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Abstract: The performance of wireless networks is related to the optimized structure of the antenna.
Therefore, in this paper, a Machine Learning (ML)-assisted new methodology named Self-Adaptive
Bayesian Neural Network (SABNN) is proposed, aiming to optimize the antenna pattern for next-
generation wireless networks. In addition, the statistical analysis for the presented SABNN is
evaluated in this paper and compared with the current Gaussian Process (GP). The training cost and
convergence speed are also discussed in this paper. In the final stage, the proposed model’s measured
results are demonstrated, showing that the system has optimized outcomes with less calculation time.

Keywords: antenna computation time; optimized antenna pattern; self-adaptive Bayesian neural
network; wireless network

1. Introduction

In antenna design, evolutionary algorithms (EAs) are frequently employed. They
demonstrate advantages for various design instances due to their capacity to break out of
local optima without the need for an initial design and generality. EA-driven antenna de-
sign is arguably dominated by particle swarm optimization (PSO) and differential evolution
(DE) algorithms. The optimization time, however, can be prohibitive given that full-wave
electromagnetic (EM) simulations are frequently required to acquire correct performance
of a candidate design and that EAs frequently need tens of thousands of such EM simu-
lations to obtain the best design [1–3]. Printed antennas are usually utilized in numerous
radar systems and communications applications because of effortless and straightforward
integration with transceivers, low cost, and low profile. While in the frequency range
associated with 13.5 GHz intended for the particular Broadcast Satellite Services (BSS),
there is always the massive requirement of microstrip arrays [4–7]. The 77 GHz frequency
band is inclining for automobile radar purposes. Inspired by this tendency, the on-chip
antennas that happen to be appropriate for CMOS radios in gigahertzes have also turned
out to be feasible, since the millimeter wavelength enables the implementation of numerous
antennas on a single chip [8]. The advantages associated with additive manufacturing
(AM) techniques, including 3D printing, cause it to become achievable for every design
having complicated interior and exterior geometry being manufactured instantly by a
computer-aided design (CAD). The significance associated with 3D-printed heterogeneous
substrates are analyzed in [9], and a significant improvement in bandwidth is observed. In
addition, the air-cored substrates are reviewed, as well as examined.

The MillimeterWave (mmW) has been previously utilized in RADAR systems and
satellite communication. These waves can undoubtedly travel through longer ranges in
cases where Line of Sight (LoS) is made available; however, without having LoS, they
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cannot travel several hundreds of meters. Excessive propagation impairment is mainly
because the atmospheric absorption of waves should be considered while designing an
antenna for mmW [10]. The assimilation by oxygen molecules may cause incredibly huge
attenuation [6]. This particular design will be suitable for the frequency spectrum of
V-band ranges from 50 GHz to 75 GHz communication, which is certainly intended for
applications associated with short-range communication. The need regarding high gain
for 5th Generation communication leads this work to design an optimum antenna, which
can be widely recognized because of its highly uncomplicated composition and excessive
growth. The previously designed Yagi antenna with high yield and high directive beams
was complex in structure, complex in fabrication, bulky in body weight, and significant in
dimensions. The several microstrip Yagi antennas having particular radiation mechanisms
are usually recommended to acquire a highly directive beam [11]. Yagi antennas hold
various positive aspects for mobile communication systems over other commonly utilized
antennas [12]. The initial imprinted Yagi antenna is constructed from four patches: the
driven element and the reflector elements, along with two director elements that have been
electromagnetically connected to generate a high directive beam [9]. As mentioned prior,
the antenna’s compact size is a terrific consideration because the antenna is intended for
being implemented inside portable devices.

The outcomes related to a modification in the substrate materials designed for 60 GHz
V-band highly directive Yagi antenna have been introduced in [10]. Intended for Local Posi-
tioning Systems (LPS) applications, one particular multilayered stacked quasi-Yagi antenna
with high gain had been designed as well as examined at the frequency of 5.8 GHz [13].
However, the models ended up excessively bulky and oversized in dimensions. In [14],
another highly directional beam antenna design is recommended. On the other hand, it ap-
peared heavy in bodyweight due to its different parasitic substrate on top of the innovation.
However, an additional technique is exercised in [15], which still utilized a slotted ground
of rectangular shape because its complication in production is not a suitable fit. In [16], a
multiband high-gain antenna is suggested; however, having minimal bandwidth makes it
inappropriate. In [17], to achieve a high gain, a microstrip Yagi antenna is offered, still with
Periodic Bandgap (PBG), because its complication in structure design makes it unsuitable.

Similarly, a Resonant Cavity Antenna (RCA) intended for the high-gain dual band is
proposed in [18], in which stepped rings are added to improve gain and bandwidth. The
additional enhancement in progress is certainly accomplished by using a Partially Reflective
Surface (PRS), owning to the high permittivity substrate and circular patch etched on it.
An innovative approach regarding feeding the dielectric resonator working with a metallic
round patch antenna intended for mmW frequency band is suggested in [19].

Porcelain material based upon a rectangle-shaped Dielectric Resonator Antenna (DRA)
is placed over the substrate with relatively low permittivity and fed by a metallic circular
patch. The development investigation and analysis are carried out using a cross-slot
aperture and rectangular slot. By implementing a cross-slot gap on the ground plane,
a substantial improvement in gain along with bandwidth has been accomplished. The
singly fed dielectric DRA recommended in this article offers high growth, efficiency, and
wide bandwidth.

A planar antenna with a high-gain-having conical beam intended for drone applica-
tions of mmW is radiated by utilizing some simple monopole [20] exclusively. Moreover,
the operation and overall performance of the suggested design have been explored on top
of a metallic, electrically significant plate. Among the particular side reflections and source
radiation having the in-phase state, the suggested structure presented decent Conical Beam
Radiation (CBR) efficiency. However, additionally attained increased peak gain and high
radiation efficiency are in contrast with various other described designs on Conical Beam
(CB) planar antennas having uncomplicated structure. The suggested planar antenna
with high-gain-having CB is investigated along with various other described designs in
expressing the beam-pointing angles, impedance BWs, radiation efficiencies, peak gains,
dimensions, and planar/nonplanar geometries.
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In contrast with various other designs on CB planar antennas, the suggested model
accomplishes the maximum gain and maximum radiation efficiency, having a relatively
decent 10 dB impedance bandwidth. The proposed model in [21] comprises about three
distinct models of array antennas primarily based on microstrip. To obtain resonance
frequencies associated with the THz band, we applied corporate-series-fed approaches
completely modeled using a CST MWS solver. The Substrate-Integrated Waveguide (SIW)
is used for two proposed models. In contrast, Frequency-Selective Surfaces (FSSs) are
utilized by the third proposed model that is undoubtedly intended to increase the actual
antenna gain even more.

R. Rehman et al. in [22] proposed a planar antenna with high gain having two ports
intended for satellite band and future 5th Generation mmW. In addition to operating in the
mmW spectrum, the suggested model comes with an additional characteristic to operate
for that satellite X-band at the same time. The proposed model achieves a considerable
and significant gain by taking advantage of an inverse microstrip Yagi director geometry.
The maximum gain from the model accomplishes the maximum value to obtain E-plane
with much better directivity. The structure possesses a simple planar geometry with an
imperfect ground for the satellite X-band, seen giving polarization diversity for being
utilized to obtain the WGS satellite system. The Yagi geometry helps make the design
attain a significantly higher gain that is demanded, belonging to the mmW band along
with considerably better impedance matching and helps it accomplish the additional
characteristic to resonate within the satellite X-band at the same time.

In [23], a planar and dual-band Multi-Input Multi-Output (MIMO) mmW structure
intended for 5th Generation communication applications was introduced. The dual-band
design operating in 27 GHz and 39 GHz consists of monopole elements. The model is
undoubtedly fabricated on Rogers 4003C substrate. The design, apart from acquiring a
decent radiation efficiency of 98 to 99%, offers a decent mutual coupling among the ports
and a maximum gain spread of 5–5.7 dBi. The suggested model has become successful in
acquiring a low-profile structure with excellent compactness and a good gain; however, the
usage of monopole elements leads to a significantly less directive radiation pattern.

Designing a single wideband antenna with good directivity and gain for the V-
Band [24], or 50–75 GHz mmW band, is the primary goal of this research. The proposed
design has the benefits of being lightweight, high-gain, somewhat efficient, and broadband.
The objective is to significantly reduce the training cost and convergence speed while
creating a universal antenna technique with specifications and changeable design character-
istics. Therefore, a method for antenna optimization termed Self-Adaptive Bayesian Neural
Network surrogate model-assisted differential evolution is proposed. The dimensions of
the suggested design are modest.

2. Theoretical Investigations for Antenna Design and Proposed Algorithm

The previous section discussed the background and literature of the proposed high-
gain antenna design. This section explains the analytical approach for validation of the
structure and parameters of the proposed SABNN-based antenna model. At first, the
basic principle of currently used techniques such as Gaussian Process (GP) is discussed in
this section. Consider the observations m

(
u = u1, . . . un) and

(
v = v1, . . . vn), where the

v(u) is the sample of Gaussian-distributed stochastic process with variance σ and mean µ.
Based on the m observations, the GP predicts the value of v(u) for next u; this correlation
function [25–28] is written as

Corr
(

uaub
)
= exp(−

j

∑
i=1

θi

∣∣∣ua
i − ub

i

∣∣∣pi (1)
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where the dimension of u is represented by j, and pi and θi are the hyper parameters. The
liklihood function is calculated as

1

(2πσ2)m/2√det(H)
exp

[
− (v− µU)T H−1(v− µU)

2σ2

]
(2)

where U is an m× 1 vector, and H is m×m covariance matrix. The predicted value and
prediction uncertainty v(u∗) and S(u∗) are discussed [29,30] as

v(u∗) = µ + rT H−1(v−Uµ) (3)

The prediction uncertainty plays a key role when judging the potential of user antenna
design. For this operation, the prescreening, low confidence bound (LCB), and probability
are widely used. The LCB method is introduced in this paper using the objective function
v(u) with N

(
v(u), S2(u)

)
predictive distributions. This is written as

vcd = y(u∗)−ωS(u) (4)

where ω is constant; this is set for antenna problems in AI algorithms. The training cost and
huge computational time of GP are the main drawbacks. Thus, to handle these constraints,
the huge computational time, and training cost, in this paper, the SADE method is proposed
for antenna design optimization.

There are two optimization techniques used for antenna design, named local optimiza-
tion and global optimization. The global optimization method is applied in this paper for
antenna design using an evolutionary algorithm (EA). Taking Ψpop population, which has
Npop solutions, and each solution is denoted by u = u1, . . . . . . un ∈ H∗, the donor vector
for creating a child solution x = x1, . . . .xn is calculated as

ya = ua + F.
(

ubest − ua
)
+ F.

(
ur1 − ur2

)
(5)

where ua means the ath vector in current Ψpop, ubest denotes the best user solution in
current Ψpop, ur1 and ur2 are randomly selected mutual solutions from the population. The
parameter ya represents the ath mutual vector and F is used for scaling factor. Figure 1
explores the flow chart of the presented algorithm, which shows the basic role of the BNN
and LCB mechanisms.
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Bayesian Neural Network Model for Optimized Antenna Design

To meet the requirements for efficient antenna design, such as minimum training cost
and prediction uncertainty for design, as well as provide high-quality predicted value, the
Bayesian Neural Network (BNN) is a promising solution. The BNN procedure has valuable
contribution towards optimized antenna design. Taking the variable u and v for antenna
design while using the ANN approach, the model parameters are written as

θ = w1 . . . . . . wn, g1 . . . . . . . gm (6)

where g denotes the basis and w is used as the weight. The nonlinear activation function
is used in the multilayer ANN model, aiming to transform the linear domain of each
layer. The optimized θ is then used for prediction. Comparing with the ANN approach,
the BNN-based network structure remains constant, however, the θ becomes a stochastic
variable, including p(θ) probability distribution. The basic description of the BNN model is
declared in Figure 2. Applying the Bayes theorem on input and output training is written as

p
(

θ

Td

)
=

p
(

Tdv
Tdu

, θ
)

p(θ)∫
p( Tdv

Tdu
, θ)p(θ)dθ

(7)

where p(θ) and p
(

θ
Td

)
are the prior and posterior, respectively, and p

(
Tdv
Tdu

, θ
)

is the likeli-
hood. The prediction uncertainty and predicted value are achieved by the posterior, which
are the objectives of this work.
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Figure 2. Fundamental structure of the presented BNN model.

3. Proposed Antenna Framework

Applying the equations related to the patch antenna presented in the preceding part,
the antenna’s rough design is created. A parametric sweep and CST optimizer are used
to optimize the parameters and variables. Figure 3 depicts the antenna structure (CST
perspective) and the design’s schematic view. A driven element, four directors, two reflector
elements, and feeding composition make up the antenna’s seven patch elements. For ease
of analysis, we refer to the reflector element “R” as a single element with a 0.24 mm gap
through the middle to pass the feedline. A quarter-wave transformer is used to convert the
50 ohm transition feedline utilized in the feeding arrangement into a high-impedance line.
The high-impedance line is used to prevent radiation from the feedline near the driven
element from interfering with the radiation from the antenna, which would lower gain.
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Figure 3. Schematic view of antenna design.

D (Driven element), D1T (Top Director 1), D1B (Bottom Director 1), D2T (Top Director
2), and D2B make up the remaining elements (Bottom Director 2). To simulate the antenna
design, a double copper-clad board made of RT/Duroid 5880 material (epsilon = 2.2) was
used. The Reflector Element R with Wr and Lr; the Driven Element D with Ld and Wd;
the Director 1 element D1T and D1B with Ld1 and Wd1 indicating the value of length as
well as width; and the Director 2 element D1T and D2B with Ld2 and Wd2, indicating the
length and width, respectively. The length of g separates every element along the x-axis.
S1 divides the Top Directors 1 and Bottom Directors 1, while S2 displays the separation
between the Top Directors 2 and Bottom Directors 2. SL and SW stand for length and width
of the substrate, respectively. The substrate has a thickness of 0.1 mm. The substrate’s
overall dimensions are 10.01 × 10.8 mm2. The CST MWS design tool simulates the design.
The suggested design’s parametric values are shown in mm in Table 1.

Table 1. Description of elements for designing antenna in mm.

SL 10 Lr 0.6

SW 10.7 Wr 2.2

Ld 1.6 S1 0.2

Wd 1.6 S2 1.3

Ld1 = Ld2 1.53 G 0.08

Wd1 = Wd2 1.1 h 0.11

4. Heterogeneous Substrate and Analysis

Microstrip antennas are often made on a homogeneous substrate and are low-profile,
conformal, lightweight, and compact in size. By using a dielectric with a high permittivity
value, the size of the antenna can be easily reduced. The energy in the surface wave modes
is raised by this rise in dielectric though. Because they are diffracted via the margins of the
ground plane of finite size, these surface waves decrease the performance and efficiency
of the antenna and cause interference with the radiation pattern. These negative effects
might be minimized by the reductions in surface wave modes. The main cause of surface
wave radiation for thin-substrate microstrip antennas is unquestionably the TM0 mode,
and heterogeneous substrates provide the solution to nearly completely suppress all of the
surface waves inspired by this mode.

The substrate surrounding the patch is simply removed, either completely or partially,
to create heterogeneous substrates. By suppressing the surface waves, this method has
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been utilized to boost the gain of a microstrip antenna. The antenna has also undergone
substrate removal, which has significantly improved bandwidth and efficiency.

Therefore, higher gain, bandwidth, and efficiency are due to the heterogeneous sub-
strate, as mentioned in Figure 4. The designed with heterogeneous substrate (Figure 4a)
has a radiation efficiency of −0.2737 dB and total efficiency of −0.3851dB. The design
without heterogeneous substrate (Figure 4b) has a radiation efficiency of −0.3673 dB and
total efficiency of −0.7626 dB. The design with heterogeneous substrate is more efficient
as compared with the plain substrate. The patch traces and the piece that was removed
from the substrate are an exact match. Prior to the invention of 3D printers, it was im-
possible to produce this kind of substrate, but now it is possible to precisely construct
heterogeneous substrates.
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Figure 4. Rad. and tot. efficiency: (a) with heterogeneous substrate and (b) without heterogeneous substrate.

Figure 5 compares the outcomes of the proposed model based on it with and without
heterogeneous substrate. The horizontal axis is associated with the frequency range, while
the vertical axis is maximum gain on the specific frequency. The without heterogeneous
substrate model has a max. gain of 10.2 and varies sharply with an increase or decrease in
frequency, while the design with heterogeneous substrate has a max. gain of 11.8 and is
quite stable as compared with the design without heterogeneous substrate.
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The gaps in the element which separates every specific component, irrespective of
whether it is on the x-axis or even the y-axis, execute a vital function in the layout. The gap
‘g,’ which is undoubtedly on the x-axis, is the gap among all the individual elements along
the identical x-axis. This distance is accountable regarding mutual coupling among driven
elements and parasitic elements.

Due to their shorter length than the driven element, the D1 elements (D1T and D1B)
are actually in charge of obtaining beam directionality and producing an additional band at
a higher frequency. S1 and S2, which represent the gaps between Top Directors and Bottom
Directors and are located along the y-axis, are typically in charge of improving. To obtain
the strong coupling between the Driven and Director 1 elements, the S1 parameter needs
to be small. The distance between the director and driven components must be kept as
short as feasible in order to put the parasitic elements next to the driven elements. The gap
capacitance will decrease as the electric field coupling increases. The top surface current
distribution shown in Figure 4 will make the impact of changing the S1 parameter clearer.
The S1 in Figure 6a is in accordance with the plan, showing the excellent surface current
distribution caused by good coupling between Director 1 and Driven elements. The S1
parameter is substantially larger than the initial value in Figure 6b, which leads to poor
coupling between Driven and Director elements and a reduced surface current distribution.
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Figure 6. The surface current distribution.

A single radiating element with a width of ‘2W’ is how the sides of the D1 elements
behave. The S2 parameter can be positioned in a variety of ways to produce the largest
possible effective aperture. The electrical width of the effective aperture grows as the S2
parameter increases, increasing the gain. The coupling between the D2 and D1 elements
decreases when S2 grows too much, which causes gain to drop. The gap capacitance and
the fringing capacitance should be adequate for the D2 element to acquire the required
radiation if the S2 value is modest enough.

The effects of changing the S2 parameter up or down are clearly seen in the surface
current distribution shown in Figure 7a,b. As previously stated, the gain improvement is
caused by the S2 parameter, which widens the antenna’s effective aperture. Director 1 has
an effective width that is nearly twice as wide as its physical breadth. To obtain the smallest
radiations required for resonance, the center of Director 2 may therefore be placed next to
the center of Director 1. Therefore, it was found that raising S2 causes gains to continuously
improve, and vice versa. Due to insufficient coupling capacitance, an excessive increase in
the S2 parameter will cause yields to drop.
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Figure 7. Surface current distribution with S2 parameter.

As shown in Figure 6a, the radiation is at its greatest because D2 elements are con-
nected from the margins of the D1 component. This causes the effective aperture to have a
wider electrical field, which increases gain. The antenna’s electrical width is narrower in
Figure 6b than in Figure 5a, which causes a weak surface current distribution and lower
gain. The design’s simulation results show an impedance bandwidth of 15.17% in a range
of 10.72 GHz. In Figure 8, the S11 parameter is displayed.
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Figure 9 illustrates the 3D far-field pattern for 72 GHz, which has a high gain of 11.8 dB
and a directivity of 12.1 dBi.
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Figure 10 demonstrates the 2D far-field radiation behavior of gain at frequencies of 65,
66, 68, 70, 72, and 74 GHz, respectively. The angular width (3 dB) and main lobe magnitude
and direction can be noticed in Figure 9. At 72 GHz, the angular width (3 dB) is 36.8◦, and
the main lobe direction is at 28◦, whereas the maximum magnitude of the main lobe is
11.8 dB.
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Table 2 compares the previously designed antenna with homogenous substrate and
the antenna intended in this work with the heterogeneous substrate.

Table 2. Results comparison of current and previous design.

Results Gain (dBi) Directivity (dB) Bandwidth (GHz) %Bandwidth Efficiency (dB)

[20] 10.3 10.8 4.4 7.6 −0.88

Proposed model 12 12 11 15.2 −0.034
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The millimeter-wave spectrum, which is anticipated to be used in the next generation
of 5G technology, is where the band of the intended antenna is located. With regard to
applications such as device-to-device communication, WLAN, and WPAN, the V-Band
(50–75 GHz) of millimeter waves should be used (D-2-D). The optimum range of the
presented model is evaluated in Table 3, whereas Table 4 compares the proposed approach
with state-of-the-art techniques, which explains that the outcomes of the presented model
are more efficient than current models. The estimation among radiation efficiency and
frequency is mentioned in Figure 11. This shows that the presented model efficiency is
recorded at more than 85% at frequency ranges from 70 to 76 GHz. Additional investigations
of the proposed model are performed in terms of gain and frequency, which are declared in
Figure 12. It can be seen that the presented model exhibits fruitful gain at a frequency of
75 GHz.

Table 3. Description of the designed model and achieved outcomes by presented model.

Parameter Minimum Gain Maximum Gain Reflection Coefficient

Description ≥1.2 dB ≤3 dB ≤−10 dB

Optimum range achieved by proposed method 1.19 dB 2.89 dB −10.14 dB

Table 4. Methodologies used by current models and proposed model.

Mechansims Used in Previous
Models and Proposed Model

Machine-Learning-Based
Models Prescreening Supervision Number of

Simulations

GP-LCB GP LCB Nil 1990

FBN-LCB BNN LCB Yes 1325

BN-ALCB BNN AdapLCB Nil 1100

GP-ALCB GP AdapLCB Nil 1260

Presented model BNN AdapLCB Yes 930
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5. Conclusions

For millimetre waves, a printed high-gain Yagi antenna was developed. The antenna’s
straightforward design makes it easy to fabricate. The antenna is lightweight, low-cost,
and low-profile. The planned antenna measures 10.8 × 10.01 mm2 in total. The antenna
functions according to the conventional Yagi radiation theory. The developed antenna
has a maximum return loss of −30 dB at 70.6 GHz and excellent impedance matching.
It was found that as the electrical width of the effective aperture rises, so does the gain.
How several of the parameters changed was examined, which had an impact on how
gain improved. The heterogeneous substrate is another method that is used and is in
charge of further improving gain, directivity, bandwidth, and efficiency. The developed
antenna has an impedance bandwidth of 15.17 percent and 10.72 GHz. The antenna
has a high gain of 11.8 dB and a high directivity of 12.1 dBi, respectively. The V-Band
of mmW frequency spectrum, i.e., 50–75 GHz, is concentrated for the design’s band of
operation. The 50–75 GHz frequency spectrum of mmW is undoubtedly planned in 5G
intended for Device-to-Device (D-2-D) transmission. This is expected to be utilized in ad
hoc communication around short distances. Furthermore, this spectrum could be used for
high-frequency short-range WLAN, WHDMI, and WPAN.
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