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Abstract: Due to its non-volatility and large capacity, NVM devices gradually take place at various
levels of memories. However, their limited endurance is still a big concern for large-scale data centres.
Compression algorithms have been used to save NVM space and enhance the efficiency of those
lifetime extension methods. However, their own influence on the NVM lifetime is not clear. In order
to fully investigate the impact of compression on NVM, this paper first studies bit flips involved in
several typical compression algorithms. It is found that more bit flips would happen in the shrunken
area of a memory block. This induces the phenomenon of intra-block wear unevenness, which
sacrifices NVM lifetime. We propose a new metric called local bit flips to describe this phenomenon.
In order to relieve the intra-block wear unevenness caused by compression, this paper proposes
a sliding write method named SlidW to distribute the compressed data across the whole memory
block. We first divide the memory block into several areas, and then consider five cases about the
relationship between new data size and left space. Then, we place the new data according to the
case. Comprehensive experimental results show that SlidW can efficiently balance wear and enhance
NVM lifetime.

Keywords: bit flip; memory compression; local wear; non-volatile memories

1. Introduction

With the rise of big data applications, the amount of data quickly increases, which
stimulates the requirements for large memory storage capacity. Traditional memory tech-
nologies such as Dynamic Random Access Memory (DRAM) or Static Random Access
Memory (SRAM) can not be further expanded due to their manufacturing process. Due to
its advantages, such as non-volatility, high storage density and low power consumption,
Non-Volatile Memory (NVM), such as Phase Change Memory (PCM) [1–3], Spin-transfer-
torque Random Access Memory (STT-RAM) [3,4], Ferroelectric Random Access Memory
(FeRAM) [3,5] and Resistive Random Access Memory (ReRAM) [3,6], have been widely
studied and considered to be an alternative for various levels of the memory hierarchy,
e.g., cache, main memory and secondary storage. However, in the existing research, due to
the advantage of the large capacity of NVM, large-scale applications such as the nervous
system and image processing are usually implemented in the NVM environment. These
applications generate large amounts of data, resulting in a large number of bit flips, which
speeds up the wear of NVM blocks and jeopardizes the lifetime of NVM devices. NVMs,
such as PRAM or STTRAM, are also applied to embedded devices. When applied to
embedded systems, the non-volatility of NVM will cause some security problems; the use
of encryption algorithms will increase the bit flips and reduce the lifetime. In addition,
the endurance of NVM is quite limited with only 108 to 109 write cycles compared to DRAM
with 1015 writes [3]. Therefore, using NVM as DRAM might result in lifetime issues.
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There are many studies on extending the lifetime of NVM, e.g., by keeping wear level-
ing among memory blocks [7–10], reducing the number of writes [11,12] or reducing the bit
flips [13–16]. However, these methods often consume extra NVM space for the metadata,
e.g., tag information in the most commonly used FNW method that is used to reduce bit
flips [15]. Compression algorithms have already been used to save NVM space for existing
lifetime extension methods [16,17]. The most popular memory compression algorithms
include Frequent Pattern Compression (FPC) [18], Base-Delta-Immediate Compression
(BDI) [19,20] and Frequent Value Compression (FVC) [21], which reduce the size of the
data by de-duplicating or deleting consecutive “0” s and “1” s. However, the effect of
compression algorithms themselves on NVM has not been studied in existing works.

To investigate the effect of compression on NVM lifetime, we conducted a preliminary
study with three popularly used compression algorithms. From the study results, it is
first observed whether the number of bit flips may increase or decrease after applying
compression, which has no direct connection with the compression ratio. As compressed
data are often stored in a fixed range of one memory block, only the shrunken area would be
affected by bit flips, which would cause block wear locally. To identify and characterize the
non-even wearing, we propose a new metric called local bit flips to describe the local wear
on shrunken areas induced by compression. Furthermore, we observe that all compression
algorithms would cause an increased number of local bit flips, which would sacrifice the
NVM lifetime.

Based on these observations, we propose an intra-block wear-leveling mechanism
called SlidW to relieve the local wear effect and enhance the NVM lifetime. The key idea
is to distribute the compressed data into different places inside one memory block in a
round-robin way. The memory block is first divided into several areas, and the compressed
data to be written would be placed into these areas by considering five cases about the
relationship between the left space and sizes of old data and new data. For each case,
different write data placement methods are applied.

Our experimental results show that SlidW can significantly reduce the local bit flips,
which leads to a 23.61% reduction in local wear and an overall increase in NVM lifetime.
Meanwhile, SlidW can reduce read and write latency by 6.52% and 2.78% and reduce
energy consumption by 0.64%.

Our contributions are listed as follows:

• We propose a new metric, local bit flips, to describe the effect of compression on local
areas of one NVM memory block. From the preliminary study based on this metric,
we find that severe local wear is caused by existing compression algorithms, which
would sacrifice the NVM lifetime.

• To address the local wear problem, we propose an intra-block wear leveling method
called SlidW, which places the compressed data into different areas inside one block.
We design the data placement policy under five cases by considering the differences
between the size of new data and old data.

• We evaluate our proposed SlidW method using gem5 and NVMain simulators. Exper-
imental results verify that SlidW is able to reduce the local wear effect and extend the
NVM lifetime.

The rest of this paper is organized as follows. Section 2 introduces the basics of NVM
and existing memory compression algorithms and presents the motivation for our work.
Section 3 presents the definition of the proposed new metric for local wear and shows the
results of the new metrics after using compression. Section 4 presents the details of the
proposed SlidW method. Section 5 describes the platform configurations and analyzes
experimental results. Section 6 presents related works to this paper and Section 7 concludes
our work.
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2. Background and Motivation

In this section, we first introduce the basic structure of NVM. Then, we present several
commonly used memory compression algorithms. Finally, the preliminary study that
motivates our work is illustrated.

2.1. Introduction of Phase Change Memory

Among the different types of NVMs, PCM is regarded as a candidate for memory due
to its Byte addressabilities such as DRAM, good scalability and low energy consumption.
A PCM device has one or multiple channels, each of which is connected to a Dual In-
line Memory Module (DIMM) and composed of one or multiple ranks. Figure 1 shows
the basic structure of PCM, each rank is composed of eight banks, each of which can
deal with memory requests independently. The data in a memory block (cache line) are
distributed among eight banks, and each bank provides part of the data [22]. As shown in
the bottom of Figure 1, a bank has eight data sub-blocks and one ECC (Error Correcting
Code) block [23,24]. The ECC block is used to correct data faults during storage or transfer.
When a memory request comes, the blocks provide 8 Bytes of data and 1 Byte of ECC data.
These 8 Bytes (blue block in 8 data blocks) make up the small yellow block in the middle of
Figure 1. It should be noted that PCM can write cells that are different between old and
new data and do not write cells that are the same.
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Figure 1. The basic structure of PCM. One bank consists of 8 data blocks and one ECC block.

2.2. Memory Compression

AS eBay uses two data warehouses at 7.5 petabytes and a 40 PB Hadoop cluster. It
is much larger than the capacity of highly dense NVM-based memories (24 × 256 GB).
In order to improve storage efficiency and extend memory capacity, compression is widely
used in memory systems. The most popularly used memory compression algorithms
include FPC, BDI and FVC.

2.2.1. Frequent Pattern Compression

The FPC algorithm divides a memory block into 4-byte words and matches these
words with seven general data patterns. These patterns are shown in Table 1.
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Table 1. Patterns in frequent pattern compression.

Word Patterns Prefix Compressed Size

zero run 000 0 bits
4-bit sign-extended 001 4 bits

1-byte sign-extended 010 8 bits
half-word sign-extended 011 16 bits

half-word padding with zero half-word 100 16 bits
two half-words with 1 Byte sign-extended in each 101 16 bits

repeated bytes 110 8 bits
uncompressed word 111 32 bits

For instance, the zero run pattern refers to the bits in the word all being zero. The 4-bit
sign-extended pattern means that the first 28 bits in the 4-byte word are the same as the
29th bit. For example, the last four bits of the word “0x0000 0007” are “0111”, and the first
28 bits are the same as the 29th bit “0”. These 28 bits are called sign-extended bits.

Figure 2 shows the compression process. Once any of these seven patterns are detected
in the word of original data, FPC would first take the prefix in Table 1 as the first three bits
to indicate which pattern it matches. Then, FPC would compress the word according to the
matched pattern, and put the compressed bits after the prefix to form the compressed word.
The word size after compression for each matched pattern is listed in Table 1. Any other
patterns that do not satisfy the listed seven patterns are left uncompressed. For instance,
if it matches the “zero run” pattern, FPC directly replaces the 4-byte word with the prefix
“000”. The compressed size of the original word is 0. For the word “0x0000 0007” that
matches the 4-bit sign-extended pattern, the compressed word would be “0010111” in
binary, and the compressed size would be 4 bits.

word0 word1 word2 word3Original data

Compressed data

Concatenate 
wordsfree space

Pattern 
match

prefix
compressed 
word

Figure 2. FPC compression process. The light grey area is the prefix. The black area is the compression
data. In the process, first the data are divided into words and then matched with the seven patterns;
then, the data are compressed with the patterns. Last, the prefix and words are concatenated in turn
to form the compressed data.

2.2.2. Base-Delta-Immediate Compression

BDI compression has nine patterns of compressing memory blocks (e.g., a cache line
often with 64 Bytes), and these patterns can compress data at the same time. These nine
patterns are shown in Table 2. #Byte refers to the number of Byte.

Table 2. Patterns in BDI compression.

Patterns Encode Base Size
(#Byte) Delta Compressed

Size (#Byte)

Zeros 0000 1 0 1
repeated values 0001 8 0 8

Base8-Delta1 0010 8 1 16
Base8-Delta2 0011 8 2 24
Base8-Delta4 0100 8 4 40
Base4-Delta1 0101 4 1 20
Base4-Delta2 0110 4 2 36
Base2-Delta1 0111 2 1 34

Uncompressed 1111 N/A N/A 64
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The zero pattern will judge whether the data in the memory block are all zero. If so,
then the data will be compressed into 1-byte zero data. The repeated values pattern will
divide memory data into 8-byte words and judge whether all 8-byte words are the same.
If so, the data will be compressed into the first 8-byte word. The Base8-Delta1 pattern will
divide memory data into 8-byte words, choose the first word that minus zero is larger than
the 1-byte data as the base, and calculate the delta between the divided words and the base
or zero. If all the delta can be represented in 1 byte, then the data will be compressed into
data that puts all 1-byte deltas together after the base. For example, the base is 0x1234,
and one of the divided words is 0x1235, the delta is 0x01 and it can be represented in 1 byte,
but the other divided word is 0x3234, the delta is 0x2000, and it cannot be represented in
1 byte, so the memory block cannot be compressed in this pattern. The Base8-Delta2 pattern
and Base8-Delta4 compressed pattern are the same as Base8-Delta1, but the delta should be
represented in 2 bytes and 4 bytes, respectively. The Base4-DeltaY and Base2-DeltaY are to
divide memory data into 4-byte words and 2-byte words, respectively, and the Y denoting
the delta should be represented in Y bytes; the compressed data consist of the base and
Y-byte delta.

In the compression process, BDI matches the above-mentioned patterns simultane-
ously and chooses the matched pattern with the smallest compressed size. Then, the en-
coded pattern is placed at the beginning of the compressed data, as shown in Figure 3. The
last column of Table 2 shows the size after compression by each pattern for the 64-byte
block size.

word0 word1 word2 word3 Calculate
delta

base free space

Deltas are same 
size, concatenate 
them

original data

compressed data

encode
delta

sign bit

Figure 3. BDI compression process. The black area is the encode, the grey area is delta and the
diagonal stripes are the sign bits. In the process, first, data are matched with these patterns, then data
are compressed with these patterns; last, the prefix and words are concatenated in turn to form the
compressed data.

2.2.3. Frequent Value Compression

Just like the FPC algorithms, the FVC compression algorithm also divides a memory
block into 4-byte words and performs the compression within two stages. First, FVC
samples the most frequently used words and encodes them into a 3-bit encode. The first
bit “0” of the encode indicates that it is a frequent value, and the last two bits represent the
position of the frequent value in the FVC encoding table. Figure 4 shows the case with the
four most frequently used words. Second, FVC compares each word with frequently used
words and uses two segments of the mask and value segments to differentiate frequent and
infrequent words. If the word belongs to frequent values, FVC does not store the word in
the value segment but puts its encoded pattern to the mask. Otherwise, the data are stored
in the value segment and the value segment position is put into the mask segment. In the
example of Figure 4, as the first word v0 belongs to the frequent word, it would not be
stored in the value segment. The first position in the mask segment would store the encode
of v0. The second word v9 is not frequent data, so it is placed in the value segment, and its
position (the first position “00”) in the value segment is stored in the mask segment. Note
that the bit “1” in front of “00” is used to indicate infrequent words.
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Frequent Value (32 bits) v0 v1 v2 v3
Encode (3 bits) 000 001 010 011

v0 v9 v1 v10 v3 v10 v0 v11

v9 v10 v10 v11000 100 001 101 011 110 000 111
mask segment value segment

original data

FVC Encoding

Figure 4. An example of FVC compression. The FVC encoding table at the top of the figure gives an
example of frequent values and their encodes. The mask segment stores the encode or site of data,
and the value segment stores the infrequently used value.

2.3. The Preliminary Study

As shown in Section 2.2, memory compression algorithms destroy the original data
organization, which may change the number of bit flips caused by data writing. In order to
investigate the effect of compression on bit flips of NVM, this section performs a preliminary
study on the three above-mentioned compression algorithms. We conduct experiments
on gem5 and NVMain and run nine traditional benchmarks. The detailed experimental
configuration is listed in Section 5.

To study the relationship between bit flips and compression ratio, we collect the
number of bit flips that happen when the original value in the cell is not equal to the
value to be written, and the compression ratio is equal to the original data size divided
by the compressed data size. As shown in Figure 5, we can obtain two observations.
First, compression algorithms increase bit flips in some benchmarks, especially for the
benchmarks Arr Swap, TATP and Hash. Compared with the original data, FPC, BDI and
FVC increase the number of bit flips by 59.3%, 4.84% and 72.92% on average, respectively.
This means that although compression reduces data size, the bit flips would not be reduced
but may increase. During the benchmarks with high compression ratios, e.g., TATP, the bit
flip number surprisingly increased significantly. Second, when different compression
algorithms are used for the same benchmark, there is no relationship between compression
ratio and bit flips. For example, in TPCC, the BDI compression algorithm provides the
highest compression ratio but its bit flip number is the lowest, while the FVC compression
algorithm is the worst in the compression ratio, but its bit flip number is not the highest.

0
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Figure 5. Results of the preliminary study under three compression algorithms. (a) The result of bit
flips normalized to original data. (b) The result of compression ratio.

The above results and analysis show that compression may lead to an increase or
decrease in bit flips. Moreover, the number of bit flips can only represent the average wear
of the memory block. However, the compressed data are usually stored in a shrunken area
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in the memory block (often focused in the first half of the block). Therefore, compression
would induce uneven wear inside a memory block.

Because of using compression, the bitflip will be reduced due to the reduction in size,
but the bitflip will be concentrated in a small area of the block, resulting in an increase in
the flip of local cells. If there is failure in one cell in the block, the entire block also fails.
Traditional bitflip shows the total bit flips in one block, but we can not know where the
bit flips happen. Same-bit flips have different effects in small and big areas, so it is not
applicable. In order to solve this problem, we first propose a new metric named local bit
flips to evaluate the effect of compression in the shrunken area. Details are presented in the
next section.

3. The Local Bit Flips

In this section, we first present the definition of the proposed local bit flips to better
evaluate the local wear caused by compression. Then, we show the experimental results of
this metric in the preliminary study and discuss the motivation for proposing SlidW.

3.1. The Definition of Local Bit Flips

Before presenting the definition of local bit flips, we first discuss what happens in
the compression with an example shown in Figure 6. The data are collected from the
benchmark TATP and the compression algorithm is FPC. In the original block without
FPC compression, when old data are replaced by new data, some bits would be flipped.
The bit flips happen across the whole memory block. When FPC compression is applied,
the memory areas taken by old data and new data are both shrunken. In this situation,
the bit flips only happen in the shrunken area. Thus, it should consider the size of area in
which bit flips happen.

bit f lip_localall =
n

∑
i=1

bit f lip_locali =
n

∑
i=1

bit f lipi

datasizei
(1)

li f etime =
Endurance

bit f lip_localall
(2)

We define the local bit flips as the number of bit flips per unit area. The equation
for calculating the local bit flips represented as bit f lip_localall is in Equation (1), wherein
the n and i represent the total number and the times to write the sequence of writes,
respectively. bit f lip_locali refers to the number of local bit flips in the ith write. bit f lipi and
datasizei show the number of bit flips and the size of area in which these bit flips happen
during the ith write. In the example of Figure 6, the local bit flips are calculated according
to Equation (1). We find that the local bit flips increased after using FPC compression,
which means that compression induces worse local wear on NVM blocks. In order to
further describe the effect of local bit flips on the lifetime of NVM, the lifetime is defined as
Equation (2). Endurance is the maximum number of writes that can be made in a cell.

3.2. Results of Local Bit Flips

In order to show the effect of local wear, we collected more data about the number
of local bit flips and NVM lifetime in the preliminary study, and the results are shown in
Figure 7. In this figure, we first observe that most benchmarks with three compression
algorithms would increase the number of local bit flips. This is because when compression is
used, the negative impact of the reduction in data size is severely exaggerated. Especially
for benchmarks in which compression increases bit flips, this negative effect would be
further worsened. Meanwhile, the increase in local wear will reduce the lifetime of NVM.
As shown in Figure 7b, when the local bit flips increase, the lifetime decreases. Second,
we observe that for some benchmarks, the local bit flips are not obviously increased by
compression, e.g., in Quicksort and Radixsort. For the benchmark TPCC, BDI reduces the
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number of local bit flips. This may be because the positive effect of data bit flips reduction is
greater than the negative effect of size reduction.
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New dataOld data
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Figure 6. An example of an increase in local bit flips occurred in one NVM write taken from the TATP
benchmark. The local bit flips for this write are computed with and without compression.

Third, the FPC algorithm increases the bit flips in all benchmarks, as shown in Figure 5a,
and also induces the largest local wear effects among the three compression algorithms.
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Figure 7. Results of the preliminary study using three compression methods. (a) Local bit flips,
(b) NVM lifetime.

The above experimental results show that the area size reduction caused by compres-
sion induces severe wear in the shrunken area. Thus, the wear inside the whole memory
block is not even, which would sacrifice the NVM lifetime. In order to avoid this uneven
local wear effect, we propose an intra-block wear leveling method to disperse the local
wear into the whole memory block. Details will be presented in the next section.

4. The Sliding Write Method

This section details the proposed SlidW. First, its architectural overview and the
read/write streams are introduced. Then, the SlidW components are illustrated. At last, we
discuss the overhead involved in SlidW.
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4.1. Overview

In order to solve the local wear problem of NVM caused by compression, SlidW deals
writes with a sliding window. The basic design is to place compressed data into different ar-
eas of the memory in a round-robin way. In detail, SlidW contains four modules of memory
block division, case judgment, tag management and data placement, as shown in Figure 8.
In the first module, the memory block is divided into several areas. The compressed data
size is not fixed, it may be larger or smaller than the area. SlidW then considers five cases
about the size relationship among area size, old data and new data in the case judgment
module. SlidW uses several tags to indicate the written case and manage them in the tag
management module. Once the case is determined, SlidW would decide how to set the tag.
Finally, the data placement module would decide the place to write data according to the
tag information and send the data together with tag information to the NVM Array. Note
that the tag information is stored in the ECC area or extra memory blocks of PCM arrays.

Last Level Cache2

Compression Engine

Case judgment

Decompression Engine

PCM Arrays

Data placement Tag management

Write Read

SlidW

Memory 
Controller

Memory block division

Tag area encode_tagaddr_tag end_tag

counter

Write Buffer Read Buffer

Figure 8. The architectural overview of SlidW.

During the writing process, data would be first compressed in the compression engine.
Then, compressed data would be dealt with in the SlidW module to decide how to place the
data and process the data accordingly. At last, the data are sent to the PCM arrays to finish
the write operation. During the reading process, data would be first read out together with
the tag. According to the assistance of the tag management module in SlidW, address and
status information would be identified and the data would be parsed and organized, then
sent to the decompression engine to finish the reading process.

4.2. Memory Block Division

In order to fully balance the wear caused by compression, the best way is to allow
data to be written from the place in a block without overlapping, that is, to place the
newly written data exactly at the end of the old data. However, this requires storing a
lot of metadata to identify valid parts of the data, and processing the data is also more
complicated. In order to reduce the storage of metadata, we divide the data into four areas,
so that it can be stored from several positions, thereby simplifying the metadata and saving
space. The memory block division module is responsible for logically dividing the physical
memory blocks into areas of the same size. The number of areas depends on the granularity
of writes and can be adjusted according to the requirement of writing sizes. For example,
if the granularity is 4, the physical memory block is divided into four areas. Assume that
the address range of the memory block to be written is from “0x00000000” to “0x00000040”
(64 Bytes), and the size of each area is 16 Bytes. The logical number of the four areas is
denoted as “00”, “01”, “10” and “11”, respectively.
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4.3. Case Judgment

The case judgment module judges which case to use and determines the data place-
ment strategy. As we find in the experiment, there are many zero blocks that will be written
to memory, such as initialization of an array, which will cause additional zero writes, so
we consider this situation separately. To fully balance the data into blocks, we try not to
overlap the data. Therefore, whether the new data can be written to the next part of the
old data will be considered. It is a situation in that data can be written to the next part of
the old data. If data cannot be written to the next part of the old data, and it is written
from the beginning of the block again, this results in the last area rarely being written.
If it is written from the back, the front space will be rarely written. According to the size
of the remaining space and the size of the newly written data, SlidW will consider two
situations. In the above situation, the writing of the different areas is relatively uniform.
However, considering some extreme cases, such as a large gap between old and new data
compression rates, the newly written data cannot be wear-balanced with the old written
data. In this situation, the one with a small compression ratio can still be written normally,
and the last space in the block is rarely written. However, the one with a large compression
ratio can be written to the last space to better balance. In summary, we divide the write
into five cases.

The compressed size of data to write is first provided to the case judgment module by
the compression engine. The case judgment then calculates the left space according to the
tag information of the old data and decides write cases. The calculation of the left space
is to subtract the end position of data from the granularity and then multiply the result
by the area size. The area size is calculated by memory block size divided by granularity.
A shift operation can replace the process of multiplying and division. As mentioned above,
SlidW considers five cases according to the information of new data size, left space and
the counter that tracks the consecutive write number that writes from the first area of the
memory block.

In the first case, the new data size is less than a threshold denoted as Tsize and less than
the left space. We can just put data after old data, so this will not cause overwriting. Note
that Tsize is computed as Tsize = blocksize ∗ (granularity− 1)/granularity. In the second
case, the new data size is greater than the left space and less than threshold Tsize, but the
left space is larger than zero. It can be considered that compared with rewriting from the 00
position (the size of the space that needs to be covered is the size of the new data), writing
to the writable position is more space saving (the coverage area is the new data size minus
left space). Therefore, we separate this case out. In the third case, the new data are all
zero. We can skip this write to reduce the number of times that the block is written. In the
fourth case, the new data size is smaller than threshold Tsize, and the counter has reached
threshold Tcounter. Note that data would be written from the end of block in both the second
and fourth cases, i.e., in reverse order. This is because most writes start from the beginning
of each data area, which would make the wear worse in the first part of data areas. Using
the reverse write can avoid this situation. In the fifth case, the new data set is larger than
Tsize. Then, we just write from the beginning.

Figure 9 shows an example of five cases in the situation where the memory block is
divided into four areas, and the two thresholds Tsize and Tcounter are 48 and 3, respectively.
LS means left space. ND means new data size.
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Figure 9. An example of 5 write cases under the granularity of 4 areas. Different write policies would
be taken by considering the cases. The first row in each case shows the state of memory block before
writing, while the second row shows the block state after writing the compressed data. Light grey
square is encode_tag, medium grey square is addr_tag, dark grey square is end_tag, white square is
counter. Case1: left space size is 16 Bytes, new data size is 10 Bytes; Case2: left space size is 32 Bytes,
new data size is 40 Bytes; Case3: write zero lines; Case4: counter equals 3, the new data size is
40 Bytes; Case5: the new data size is 60 Bytes.

The process of the case judgement algorithm is shown in Algorithm 1, in which NSize
is obtained by dividing the new data size by area size. For example, when the data size
of the new data written is 35, NSize= d35/16e = 3. When data and some supplementary
information such as data size and tag information are sent to the case judgment part, it
would first judge whether the data are all zero. In FPC and BDI, we can judge whether the
data of the memory block is all zeros according to the data size because the data size of all
zeros is fixed to a unique value. When the FVC algorithm is used for the other algorithm,
that data size cannot be used to judge whether it is all zeros; thus, we need to judge it in
the compression engine and pass this message to the case judgment module. For all zero
data, case judgment will determine that this is Case3. Otherwise, case judgment will judge
whether the data size is less than or equal to the set threshold Tsize. If so, case judgment
decides the written case according to the size relationship among the left space, new data
size and counter value. If the left space is larger than or equal to the new data size, case
judgment will determine that this is Case1. Otherwise, if the left space is larger than zero,
case judgment will determine that this is Case2. If still not, it will judge whether the value
of the counter is greater than the threshold Tcounter, if so, case judgment will determine that
this is Case4. If the data size is smaller than Tsize, case judgment will determine that this is
Case5. The decided case and the data size will be passed to the tag management module.

Algorithm 1: Case Judgment Algorithm
input : encode_tag, new_data_size, le f t_space

1 if allzero then
2 Case3;
3 else if new_data_size <= Tsize then
4 if le f t_space >= NSize then
5 Case1;
6 end
7 else if le f t_space >0 then
8 Case2;
9 end

10 else if counter >=Tcounter then
11 Case4;
12 end
13 else
14 Case5;
15 end
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4.4. Tag Management

SlidW uses three tags and a counter to indicate write cases and assist reads and writes.
They are the encoding tag to indicate the encoding information, denoted as encode_tag;
the address tag to indicate the starting position of the data storage, denoted as addr_tag;
the end tag to indicate the end position of the data storage, denoted as end_tag; and the
counter mentioned above. The counter always takes 2 bits and is set according to the written
cases. Encode_tag also always takes 2 bits. The number of bits taken by addr_tag and
end_tag depends on the granularity of SlidW. For the situation with four areas, addr_tag
and end_tag take 2 bits for each.

Once the case is decided in the case judgment module, the tag management module
would set these tags and counters according to Table 3 and Algorithm 2. The modified tag
information will be passed to the Data placement module.

Table 3. Tag calculation.

encode_tag addr_tag end_tag

Case1 01 last written end_tag addr_tag+ NSize
Case2 11 granularity-NSize 00
Case3 10 last written addr_tag last written end_tag
Case4 11 granularity-NSize 00

Case5 00(uncompressed) or
01(compressed) 00 00

Algorithm 2: Tag Management Algorithm
input :Case, new_data_size

1 if new_data_size==64 then
2 encode_tag←00;
3 else
4 encode_tag←01;
5 end
6 if Case1 then
7 addr_tag←end_tag;
8 end_tag←(addr_tag+NSize)%granularity;
9 counter−−;

10 end
11 if Case2 OR Case4 then
12 addr_tag←(granularity-NSize);
13 end_tag←00;
14 encode_tag←11;
15 counter−−;
16 end
17 if Case3 then
18 encode_tag←10;
19 end
20 if Case5 then
21 addr_tag←00;
22 end_tag←00;
23 counter++;
24 end

4.5. Data Placement

The data placement module is used to decide where to put the data according to the
addr_tag calculated by the tag management module and encode_tag. When the encode_tag
is set to 11, then the data should be written in reverse from the end of the memory block;
that is, the first byte of the data is written into the last byte of the memory block, and then
the data are sequentially written to the front bytes of the memory block until the data are
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written done, and the first few bytes of memory block do not need to be written. When the
encode_tag is 10, we just skip this write. When encode_tag is 00 or 01, data placement needs
to be performed according to addrtag. For the situation with four areas in the memory
block, addr_tag has four states. For the state “00”, new data would be written from the
beginning of the memory block. For the other three states, SlidW would rotate the written
data to the corresponding area of the memory block. When the writing position is not
between the position indicated by addr_tag and the position indicated by end_tag, the cell
writing will be skipped. Once the data position is processed, it will be sent to the NVM
array together with tag information.

4.6. Overhead Analysis

In SlidW, tag information would take extra storage space. We assume that each NVM
block is 64 Bytes and equipped with 8 Byte ECC blocks. We take the case with four areas
in the memory block as an example. The three tags take 6 bits. They would be first stored
in the ECC area when the space used for ECC is less than 58 bits, which means the ECC
space is enough to store the tag information. There is no extra data storage space. In the
situation that the ECC size is larger than 58 bits (using BCH code to correct 6 errors, it will
take 61 bits [24]), tags of SlidW would be stored in extra data blocks, and the overhead is
3 bits per memory block. This overhead is still negligible. After the data are compressed,
the required ECC bits will be reduced, so we can have more space to place the tag bits.
Tag can also perform wear leveling, such as changing the position at regular intervals,
so as to reduce the wear and tear of the ECC. Besides, we need a 2-bit counter in the tag
management module, it is negligible.

From the view of algorithm complexity, SlidW involves the data size comparison,
write case judgment in data writes and tag management in both data writes and reads.
The case judgment module needs the tag as the information to judge the case when data
are written. This part of the information is read during compression, so it does not take
extra time. As most information can be directly obtained by fast access and computed with
O(1) complexity, the effect of SlidW on reading and writing can be ignored.

5. Evaluation

In this section, we first present the experimental setup. Then, the results of local
bit flips and lifetime are illustrated. The granularity sensitivity study and compression
algorithm sensitivity study are illustrated. Finally, the results of read/write latency and
energy are presented.

5.1. Experimental Setup

To verify the effectiveness of SlidW method, we perform comprehensive experiments
in the platform built by gem5 [25] and NVMain [26]. The gem5 simulator is a modular
platform for computer system architecture research, encompassing system-level architec-
ture as well as processor micro-architecture. NVMain is a cycle-accurate main memory
simulator that emulates emerging non-volatile memories at the architectural level. Our
experiments use gem5 to simulate the CPU and two-level cache (L1 and L2 cache) structure
and use NVMain to simulate PCM as the main memory. The cache line size is set to 64 Bytes.
The detailed configuration is shown in Table 4, in which lat. is short for latency. Nine tradi-
tional benchmarks [27,28] were used in the experiment and their specific configurations
are shown in Table 5, in which TATP [29] and TPCC [30] are commonly used real-world
benchmarks. # in the Table 5 indicates that the number of operations. The parameters of
granularity, data size threshold Tsize and counter threshold Tcounter involved in SlidW were
set to 4, 48 and 3, respectively.



Micromachines 2023, 14, 568 14 of 23

Table 4. Configuration of simulated system.

Processor and Cache

CPU single-core x86-64 processor, 1 GHZ
private L1/shared L2 caches 32 KB/2 MB

Memory (PCM-Based Memory)

Capacity 8 GB, 1 channel, 1 rank, 8 banks
memory controller first-ready-first-come-first-serve (FRFCFS)

set/reset lat. 60 cycles/20 cycles
read latency 54 cycles

Parameters of SlidW

FNW en/decoding lat. 4 cycles/2 cycles
FPC compression/decompression lat. 8 cycles/5 cycles

Threshold Tsize 48 Bytes
Threshold Tcounter 3

Table 5. Benchmark information.

Benchmark Description Ops (#) Writes

Array Swap Swap items in an array 1,040,691 76.4%
Hash Table Insert values to a hash table 2,870,832 18.6%

Queue En/dequeue item to/from a queue 1,596,168 64.8%
TATP Update records in TATP benchmark 6,360,544 54.4%
RBtree Insert and delete nodes to a red-black tree 1,280,056 35.2%
Btree Insert and delete nodes to a b-tree 4,378,578 33.6%
TPCC Add new orders to the benchmark 1,532,425 50.2%

Quicksort Sort numbers using key value 901,539 48.1%
Radixsort Sort numbers using the DAC algorithm 1,046,992 44.3%

5.1.1. Compared Methods

We first verify the effectiveness of SlidW combined with the FPC algorithm and com-
pare the FPC+SlidW method with three existing methods of FPC, FPC+FNW and FPC+Space.
Details are illustrated as follows:

• FPC is the baseline method to directly use the FPC algorithm in NVM. The FPC
algorithm is a frequently used compression algorithm. The specific compression
process is described in Section 2.2.1.

• Flip-N-Write (FNW) [15] is a method to reduce bit flips by selectively flipping data
according to the bit flip number between old data and new data. In detail, it first
divides the data in the block into several same-size segments. In this experiment,
data are divided into eight segments because n segments require n additional flag bits
and using compression will reduce the data size by at least 8 bits. The eight flag bits
generated by setting eight segments can be stored in the memory block without taking
up additional storage space. The size can be changed according to the requirements.
Then, it needs to count the number of bit flips in each segment. If the number of bit
flips is greater than half the size of the segment (in bits), it flips the entire segment
and sets the corresponding flag bit indicating that the segment is flipped, so that the
number of flips per segment is less than half the size. If the number of bit flips is less
than half the size of the segment, no flips are performed and the corresponding flag
bits are reset. FPC+FNW is to use the FPC algorithm in FNW. In order to facilitate
data reading, we place the flag bits in the last byte of the memory block. FPC+FNW is
to use FPC algorithm in FNW.

• Space [7] is a method to implement intra-block wear leveling by moving data into
different segments. It needs to divide a block into four segments of the same size.
Write from the first block for the first time, and then write from the next segment of the
last written segment each time. If the data can not write starting from the next segment,
it loops forward to the position where it can be written. It will also be skipped if zero
lines are written. This algorithm does not consider the size of the old data, resulting in
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a large amount of data overlap. The writing of the second half and the writing of the
first half of the four segments will also be unbalanced. Using the loop algorithm to go
forward in turn until finding a location where data can be written, will also increase
the time complexity, although, at most, three comparisons. FPC+Space is to use FPC
algorithm in the Space method.

5.1.2. Calculation of Local Bit Flips

According to Equation (1) in Section 3.1, local bit flips equal the total local bit flips
involved in each writing. As SlidW distributes the local wear across the whole memory
block by dividing the block into areas and data may not be written at the beginning of
the block, the definition of local bit flips in Equation (1) should be changed to reflect the
available data size in SlidW. For example, the new write may be written in the second
block area in SlidW. In order to calculate the local wear more accurately, the local bit flips
should be combined together with the last write. Considering the multiple cases in SlidW,
we update the calculation of total local bit flips in Equation (3). In Equation (3), i indicates
several writes that happen in the same memory block but in different areas. i would only
increase when the memory block is changed or the memory block is written before or at
the same position as the last written, and not in reverse. lb ftotal is the total local bit flips and
lb fi is the ith local bit flips.

lb ftotal =
n

∑
i=1

lb fi (3)

The local bit flips for each i are calculated in Equation (4) by considering different write
cases in SlidW. In the equation, as one ith time, there may be old writes and new writes.
b f new

i and b f old
i are used to represent their bit flip number, respectively. sizenew

i and sizeold
i

indicate the data size of new write and old writes, respectively. Note that there may be
coverage between old data and new data, csizei is used to represent the size of this coverage
area in the ith local bit flips.

lb fi =


b f new

i
sizenew

i
addr_tagnew <= addr_tagold&&not reverse

b f new
i + b f old

i

sizenew
i + sizeold

i − csizei
−

b f old
i

sizeold
i

else
(4)

In addition, we also evaluate the effectiveness of our proposed SlidW method, using
an existing metric IntraV [31] that calculates the bit flip variance of cells among a memory
block. As IntraV only evaluates the average bit flips difference between different cells,
but can not reflect the effect of overall bit flips like our proposed local bit flips metric.

5.2. Experimental Results and Analysis
5.2.1. Local Bit Flips

The results of local bit flips are shown in Figure 10a. The y-axis denotes the local bit flips,
and all results are normalized to FPC. The figure shows that all three improved methods
reduce the local bit flips compared with the baseline FPC method. For FPC+FNW, the local
bit flips are reduced along with the reduction of bit flip number. Both Space and SlidW
decrease the local bit flips by distributing the local wear into the whole memory block. On
average, SlidW can reduce the local bit flips by 23.61% in FPC, by 17.98% in FPC+FNW
and 13.09% in FPC+Space. Compared with FPC+FNW, the effect of SlidW on relieving the
local wear is more obvious. This is because it can put data into more space. This means
that the benefit is quite limited to reducing local bit flips by only reducing bit flips.
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Figure 10. Comparison of NVM local bit flips and IntraV under four different methods. Results are
normalized to FPC. (a) Results of local bit flips; (b) Results of IntraV.

Compared with the FPC+Space method, FPC+SlidW performs better. This is because
SlidW fully considers the five cases about the relationships among old data size, left space
and new data size. In the case that the size of the old data is greater than the size of an
area, FPC+Space would directly place the new data next to the starting position of the old
data. FPC+SlidW would deal with this case by selectively putting the new data into the
position where the old data ends according to the size of the old data and new data, and it
can also put data at the end to further reduce coverage size. Thus, more address changes
are induced and a smaller coverage size is created. The lower the coverage size is, the better
FPC+SlidW behaves. Table 6 lists the address change times and coverage size of the two
methods. FPC+SlidW would induce less coverage in all benchmarks and more address
change times in most benchmarks.

This means that FPC+SlidW can make data more evenly distributed in the memory
block and its advantage on wear leveling can be fully exploited. The experimental results
of IntraV are shown in Figure 10b. Compared with FPC, our method reduces the value of
IntraV by 15.23% on average. This also verifies the effectiveness of our proposed SlidW
method. In summary, the effectiveness of FPC+SlidW is affected by both address change
times and coverage size.

Table 6. Results of address change times and coverage size.

Benchmarks
Address Change Times Coverage Size

FPC+Space FPC+SlidW FPC+Space FPC+SlidW

Array Swap 143,275 505,578 3591 1283
Queue 233,886 608,865 3,735,788 932,333
TATP 50,566 375,543 1,103,508 601,245

Hash Table 171,335 167,383 787,772 369,626
Btree 400,678 822,446 899,457 65,736

RBtree 38,082 37,746 187,636 648
TPCC 2910 17,510 57,491 30,986

Quicksort 182 179 1431 565
Radixsort 183 195 1637 894

5.2.2. NVM Lifetime

The results of NVM lifetime are shown in Figure 11. The figure shows that all three
methods improve NVM lifetime compared with the baseline FPC method. On average,
FPC+SlidW can improve NVM lifetime by 67.78% compared with FPC, by 55.63% compared
with FPC+FNW and by 44.09% compared with FPC+space, respectively. According to
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Equation (2), lifetime is inversely proportional to local bit flips and proportional to endurance.
As endurance is fixed, the lifetime results mainly relate to local bit flips. These results verify
that our proposed method can effectively improve NVM lifetime.
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Figure 11. Comparison of NVM lifetime under four different methods. Results are normalized
to FPC.

5.2.3. Sensitivity Study on Block Division Granularity

In the primary method, we set a memory block as divided into four areas, i.e., the
granularity is 4. This section studies the sensitivity of FPC+SlidW on the other granularity
settings of 2 and 8. Figure 12 shows the results of the sensitivity study on the granularity
partition.

From the results in Figure 12, it can be first seen that all FPC+SlidW methods with
three granularities can reduce the number of local bit flips and improve NVM lifetime
compared with the other three methods. This verifies that the effectiveness of FPC+SlidW
on relieving local wear effect is not significantly affected by the number of block division
areas. Then, it can be observed that the results with different granularity show differences
in some benchmarks, especially in Arr Swap and Queue. For most of these benchmarks,
the FPC+SlidW method with a larger granularity shows better performance. For example,
on average, FPC+SlidW4 reduces 11.69% of the local bit flips in FPC+SlidW2. This is because
the FPC+SlidW method with a larger granularity generates more address changes. Thus,
compressed data can be fully distributed across the whole block and local wear effect can
be better relieved. It can also be found from Figure 12 that SlidW with a smaller granularity
may behave better for special benchmarks. For instance, FPC+SlidW4 shows a 44.16%
reduction of local bit flips than FPC+SlidW8 in Arr Swap. This is because the FPC+SlidW
method with a smaller granularity generates a smaller coverage size.
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Figure 12. Sensitivity study results of NVM lifetime on block division granularity. FPC+SlidW with
three granularities is studied and results are normalized to FPC+SlidW8. (a) Results of local bit flips.
(b) Results of NVM lifetime.
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Finally, different benchmarks behave differently based on different granularities. This
is because different benchmarks have different compression ratios, and the memory block
size after compression varies with the benchmark. A larger compression ratio suits a
smaller granularity. Because a smaller granularity has less area, it can store data from more
positions. A larger compression ratio makes data small, so they can take advantage of these
positions. So one physical memory block can store more compressed data, but a smaller
compression ratio means the data size after compression is big. When using a smaller
granularity, SlidW, it will cause a greater coverage size. Besides, when compression ratio is
small, the extra start position is not used, and the tag bit will be wasted.

According to the above results and analysis, it can be concluded that FPC+SlidW can
effectively improve NVM lifetime and the effectiveness is slightly affected by the block
division granularity.

5.2.4. Sensitivity Study on Compression Algorithms

In the primary method, we show the effectiveness of SlidW combined with the FPC
compression algorithm. This section studies the performance of SlidW combined with
the other two algorithms of BDI and FVC. The study results are shown in Figure 13;
these results are normalized to FPC. From the figure, it can be first seen that SlidW can
reduce the number of local bit flips and improve NVM lifetime when combined with
different compression algorithms. On average, SlidW can reduce local bit flips of FPC
by 23.61%, that of BDI by 7.04% and that of FVC by 37.70%, respectively. We find that
different compression algorithms behave differently when using SlidW because the different
compression algorithm has a different compression ratio and number of local bit flips
compared to without using compression. When the compression ratio is large, it may
increase local bit flips, and SlidW will be more efficient. These results verify that SlidW
can effectively relieve local wear effect caused by compression algorithms and improve
NVM lifetime.
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Figure 13. Study results of SlidW on compression algorithms. These results are normalized to FPC.
(a) Results of local bit flips. (b) Results of NVM lifetime.

5.2.5. Sensitivity Study on Block Size and Cache Level

In order to study the impact of different cache systems on our method, we added a
third-level cache, the capacity of l3cache was set to 8 MB, and the l2cache was changed
to private cache and changed to 256 KB. In order to increase the memory pressure, we
increased the number of reads and writes of the benchmark and combined the two sorting
algorithms into a Sort benchmark. The results are similar to those with a 2-level cache.
SlidW is 23.24% better than FPC, 18.17% better than FNW and 15.32% better than space.
At the same time, the lifetime increased by 73.16%, 62.16% and 53.60% compared with FPC,
FNW and space, respectively. On this three-level cache architecture, we adjusted the block
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size. As shown in Figure 14, we can see that SlidW works better than the 64-byte block in
some block sizes. SlidW works best on 128-byte blocks and worst on 32-byte blocks.
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Figure 14. Study results of SlidW on different block sizes. These results are normalized to 64 bytes.
(a) Results of local bit flips. (b) Results of NVM lifetime.

5.2.6. Results of Read and Write Latency

This section checks the effect of SlidW on read/write latency of NVM. Figure 15 shows
the results of read and write latency for different benchmarks. The y-axis represents the
normalized read and write latency. From this figure, we can first observe that FPC+SlidW
slightly reduces read/write latency of most benchmarks. On average, compared with FPC,
FPC+FNW and FPC+Space, SlidW decreases the write latency by 6.52%, 33.33% and 6.74%,
respectively, and decreases the read latency by 2.78%, 3.60% and 2.80%, respectively. This
shows that SlidW can induce a slight decrease in read/write latency of FPC, and can reduce
the latency of the other existing works.

Then, we can observe that the write latency may be increased in some benchmarks
when using the SlidW method. This is because write latency depends on the number of
“0”s and “1”s to write, which are different in benchmarks. As the latency of writing “1” is
larger than writing “0”, the more “1”s needed to write, the more write latency is needed.
Furthermore, the more bits that need to be written, the more latency is needed. On the other
hand, the read latency mainly depends on the change in the queue waiting time. When
write latency changes, the queue waiting time changes, and the read time will also change.

In summary, these results show that SlidW does not induce obvious latency overhead
compared with existing methods.
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Figure 15. Results of the read/write latency under four compared methods. (a) Write latency; (b) read
latency.



Micromachines 2023, 14, 568 20 of 23

5.2.7. Results of Energy Consumption

This section presents the effect of SlidW on total energy involved in NVM. Figure 16
shows the results of energy with four methods in nine benchmarks. The y-axis represents
the normalized energy.
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Figure 16. Comparison of energy for four different methods. Results are normalized to FPC.

As shown in this figure, compared with FPC and FPC+FNW, SlidW decreases the
energy by 0.64% and 0.72% on average, respectively, as the energy is closely related to the
number of bit flips. The calculation of energy includes two parts, one part is the energy
required for preparation work when reading and writing data, and the other part is the
energy required to flip the value on the cell; it needs to compare all the bits of the old and
new data. If the value in the cell needs to change from “0” to “1”, the energy required for
the set should be added, if the value changes from “1” to “0”, the energy of the reset should
be added; if it does not change, do not add energy. These results also show that SlidW may
induce more bit flips than FPC and FPC+FNW. However, the energy increase also happens
in FPC+Space. Compared with the FPC+Space method, SlidW decreases the energy by
1.65% on average. For some benchmarks, such as Queue and Btree, SlidW consumes more
energy than the other three methods. This may be because SlidW induces more bit flips by
the frequent address changes. However, compared with the benefit of local bit flip reduction,
this overhead on energy increase would be acceptable. In summary, the above results show
that SlidW can achieve a 64.03% improvement on NVM lifetime and has little effect on
energy consumption compared with the original FPC method.

6. Related Works

Existing works that study to improve the NVM lifetime can be categorized into two
types. The first type is to reduce bit flips. FNW [15] reduced the bit flips by flipping
whole word; the bit flip number between old and new words is more than half of the word.
FlipMin [32] mapped each word to a set of vectors generated by the closest code and selected
the vector that resulted in the smallest bit flip to encode the data. Alsuwaiyan et al. [33]
improved FNW according to the characteristics of MLC/TLC NVM, making it more suitable
for MLC/TLC NVM. Dan et al. [16] selectively used FNW and FlipMin based on the
size left after compression. Kargar et al. [34] used a Hamming tree to map memory
locations, directing writing similar-valued memory to reduce bit flips. Kargar et al. [35]
used clustering on the written values based on similarity and then assigned the best-written
memory location based on the value. In the method proposed by Chen et al. [14], the bit
flips were reduced by replacing the newly written value with a floating-point number
similar to the old value. Ho et al. [36] proposed an approximate write-once memory (WOM)
code to reduce the number of writes to NVM. García et al. [12] proposed a replacement
strategy to reduce last-level cache writes to memory and use compression to reduce writes.

There are also existing works that reduce bit flips for specific applications. Bittman
et al. [37] made improvements to the hash list length, key-value and mapping method,
and XOR the link list to reduce bit flips. Bittman et al. [13] used the XOR to turn the same
part into 0, thus reducing bit flips. Staudigl et al. [38] reduced bit flips by writing data to
adjacent memory cells. Ni et al. [11] used Shadow Paging to reduce unnecessary writes
involved in logging. SlidW is orthogonal with these methods and can be used together
with these to extend NVM lifetime.

The other method to extend NVM lifetime is to use wear leveling techniques to make
memory blocks evenly worn. Most wear leveling-based works consider inter-block wear
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leveling. Huang et al. [8] detected the number of writes to each physical block and wrote
data to the physical block with the fewest writes. Hakert et al. [9] used a red-black tree to
estimate the age of blocks for wear leveling across pages. Xiao et al. [10] used the wear
counter to dynamically adjust the use of NVM slots to achieve wear leveling between blocks.
Qureshi et al. [39] examined wear leveling by moving written data from its original location
to an adjacent location. Hakert et al. [40] studied wear leveling for B+-tree applications,
and dynamically chose to store the data in DRAM or NVM. Kulandai et al. [41] used
balanced gray codes to distribute the changes of a dirty bit across the whole Byte. As our
SlidW method considers intra-block wear leveling, the work above can also work together
with SlidW. In addition to the SlidW, some studies also perform intra-block wear leveling.
Dgien et al. [42] conditionally wrote compressed data to the opposite end of the memory
block to reduce wear. This method is similar to SlidW with a granularity of 2. Liu et al. [7]
considered the intra-block wear leveling with a similar block division method with SlidW.
However, its method does not fully consider the complicated situations on the left space
and sizes of new and old data. We have already compared with SlidW in our experiment.

7. Conclusions

Compression algorithms have been widely used in NVM to further extend its storage
capacity. This paper investigated its effect and observed that compression would increase
or decrease bit flips. As the data size is smaller, the bit flips would only happen in a fixed
range of area in the memory block, which would induce local wear effects. In order to better
describe this effect, this paper proposes a new metric named local bit flips. Preliminary
study results show that compression would cause increased local bit flips, i.e., local wear,
which sacrifices the lifetime of NVM. This paper further proposes an intra-block wear
leveling method to distribute the local wear effect across the whole block. Comprehensive
experimental results show that SlidW can effectively reduce the number of local bit flips and
improve NVM lifetime, with little overhead on energy consumption. Our work, SlidW,
only considers the local wear effect induced by compression. In future work, we would
combine the other lifetime extension methods, e.g., FNW, to study the combined wear
effects of both compression algorithms and other lifetime extension methods.
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