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Abstract: A nuclear Zr-4 alloy with a near full density was fabricated via laser powder bed fusion
(LPBF). The influences of process parameters on the printability, surface roughness, and mechanical
properties of the LPBF-printed Zr-4 alloy were investigated. The results showed that the relative
density of the Zr-4 alloy samples was greater than 99.3% with the laser power range of 120–160 W
and the scanning speed range of 600–1000 mm/s. Under a moderate laser power in the range
of 120–140 W, the printed Zr-4 alloy possessed excellent surface molding quality with a surface
roughness less than 10 µm. The microstructure of the printed Zr-4 alloy was an acicular α phase
with an average grain size of about 1 µm. The Zr-4 alloy printed with a laser power of 130 W and a
scanning speed of 400 mm/s exhibited the highest compression strength of 1980 MPa and the highest
compression strain of 28%. The findings demonstrate the potential in the fabrication of complex Zr-4
alloy parts by LPBF for industrial applications.

Keywords: additive manufacturing; laser powder bed fusion; zirconium alloys; Zr-4; process optimization

1. Introduction

Zirconium and its alloys have been indispensable materials for the development of
the atomic energy industry due to their small thermal neutron-capturing cross-sections
and outstanding nuclear properties [1]. In particular, Zr-4 alloys, the key materials of
nuclear reactors, possess excellent nuclear properties, mechanical properties, corrosion
resistance, and thermal stability in high-temperature environments, which can be used
in fuel envelope positioning lattices of pressurized water reactors, component boxes, and
heat exchangers [2,3]. Zr alloys often consist of a single α phase at room temperature. The
α phase can be obtained from the transformation of a β phase, when the phase transition
temperature is lower than 865 ◦C. In addition, non-equilibrium phase transitions (such as
martensitic phase transition) may occur in Zr alloys to form α’/α” phases [4].

Traditional manufacturing efforts have been made on Zr alloys fabricated by casting.
Fuloria et al. [5] studied the mechanical properties and microstructure changes of a multi-
axial forged Zr-4 alloy under different cumulative strains at low temperatures. The results
showed that the ultimate tensile strength and hardness of 5.91 cumulative strain increased
from 474 MPa to 717 MPa and from 190 HV to 238 HV, respectively. Such increases in
strength and hardness are influenced by the grain size effect and high dislocation density.
Li [6] investigated the microstructure evolution of a rolled Zr-4 alloy followed by annealing.
After annealing at 480−580 ◦C for 2 h, the grain boundary morphology of the Zr-4 alloy
evolved from relatively blurred to equiaxial. Qiu [7] identified the second phase in the
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Zr-4 alloy as a Zrx(Fe2Cr) compound, which was distributed between the dendrites of the
α-Zr matrix.

Laser additive manufacturing has been used for fabricating Zr alloys, which overcomes
challenges faced by traditional processes to manufacture fully dense metal parts with
complex geometries and good mechanical properties [8]. Su [9] studied the formation of a
Zr-based bulk metallic glass by laser-directed energy deposition additive manufacturing.
A crack-free Zr-based bulk metallic glass was successfully fabricated with a sufficient high
ultimate tensile strength of 880 MPa, as well as a high yield strength of 835 MPa, which
was similar to that of the as-cast alloy.

Laser powder bed fusion (LPBF) is another laser additive manufacturing technology
suitable for fabricating bulk parts from metal powders. LPBF uses a high-energy laser
beam to melt metal powders [8]. First, a thin layer of metal powder is laid on a substrate.
Then, the laser scans and melts the powder layer through a predefined path. The powder
layers are continuously melted layer by layer, resulting in accumulation to obtain the
geometrically complex parts with a high accuracy [10,11]. Sun [12] focused on the effect of
annealing on the mechanical properties of a Zr-1Mo alloy fabricated by LPBF. The ultimate
tensile strength and elongation of the alloy were 964 MPa and 11.0%, respectively, after
annealing at 803 K for 2 h. A good balance of the strength and toughness was achieved,
when α phase experienced stress relief. Currently, there has been limited research works
on Zr-4 alloys fabricated by LPBF.

During LPBF, the volumetric energy density is determined by the laser power, scanning
speed, hatch spacing, and layer thickness, which has a great influence on the relative density
of printed parts. Particularly, the laser power and scanning speed are the main factors
affecting the energy density. The hatch spacing may affect the overlapping ratio of melt
tracks. A large hatch could cause microholes and unmelted powder particles [13]. The
layer thickness determines the interlayer combination, and an excessive layer thickness
leads to the lack of fusion between layers and severe spattering [14]. Low energy densities
are prone to resulting in unmelted powder particles due to insufficient energy input and
balling phenomena [15]. Comparatively, high energy densities may lead to excessive recoil
pressure and form deep melt pools. The gas from the powder or atmospheric gas inside
the chamber is thus difficult to escape and trapped inside the melt pools to form gas
pores [16]. Additionally, high energy densities may lead to stress cracking that results from
large residual stress caused by large temperature gradients [17]. During the solidification
process, hot tearing may occur due to the shrinkage of melt pools [18].

The surface roughness is greatly influenced by process parameters. The laser power,
scanning speed, and their combined interaction (energy density) are often presented as the
primary parameters affecting the surface roughness of LPBF-printed parts [19]. A high laser
power tends to reduce the surface roughness, as the recoil pressure flattens out the melt
pools and reduces the balling phenomenon by increasing wettability of melt pools. Low
scanning speeds reduce top surface roughness but increase the side surface roughness [20].
The low hatch spacing ensures overlapping between melt tracks and leads to low surface
roughness [21]. A small layer thickness ensures finer particle sizes and facilitates a more
complete melting process due to the higher surface-to-volume ratio compared to a large
layer thickness, which reduces the surface roughness [22]. Additionally, the energy density
has a great influence on the surface roughness. A low energy density leads to discontinuous
melt tracks caused by lacking wettability and formation of balling on melt tracks, resulting
in poor surface roughness. A moderate energy density leads to low surface roughness
because of the formation of continuous and smooth melt tracks with good wettability.
However, an excessive energy density leads to the evaporation of powder and severe
spattering, which seriously hampers the surface quality [23].

In conclusion, this work primarily investigated the influence of process parameters on
the relative density, surface roughness, and mechanical properties of a Zr-4 alloy. Optimum
parameters were determined to produce a near-fully dense Zr-4 alloy with low surface
roughness. The microstructure, phase, and change of mechanical properties and surface
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roughness of Zr-4 alloy affected by process parameters are described, which provides
guidance for the future research of Zr-4 alloy formation by LPBF.

2. Materials and Methods
2.1. Materials

Spherical Zr-4 alloy powder (Hebei Baoju New Material Technology Co., LTD, Hebei
province, China) prepared by the plasma method was used as the raw material, and the
chemical composition of the powder is shown in Table 1. Figure 1a shows the morphology
of the powder with a particle size ranging from 15 to 53 µm. The powder flowability was
measured as 17.5 s/50 g using a Hall flow meter.

Table 1. Chemical composition of the Zr-4 powder.

Element Cr Sn Fe Zr

Wt. % 0.12 0.89 0.19 Bal.
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Figure 1. (a) Powder morphology of the Zr-4 alloy; (b) the schematic of the orthogonal scanning
strategy; (c) geometries of the compressive sample model.

2.2. LPBF Process

A Dimetal-100 LPBF equipment (Laseradd, Guangzhou, China) was employed to print
Zr-4 alloy samples. The LPBF chamber was filled with argon atmosphere to ensure the
oxygen content less than 0.01 vol%. The relative density of the Zr-4 alloy by LPBF is affected
by the laser power, scanning speed, hatch spacing, and layer thickness [24,25]. Based on
our previous studies on the parameter exploration, the laser power and scanning speed
were in the range of 100–200 W and 400–1400 mm/s, respectively. The hatch spacing was
fixed at 0.07 mm to ensure the adjacent melt tracks could overlap, and the layer thickness
was fixed at 0.03 mm to enable every layer of the powder to be completely melted [19].
Compared with the fill line scan and the chess board scan, LPBF-printed samples can obtain
lower porosity by the orthogonal scanning strategy [26], as shown in Figure 1b. Such
a scanning strategy was thus adopted for printing. The specific process parameters are
shown in Table 2.
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Table 2. Parameters to print the Zr-4 alloy via LPBF.

Laser Power (W) 100, 110, 120, 130, 140, 150,
160, 170, 180, 190, 200

Scanning speed (mm/s) 400, 600, 700, 800, 900, 1000, 1200, and 1400
Hatch spacing (mm) 0.07

Layer thickness (mm) 0.03
Spot diameter (mm) 0.08

Scanning strategy Orthogonal scanning

2.3. Characterizations

Metallographic samples with dimensions of 10 × 10 × 10 mm3 were ground, pol-
ished and eventually etched by a corrosive solution (10 vol% HF, 45 vol% HNO3, and
45 vol% H2O) for 15 s [27,28]. A DMI-3000M optical microscope (OM, Leica Microsys-
tems, Weztlar, Germany) and a FEI Quanta 250 scanning electron microscope (SEM, FEI,
Portland, OR, USA) were used to observe the microstructure of the samples. The WDs
of the SEM images ranged from 9 mm to 10 mm, and the voltage was set as 15 Kv. The
phase composition was identified through X-ray diffraction (XRD, The X’Pert3 Powder
diffractometer; Malvern Panalytical, Almelo, Holland). The printed samples were polished
for the XRD characterization. The degree of 2 theta was from 30◦ to 100◦, and the scan rate
was 0.013◦/min. The Archimedean drainage method was used to test the relative density,
i.e., the ratio of the test density to the theoretical density (6.55 g/cm3). The Zr-4 material
was insoluble in water, and thus the relative density of the Zr-4 alloy can be measured by
the method. Three effective data were measured from the samples to determine the average
relative density value. The top surface roughness of the Zr-4 alloy was measured by an
ultra-depth of field microscope (VHX-5000, KEYENCE, Osaka, Japan). The compression
test was carried out by an AG-IC 50kN electronic universal testing machine (SHIMADZU,
Tokyo, Japan) with a compression rate of 0.2 mm/min. Three compressive samples for
each set were used to estimate the compression properties according to the GB/T 7314-2017
standard. The models of Zr-4 samples for testing are shown in Figure 1c. The samples were
printed without any support structures, which were removed from the baseplate by wire
cutting. The fractures of the compressed samples were observed using SEM. The SPSS
software (IBM, Almonk, NY, USA) was used to conduct the correlation analysis.

3. Results and Discussion
3.1. Influence of Laser Parameters on the Relative Density

Figure 2a shows the variation of relative density of the LPBF-printed Zr-4 alloy with
the laser power and scanning speed. When the scanning speed ranged from 600 mm/s
to 1000 mm/s, the relative density of the alloy increased but then decreased with the
increase in the laser power. When the scanning speed of 600 mm/s was applied, the
relative density reached a peak of 99.40% ± 0.01% at the laser power of 130 W. At the
scanning speed of 1000 mm/s, the highest relative density of 99.64% ± 0.02% could be
achieved at the laser power of 160 W. The peak value of the relative density gradually
increased and shifted to a higher scanning speed with the increase in the laser power.
With the scanning speed of 1100 mm/s, the relative density of the alloy increased from
97.81% ± 0.02% to 99.18% ± 0.02%, as the laser power increased from 100 W to 180 W.
Figure 2b exhibits the iso-density diagram of the LPBF-printed Zr-4 alloy with the laser
power and scanning speed. When the laser power and scanning speed were in the ranges of
120–160 W and 600–1000 mm/s, respectively, the relative density of the alloy could remain
larger than 99.3%, indicating an excellent densification. Noted that when the scanning
speed exceeded 900 mm/s, the laser power should be increased to 170 W to ensure a high
relative density.
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The Archimedean drainage method has been widely used in the density measurement
of LPBF-printed parts [29,30]. The LPBF-printed Zr-4 samples were fully dense with a
relative density exceeding 99%. However, the limitation of the Archimedean drainage
method is the accuracy to estimate true weight, as surface tension of liquids used in the
method tends to increase the weight to affect the density [31].

The energy density is dominant to influence the relative density of the printed alloy,
which can be described by:

E =
P

VSH
(1)

where P is the laser power (W), V is the scanning speed (mm/s), S is the hatch spacing
(mm), and H is the layer thickness (mm). Figure 2c indicates the relationship between the
relative density and the energy density. It can be concluded that the relative density tended
to increase with the increasing energy density and deceased when the energy density
exceeded 120 J/mm3. A high laser power and a low laser scanning speed can result in
the accumulation of the laser energy in melt pools and the surge of the melt pool energy,
causing excessive heat accumulation. Moreover, metallurgical defects such as cracks and
pores could be induced. With the increase of the scanning speed, the energy of the melt
pools gradually decreases. The melt pools become stable under a moderate laser power.
A further increase in the scanning speed under a low laser power leads to insufficient
energy within the melt pools, resulting in the increase of unmelted powder particles and
pores, thus exhibiting a decreasing trend of the relative density [32–34]. As shown in
Table 3, the Pearson correlation analysis was used to analyze the correlation between the
energy density, the laser power, and the laser scanning speed via SPSS. The results showed
the Pearson index between the laser power and the relative density was 0.244 while it was
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−0.517 between the laser scanning speed and the relative density, indicating the relative
density of the LPBF-printed Zr-4 alloy was more sensitive to the laser scanning speed.

Table 3. Pearson correlation analysis between the energy density, the laser power, and the laser
scanning speed.

P Relative
Density V Relative

Density

P
Pearson correlation 1 0.244

V
Pearson correlation 1 −0.517

Significant 0.054 Significant 0
number 63 63 number 63 63

Relative
density

Pearson correlation 0.244 1 Relative
density

Pearson correlation −0.517 1
Significant 0.054 Significant 0

number 63 63 number 63 63

3.2. Influence of Laser Parameters on the Surface Roughness

The macroscopic morphologies of Zr-4 alloys by LPBF under different parameters are
shown in Figure 3. A low laser power and a high scanning speed led to a smooth surface of
the printed alloy. An overburn phenomenon occurred, when the laser power was greater
than 150 W with a scanning speed of 600 mm/s. When the laser power was increased
to 170 W, the printed alloy gradually obtained overburn surfaces at a scanning speed of
1000 mm/s. The generation of overburn surfaces can be attributed to the high laser energy
density produced at high laser power and low scanning speed values [35,36].
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Table 4 shows the surface roughness on the side for the samples printed with a laser
power of 130 W and a scanning speed of 600–1200 mm/s. The results showed the influence
of the scanning speed on the roughness of the side surface was not obvious. Generally,
the side surface roughness is mainly affected by the layer thickness [19], which was fixed
as 0.03 mm in this work. Additionally, the procedure of the contour scan with the same
parameters used at each layer further reduced the distinction of the side surface roughness
between different process parameters.

Table 4. The side surface roughness of the Zr-4 alloy (the laser power was 130 W).

Scanning Speed
(mm/s) 600 800 900 1000 1100 1200

Roughness (µm) 8.63 ± 0.55 9.25 ± 0.6 9.14 ± 1.57 9.89 ± 0.23 10.12 ± 0.59 9.49 ± 0.76

As shown in Figure 4a, with the increase of the laser power at a certain scanning
speed, the top surface roughness of the alloy tended to reduce. When the scanning speed of
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1000 mm/s and the laser power of 100 W were applied, the maximum surface roughness of
14.58 ± 0.86 µm was obtained. The surface roughness decreased to the minimum value of
7.09 ± 0.38 µm, when the laser power increased to 130 W. As the laser power increased, the
roughness began to rise to an Ra value of 12.47 ± 0.69 µm at 150 W. By further increasing
the laser power to 180 W, the roughness value decreased to 8.24 ± 0.80 µm. Figure 4b
shows the iso-roughness diagram of the top surface of the printed Zr-4 alloy. The low
roughness of the alloy was achieved with a laser power of 120–140 W and a scanning speed
of 1000–1100 mm/s. However, the laser power greater than 160 W and the scanning speed
greater than 1100 mm/s also led to a low top surface roughness. In Figure 4c, the trend of
the surface roughness against the energy density was similar with that of the laser power.
A low surface roughness was obtained with the energy density in the range of 50–80 J/mm3

and exceeding 130 J/mm3.
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Figure 5 shows the profiles of the top surface of the printed Zr-4 alloy with different
laser power values. A lower laser power led to an insufficient laser input energy, and the
Zr-4 powders could not be fully melted, resulting in the existence of bulges. Meanwhile,
the viscosity of the low-energy melt pools increased; thus, the molten tracks became rugged
and discontinuous [37]. Such factors led to the increase of the surface roughness (Figure 5a).
With a further increase in the laser power to 140 W, the powder was completely melted,
and the liquid molten pools were spread smoothly under the moderate power. Therefore, a
low surface roughness of the alloy was obtained (Figure 5b). The uneven morphology was
affected by the surface tension of liquid melt pools [38]. When the laser power increased to
160 W, it was easy to produce the periodizing effect and increase the surface protrusion due



Micromachines 2023, 14, 556 8 of 14

to the generation of the large temperature gradient between the center and the edge of the
melt pools [36], resulting in the high surface roughness (Figure 5c). When the laser power
was greater than 160 W, an obvious overburn phenomenon appeared on the surface [35],
indicating that the laser energy was excessive. In this case, adjacent melt pools fused
together before their solidification, and the lap between the melt pools was reduced. As a
result, a giant bulge was created at the edge of the top surface (Figure 5d), which caused
a low top surface roughness but warping deformation on all sides with a laser power of
180 W. Therefore, it can be concluded that the ideal surface roughness was obtained with
the laser power in the range of 120–140 W.
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3.3. Microstructure

Figure 6 shows the OM morphology of the LPBF-printed Zr-4 alloy with a laser power
of 130 W and a scanning speed of 1000 mm/s. As observed in Figure 6a, the morphology
of the alloy along the transverse plane exhibited acicular grains with a size of ~1 µm.
Figure 6b exhibits overlapped molten pools without obvious metallurgical defects along
the longitudinal plane.

Figure 7 shows the XRD diffraction pattern of the printed Zr-4 alloy with a laser power
of 130 W and a scanning speed of 1000 mm/s. According to the standard diffraction pattern,
an α-Zr phase could be identified in the printed Zr-4 alloy. During LPBF, the powder melted
rapidly to form a liquid melt pool and solidified rapidly to form acicular martensite. In the
rapid cooling stage, β-Zr, a stable phase at high temperatures in Zr alloys, undergoes the
phase transition from β to α. Additionally, non-equilibrium phase transformation often
occurs during the cooling process, producing metastable structures such as α'/α" phases.
Because their crystal structures are similar to the α phase obtained by the equilibrium phase
transformation, they cannot be separated in XRD patterns [39–41].
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3.4. Compression Properties

Our previous studies on the tensile properties showed the printed Zr-4 tensile coupons
exhibited a quite low ductility. Even with the optimized parameters, the tensile coupons
were still fractured at the very early stage of the testing. Therefore, the compression
test was selected. Figure 8 shows the compressive properties of the LPBF-printed Zr-4
alloys with different parameters. When a laser power of 130 W was applied, both the
compression strength and compression strain of the printed Zr-4 alloy decreased with
the increase in the scanning speed (Figure 8a–b). The compressive strength gradually
decreased from 1950 MPa with a scanning speed of 400 mm/s to 1540 MPa with a scanning
speed of 1400 mm/s, while the compressive strain decreased from 28.3% to 15.5%. When
the scanning speed was kept as 1000 mm/s, the compression strength of the printed
alloy remained about 1650 MPa with an increase in the laser power from 100 W to 200 W
(Figure 8c,d). When the laser power increased from 100 to 180W, the compression strain
increased from 15% to 22.5% and then decreased to 20.5% as the laser power further
increased to 200 W.
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Figure 9 shows the compression fracture morphologies of the LPBF-printed Zr-4 alloys
using different process parameters. The fracture surface of the printed alloy was mainly
composed of the quasi-cleavage planes with a laser power of 130 W and a scanning speed
of 400 mm/s (Figure 9a,d). When the scanning speed increased to 1000 mm/s, the fracture
surface was composed of cleavage and quasi-cleavage planes (Figure 9b,e). When the
scanning speed reached 1400 mm/s, obvious tearing edges and quasi-cleavage regions
between them were found on the fracture surface (Figure 9c,f). With the increase in the
scanning speed, the fracture surface gradually evolved from cleavage to semi-cleavage
and semi-quasi-cleavage plane and finally became a dominated cleavage fracture. Such an
increase in the cleavage region and a decrease in the quasi-cleavage and dimple regions are
the main reasons for the deterioration of ductility [42].

Comparatively, as the scanning speed was fixed as 1000 mm/s, the fracture surface
was relatively flat at the laser power of 100 W (Figure 9g). Cleavage planes could be
observed with a few quasi-cleavage areas (Figure 9i). When the laser power increased to
130 W, the quasi-cleavage regions increased. When the laser power reached 200 W, the
fracture surface presented an angle of 45◦ between the fracture surface and the horizontal
plane (Figure 9h). Additionally, all the surfaces were presented as quasi-cleavage planes,
where some possessed lamellar shedding boundaries (Figure 9j). The increase of the quasi-
cleavage regions led to an increase in the compression strain with the increase of the
laser power.
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The changes in laser power and scanning speed led to the variation of the energy
density. When a low laser power or high scanning speed was used, the resulted low laser
energy density caused the formation of defects such as cracks and pores. For example,
samples with a laser power of 130 W and a scanning speed of 1400 mm/s (energy density of
44 J/mm3) exhibited a relatively lower compressive strength (1540 MPa) and compressive
strain (15%), corresponding to a low relative density of ~98.5% (Figure 2c). Therefore,
with an increase in the laser power and a decrease in the scanning speed, the compressive
strength of the printed alloy was improved. Additionally, the scanning speed played an
important role in the interaction between the laser and the powder. A long interaction
period tended to cause oxidation and nitriding, which limited the mobility of dislocation
and hampered the ductility [43,44]. Consequently, a high energy density (80–120 J/mm3)
and a low scanning speed (below 800 mm/s) were recommended during LPBF.

4. Conclusions

A Zr-4 alloy with a high relative density and excellent mechanical properties was man-
ufactured by LPBF. Process optimization, surface roughness measurement, microstructure
observation, and mechanical properties analysis were conducted. The main findings are
presented as follows:

1. The LPBF process parameters for printing the Zr-4 alloy were optimized as the
laser power of 120–160 W and the scanning speed of 600–1000 mm/s. A highest
relative density greater than 99.3% could be obtained with the energy density of
70–110 J/mm3.

2. The top surface roughness of the alloy tended to reduce with the increase of the laser
power as well as the energy density at a certain scanning speed. The low roughness
of the alloy was achieved with laser powers of 120–140 W and scanning speeds of
1000–1100 mm/s and energy densities of 60–80 J/mm3.
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3. The microstructure of the printed Zr-4 alloy consisted of an α-Zr phase with an
average grain size of about 1 µm. The α-Zr existed in the form of crisscross acicular
grains, determined by the temperature gradient of molten pools.

4. The laser power and scanning speed showed remarkable influences on the compres-
sive strength and compressive strain of the Zr-4 alloys. Under the laser power of
130 W, the compressive strength gradually decreased from 1950 MPa to 1540 MPa and
the compressive strain decreased from 28.3% to 15.5% with the increase in the scanning
speed from 400 mm/s to 1400 mm/s. When the scanning speed was 1000 mm/s and
the laser power increased from 100 W to 200 W, the compression strength remained
about 1650 MPa while the compressive strain tended to increase from 15% to 22.5%.
A high energy density (80–120 J/mm3) and a low scanning speed (below 800 mm/s)
were recommended during LPBF.
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