shape. The mask
histogram analysis of the ROI is shown in Figure 5. In this region with its hanging drops,
the pixel changed obviously, and the distribution was scattered. Conversely, when there
were no hanging drops in the cone tip area, the background did not fluctuate, and the pixel
distribution in the histogram was concentrated.

In this paper, two methods for the detection of hanging drops at the nozzle outlet area
were adopted. Firstly, the mean square deviation threshold was set to screen and identify
the hanging droplets. The mean square deviation can accurately describe the distribution of
a histogram. The larger the mean square deviation, the more scattered the pixel distribution
of the histogram. Secondly, the coordinate distribution range of the cone tip was compared
with the pixel fluctuation range of the ROI. If the pixel fluctuation range in the ROI is
greater than the distribution range of the cone tip coordinate, it was surmised that there
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was a hanging droplet. Combining the results of the two detection methods, the warning
indications were defined.
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Multiple groups of video-framing outputs were selected to verify the results. The
accurate identification rate of hanging droplets at the multi-jet cone tip reached 85%. The
specific verification data are shown in Table 1, including the total frames, the total number
of multi-jet cone tips, the number of correct frames and error frames, and the accurate
identification rate. In addition, as shown in Figure 6, the identification results of different
time states in the same group have been displayed. The warning marks of hanging drops
in the nozzle outlet area were indicated.

Table 1. Multiple sets of multi-jet state recognition data.

Number Total Frames Total Number of Cone Tips Correct/Frame Error/Frame Accuracy Rate

1 193 3474 165 28 85.5%
2 306 5508 265 41 86.6%
3 682 12,276 597 85 87.5%
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5. Conclusions

Based on Python and Open-cv, an online multi-jet state identification system was built,
which realized the monitoring of the multi-jet ejection state and the recognition of hanging
droplets in the nozzle outlet area. CMOS industrial cameras were used to obtain the original
images. The ACE algorithm and OTSU threshold processing effectively solved the problem
wherein the overall background of the original image was dim and the difference in the
grey values between the target pixel and the background pixel was small. After image
preprocessing, the Roberts operator edge detection and Hough transform line detection
adaptively obtained the endpoint coordinates of the multi-jet cone tips and established
the ROI area. According to the regional pixel fluctuation of the hanging drops in the ROI,
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histogram analysis and pixel fluctuation detection were carried out to effectively identify
the jet anomalies of hanging droplets in the nozzle outlet area. The feedback recognition
results of image processing were consistent with the actual situation, which was conducive
to achieving the intelligent control of large multi-nozzle electrospinning equipment.
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