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Abstract: A micro-inertial measurement unit (MIMU) is usually used to sense the angular rate and
acceleration of the flight carrier. In this study, multiple MEMS gyroscopes were used to form a spatial
non-orthogonal array to construct a redundant MIMU system, and an optimal Kalman filter (KF)
algorithm was established by a steady-state KF gain to combine array signals to improve the MIMU’s
accuracy. The noise correlation was used to optimize the geometric layout of the non-orthogonal array
and reveal the mechanisms of influence of correlation and geometric layout on MIMU’s performance
improvement. Additionally, two different conical configuration structures of a non-orthogonal array
for 4,5,6,8-gyro were designed and analyzed. Finally, a redundant 4-MIMU system was designed to
verify the proposed structure and KF algorithm. The results demonstrate that the input signal rate
can be accurately estimated and that the gyro’s error can also be effectively reduced through fusion
of non-orthogonal array. The results for the 4-MIMU system illustrate that the gyro’s ARW and RRW
noise can be decreased by factors of about 3.5 and 2.5, respectively. In particular, the estimated errors
(1σ) on the axes of Xb, Yb and Zb were 4.9, 4.6 and 2.9 times lower than that of the single gyroscope.

Keywords: MEMS sensor; redundant MIMU; non-orthogonal array; noise correlation; Kalman filter;
performance improvement

1. Introduction

The strapdown inertial navigation system has gradually replaced the traditional
navigation systems, since the latter are expensive and bulky. Therefore, miniaturization,
high accuracy and low cost have become the important features of the modern navigation
system. MEMS sensors are suitable for designing a strapdown micro inertial navigation
system due to their advantages of a small volume, low cost and high reliability [1–3]. The
micro-inertial measurement unit (MIMU) is usually composed of three MEMS gyroscopes
and accelerometers that are orthogonal to each other (Figure 1a), which is regarded as
the core component of an inertial navigation system. It has an important application for
miniaturized, high-precision, low-cost navigation and guidance systems. People pay more
attention to the continuous improvement of the MIMU while making full use of its unique
advantages to meet the urgent needs of high accuracy, miniaturization and low cost for
a modern navigation system. However, due to the limitation of the working principle of
the MEMS inertial device, the MIMU’s measurement noise is large, and the parameters are
also unstable, which makes it difficult to provide inertial signals with low drift error for the
MIMU composed of three independent gyroscopes and accelerometers.
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Figure 1. Schematic diagram of the MIMU formed by different MEMS inertial sensors. 
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to design a MIMU can increase its measurement information on the sensors’ coordinate 
frame, which is mapped from the input rate and acceleration of the MIMU. A fused MIMU 
can be achieved through fusing redundant measurements while employing a technique 
of signal fusion and estimation, which can effectively improve the MIMU’s precision. 
Moreover, the number of sensors can be reduced compared to an MIMU constructed by 
an orthogonal sensor array, and thus, a performance improvement can be achieved with 
the same number of chips. 

As for the redundant configuration of a MIMUs, Pejsa in 1974 first proposed a 
method to analyze the construction of a multi-sensor, redundant configuration [7]. In [8], 
the redundant sensors structures based on different numbers of gyroscopes were studied, 
and the accuracy of the system’s configuration matrix was analyzed. In addition, a redun-
dant MIMU analysis method was established based on a virtual-body coordinate frame 
[9]—in particular, a dodecahedron was adopted to construct the redundant structure, 
which reduced the calculation amount. Jafari used a least-square method to acquire 
MIMU’s motion information, and then the redundant configurations with three and four 
gyros were analyzed [10]. In addition, a MIMU system based on an orthogonal gyro array 
was reported in [11], in which three gyroscope arrays were arranged on the three orthog-
onal axes of a MIMU, respectively, as shown in Figure 1b; thus, the accuracy was im-
proved through signal fusion. Skog et al. proposed a centralized KF based on maximum 
likelihood estimation for combining the measurements of a 4 × 4 planar gyroscope array 
[12]. The redundant gyroscope systems composed of 3, 5 and 8 gyros were designed in 
[13]. In our previous studies, the configuration structure of redundant systems for 4-, 5- 
and 6-gyro cones were designed [14]—in particular, the geometric accuracy factor model 
was established to evaluate structure, and thus the optimal conical installation angle could 
be obtained. Moreover, the influences of the correlation factor on the geometric accuracy 
factor and configuration structure were analyzed. 

As for the fusion algorithm of a redundant MIMU system, Skog et al. designed mul-
tiple signal fusion algorithms for a MIMU planar array using the maximum likelihood 
estimation method to obtain the optimal estimation of input angular rate and acceleration 
[15]. A centralized KF was designed for signal fusion of redundant MIMU sensors in [16]. 
Additionally, an integrated navigation algorithm for combining multiple MIMU and GPS 
was designed in [17], in which the three-dimensional trajectory dynamics model was used 
as the system model to design a centralized KF and estimate navigation parameters. In 
addition, a planar MIMU with 8 × 8 array was formed by 64 chips, and six positions and 
angular rate position method were used to calibrate the errors and installation angles of 
gyroscopes and accelerometers in MIMUs [18]; thus, the dynamic navigation performance 

bx

by

bz

O

gyroscope
accelerometer

(a) Traditional orthogonal 
configuration MIMU 

O

gyroscope

(b) Gyro orthogonal array 
configuration of MIMU 

��
�

���

��
�

correlation 
coefficient

(c) Non-orthogonal array 
configuration of MIMU

O

��
�

��
�

G1

G2

G3
G4

Gi

GN-1

GN���

1,2ρ

2,3ρ3,4ρ

��
�

,i Nρ
, 1i N−ρ

,i jρ
G1 G2GN

G1
G2
GNG1

G2
GN

bz bz

by by

bx bx

Gz

Gy

Gx

Az

Ay

Ax

1,3ρ

Figure 1. Schematic diagram of the MIMU formed by different MEMS inertial sensors.

The technology of multiple signals fusion provides a new method for reducing the
MIMU’s drift error and improving its accuracy [4–6]. Compared to an MIMU constructed of
three orthogonal sensors and a sensor array (Figure 1a,b), using a non-orthogonal array to
design a MIMU can increase its measurement information on the sensors’ coordinate frame,
which is mapped from the input rate and acceleration of the MIMU. A fused MIMU can be
achieved through fusing redundant measurements while employing a technique of signal
fusion and estimation, which can effectively improve the MIMU’s precision. Moreover, the
number of sensors can be reduced compared to an MIMU constructed by an orthogonal
sensor array, and thus, a performance improvement can be achieved with the same number
of chips.

As for the redundant configuration of a MIMUs, Pejsa in 1974 first proposed a method to
analyze the construction of a multi-sensor, redundant configuration [7]. In [8], the redundant
sensors structures based on different numbers of gyroscopes were studied, and the accuracy
of the system’s configuration matrix was analyzed. In addition, a redundant MIMU analysis
method was established based on a virtual-body coordinate frame [9]—in particular, a dodec-
ahedron was adopted to construct the redundant structure, which reduced the calculation
amount. Jafari used a least-square method to acquire MIMU’s motion information, and then
the redundant configurations with three and four gyros were analyzed [10]. In addition, a
MIMU system based on an orthogonal gyro array was reported in [11], in which three gyro-
scope arrays were arranged on the three orthogonal axes of a MIMU, respectively, as shown
in Figure 1b; thus, the accuracy was improved through signal fusion. Skog et al. proposed a
centralized KF based on maximum likelihood estimation for combining the measurements
of a 4 × 4 planar gyroscope array [12]. The redundant gyroscope systems composed of 3, 5
and 8 gyros were designed in [13]. In our previous studies, the configuration structure of
redundant systems for 4-, 5- and 6-gyro cones were designed [14]—in particular, the geometric
accuracy factor model was established to evaluate structure, and thus the optimal conical
installation angle could be obtained. Moreover, the influences of the correlation factor on the
geometric accuracy factor and configuration structure were analyzed.

As for the fusion algorithm of a redundant MIMU system, Skog et al. designed mul-
tiple signal fusion algorithms for a MIMU planar array using the maximum likelihood
estimation method to obtain the optimal estimation of input angular rate and accelera-
tion [15]. A centralized KF was designed for signal fusion of redundant MIMU sensors
in [16]. Additionally, an integrated navigation algorithm for combining multiple MIMU and
GPS was designed in [17], in which the three-dimensional trajectory dynamics model was
used as the system model to design a centralized KF and estimate navigation parameters.
In addition, a planar MIMU with 8 × 8 array was formed by 64 chips, and six positions and
angular rate position method were used to calibrate the errors and installation angles of gy-
roscopes and accelerometers in MIMUs [18]; thus, the dynamic navigation performance of a
MIMU array can be improved through compensating the output signals of inertial sensors.

The technology of redundant MIMUs have been studied, which combine multiple
MIMU arrays to improve accuracy; however, little research has focused on designing a
redundant MIMU using a non-orthogonal sensor array. In particular, the correlation of
the sensor array has not been incorporated to optimize its geometric structure, which
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lacks the theoretical support for optimal configuration design under the condition of noise
correlation. Compared with a MIMU system composed of multiple MIMUs, using a non-
orthogonal sensor array to construct a redundant MIMU provides greater flexibility in
spatial layout. In addition, the correlation will affect the optimal configuration structure of
the non-orthogonal array and its accuracy. Consequently, it is important to optimize the
configuration structure by incorporating the sensor’s noise correlation.

Therefore, in this study, multiple MEMS gyroscopes were used to form a spatial
non-orthogonal array to construct a redundant MIMU (Figure 1c). In particular, the noise
correlation was used to optimize the geometric layout of a non-orthogonal sensor array, and
it revealed the mechanisms of influence of correlation and geometric layout on the MIMU’s
performance improvement. The work includes three parts: (1) A KF model is presented for
fusing the array’s redundant measurements, and then a KF algorithm is also established
to estimate the optimal signal rate in the MIMU’s body coordinate frame. (2) Different
configuration structures of a non-orthogonal array for the MIMU are designed, and the
influences of the number of sensors (N), installation angle (α) and correlation factors (ρ)
on the conical configuration structures are analyzed. (3) Simulations and experiments are
reported to verify the presented algorithm.

2. Working Principle of a Redundant MIMU System

The principle of a redundant MIMU is shown in Figure 2. Multiple gyroscopes are
used to form a non-orthogonal array in three-dimensional space, and three orthogonal
accelerometers are arranged in the MIMU’s body coordinate frame. Then, an optimal
KF is designed to fuse outputs of non-orthogonal gyroscope array, and thus the optimal
estimation of the input rate in the MIMU’s body coordinate frame can be obtained by using
the redundant structure and its configuration matrix. The redundant fused MIMU system
can be completed with three orthogonal accelerometers.
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Figure 2. Structure of a redundant fused MIMU system.

2.1. Modeling of a Fused-Gyro-Array KF Algorithm

A typical measurement model is used to describe the gyroscope [5,6]:{
y(t) = ω(t) + b(t) + n(t)
.
b(t) = wb(t)

(1)

where y is the output of the gyroscope, ω is the input signal rate denoted as the true rate,
b is the gyro’s drift due to the rate random walk (RRW) process wb and n is the angular
random walk’s (ARW) white noise.
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The KF was employed to design a fused algorithm for the non-orthogonal array.
Given a gyroscope array with the number of sensors N, according to Equation (1), the
measurement model of the non-orthogonal array is:

y = Hωb + b + n (2)

where H is the configuration matrix of the non-orthogonal gyroscope array, which can be
determined by the specific structure of the sensor array, y = [y1, y2, · · · , yN]

T is the measure-
ment vector of non-orthogonal gyroscope array, ωb = [ωb

x, ωb
y, ωb

z ]
T

is the input rate in the

MIMU’s body frame, b = [b1, b2, · · · , bN]
T is the gyro’s drift error and n = [n1, n2, · · · , nN]

T

is the white noise. The input true signal rate can be modeled directly; thus, its optimal estimate
can be directly obtained using the KF. In addition, the accuracy of the fused signal rate can
be analyzed by the KF covariance, which also can provide a basis for system improvement
and parameter adjustment. Therefore, to build a complete state-space model for the KF and
improve accuracy, the input signal rate ωb can be modeled using a random walk process
driven by white noise nωr [4,6]:

.
ω

b
= nωr (3)

where the driven white noise vector nωr = [nωrx, nωry, nωrz]
T, and E[nωr(t)] = 0, E[nωr(t)nT

ωr
(t + τ)] = qδ(τ). The component values of matrix q should be determined by the gyro’s noise
level and the dynamic characteristic requirement of the input signal rate. From a practical point
of view, the application could be satisfied by choosing an appropriate variance qωx,y,z with
which to control the different bandwidths of the KF. Here, the angular rateωb and drift vector
b were chosen to construct the KF state vector as X = [ωb; b]; the measurement was selected as
Z = y. Based on Equations (2) and (3), the state-space model of the non-orthogonal gyroscope
array can be formed as: { .

X(t) = F(t)X(t) + W(t)
Z(t) = H1X(t) + V(t)

(4)

where coefficient matrix F = 0(N+3)×(N+3), H1 =

[
H

...IN

]
, the system’s process noise

W(t) = [nωr, wb]
T and measurement noise V(t) = [n1, n2, · · · , nN ]

T . The covariance
matrix of the vectors W(t) and V(t) are Q and R, respectively. The matrices Q and R are not
necessarily diagonal because of the gyro’s noise correlation; thus, the matrices Q, R and q
are given in Equation (5).

Q =

[
q 03×N

0N×3 Qb

]
, q =

qωx 0 0
0 qωy 0
0 0 qωz



R =


σ2

n1 ρn,12 ·
√

σ2
n1σ2

n2 · · · ρn ,1N ·
√

σ2
n1σ2

nN

ρn,21 ·
√

σ2
n2σ2

n1 σ2
n2 · · · ρn,2N ·

√
σ2

n2σ2
nN

...
...

. . .
...

ρn ,N1 ·
√

σ2
nNσ2

n1 ρn,N2 ·
√

σ2
nNσ2

n2 · · · σ2
nN


N×N

Qb =


σ2

b1 ρb,12 ·
√

σ2
b1σ2

b2 · · · ρb,1N ·
√

σ2
b1σ2

bN

ρb,21 ·
√

σ2
b2σ2

b1 σ2
b2 · · · ρb,2N ·

√
σ2

b2σ2
bN

...
...

. . .
...

ρb,N1 ·
√

σ2
bNσ2

b1 ρb,N2 ·
√

σ2
bNσ2

b2 · · · σ2
bN


N×N

(5)

where σ2
bi and σ2

ni are the noise variances of RRW and ARW associated with the ith gyro in
the array, respectively; and ρij is the correlation factor between the ith and jth gyros, and
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the practical value of correlation factor ρij can be analyzed and obtained by the method
referred in [19]. The parameters qωx, qωx and qωz are the variances of white noise nωr,
which drive the input rateωb. Based on Equation (4), the continuous-time KF algorithm
for the non-orthogonal gyroscope array is

.
X̂(t) = K(t)

[
Z(t)−H1X̂(t)

]
K(t) = P(t)HT

1 R−1
.
P(t) = Q− P(t)HT

1 R−1H1P(t)

(6)

The rank of the KF’s observability matrix is N, which is lower than its dimensions of
N + 3; thus, the KF system (F,H1) is not completely observable, and there is no steady-state
solution to P(t) in Equation (6). Here, set the gyro’s noise variance to be σb = 600◦/h/

√
h

and σn = 2◦/
√

h, then choose signal sampling period T = 0.01 s and correlation factor ρ = 0.
For the non-orthogonal array composed of six gyros, the changes in covariance P(t) and
gain K(t) are shown in Figure 3.
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It can be seen in Figure 3 that the component of matrix Pk will be linearly increased
and divergent with the iteration time. It does not have a steady-state solution. However, the
matrix Kk tends toward a steady-state value in a short time, which indicates a steady-state
gain Ks can be obtained. Using the steady gain Ks can simplify the implementation of the
KF system. It does not need to calculate covariance P(t) in each iteration, which reduces
the computational load. Therefore, for a redundant MIMU system with a determined
structure of non-orthogonal array, a steady-state gain Ks can be obtained offline by the
discrete equation of KF. Thus, Equation (6) can be written as:

.
X̂(t) = Ks(t)

[
Z(t)−H1X̂(t)

]
(7)

By discretizing Equation (7), the KF discrete equation can be obtained:

X̂k+1 = e−KsH1TX̂k +
∫ T

0
e−KsH1tdtKsZk (8)

Define matrix KH = KsH1, and perform an eigenvalue decomposition for the matrix KH
as KH= SΛS−1, where the columns of matrix S are composed of the eigenvectors of matrix KH.
Λ is a diagonal matrix composed of the eigenvalues of KH, e−KHT = e−SΛS−1T = Se−ΛTS−1

and
∫ T

0 e−KHTdt =
∫ T

0 e−SΛS−1Tdt = S
∫ T

0 e−ΛTdtS−1; thus, the discrete Equation (8) can be
formed as:

X̂k+1 = Se−ΛTS−1 · X̂k + S
∫ T

0
e−ΛTdtS−1 ·KsZk (9)
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By defining the rate extract vector eωb =

[
I3

...O3×N

]
, the optimal estimation of rate in

MIMU’s body coordinate frame can be obtained as ω̂b
xyz,k+1 = eωb · X̂k+1. The discrete KF

structure is shown in Figure 4. Consequently, the optimal estimation of orthogonal rate
for the MIMU system can be obtained by using the discrete iterative estimation equation,
Equation (9).
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2.2. Structure of a Non-Orthogonal Gyro Array in MIMU

In the fused MIMU system, the installation of individual gyroscopes in the non-
orthogonal array is shown in Figure 5, where Si is the unit vector of the ith gyro’s sensitive
axis. It can be formed as:

Si = cos αi · cos βii + cos αi · sin βij + sin αik (10)

where αi and βi are the installation angles of the ith gyro relative to the MIMU’s body
coordinate frame (Xb, Yb, Zb). According to Equation (10), the configuration matrix of a
non-orthogonal array can be expressed as:

H =


cos α1 · cos β1 cos α1 · sin β1 sin α1
cos α2 · cos β2 cos α2 · sin β2 sin α2

...
...

...
cos αN · cos βN cos αN · sin βN sin αN

 (11)
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For different numbers of sensors, N, the MIMU configurations differ, corresponding to
different matrices, H. The conical configuration is a typical structure for a non-orthogonal
array. In this paper, two configuration schemes for a conical structure are designed and
analyzed with N = 4, 5, 6, 8, which is illustrated as follows:

Scheme 1: Multiple gyroscopes are arranged as cone and evenly distributed around
the MIMU’s body frame along the Zb axis (in Figure 6). Specifically, each gyroscope is
evenly installed and distributed on the cone’s surface, and its sensitive axis is along an
imaginary line connecting the tip of the cone and the gyro. The angle between each gyro’s
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sensitive axis and the +Zb axis is α. Figure 6a is a structure with N = 4, in which the angles
between the +Xb axis and projections of g1, g2, g3 and g4’s sensitive axes on the horizontal
plane are 0◦, 90◦, 180◦ and 270◦, respectively. For N = 5, the projection of g1’s sensitive axis
on the horizontal plane coincides with the +Xb axis, and the angle between the projections
of contiguous gyros’ sensitive axes is 72◦, which is shown in Figure 6b. In addition, for
N = 6 in Figure 6c, the projections of g1 and g4’s sensitive axes on the horizontal plane
coincide with +Xb and −Xb, respectively—in particular, the angle between the projections
of contiguous gyros’ sensitive axes on the horizontal plane is 60◦. For N = 8 in Figure 6d,
the angle between the projections of contiguous gyros’ sensitive axes on the horizontal
plane is 45◦.
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Figure 6. Non-orthogonal gyro array for a MIMU without a one-axis conical sensor: (a) 4-gyro cone;
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Scheme 2: Multiple gyroscopes are arranged as a cone and evenly distributed around
the MIMU’s body frame’s Zb axis—in particular, one gyro’s sensitive axis coincides with the
axis +Zb, and the other gyroscopes are evenly distributed around the +Zb axis, as shown in
Figure 7. Specifically, the angle between the gyro’s sensitive axis and +Zb axis is α, and the
projection of g1’s sensitive axis on the horizontal plane coincides with axis +Xb. For N = 4
in Figure 7a, the angles between the +Xb axis and projections of g1, g2 and g3’s sensitive
axes on the horizontal plane are 0◦, 120◦, 240◦, respectively. For N = 5, 6 and 8, the angles
between the projections of contiguous gyros’ sensitive axis on the horizontal plane are 90◦,
72◦ and 360/7◦, respectively, which are shown in Figure 7b–d.

For the different conical configurations, the estimated accuracy of signal fusion is
different, even for identical values of N. The geometric accuracy factor (GDOP) is usually
used to evaluate the quality of a redundant configuration structure in Equation (12) [14].
The smaller the GDOP, the better the redundant configuration structure, and thus the
estimated accuracy of signal fusion will be higher:

GDOP =

√
tr(HT

1 C−1
n H1)

−1
, Cn =


1 ρn,12 · · · ρn ,1N

ρn,21 1 · · · ρn,2N
...

...
. . .

...
ρn ,N1 ρn,N2 · · · 1


N×N

(12)
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where H1 is the measurement matrix for KF in MIMU and Cn is the cross-correlation matrix
associated with the ARW noise of the non-orthogonal gyroscope array.
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3. Performance of Configuration Structure of Non-Orthogonal Array

The performance of the MIMU’s configuration structure is affected by many factors.
From Equation (12), it can be seen that it is affected by the number N, configuration structure
(i.e., sensor’s installation angle α) and correlation factor. Therefore, as for the two schemes
of redundant configurations shown in Figures 6 and 7, the factors affecting the optimal
redundant configuration were analyzed through the GDOP under the condition of noise
correlation in the sensor array. Eventually, the optimal installation angle α and correlation
factor ρ could be determined. Firstly, the influence of N on the GDOP is analyzed. Given
the correlation factor in the gyroscope array is 0, when the installation angle, α, is set to 60◦

or 45◦, the GDOP results for the different configuration structures in Figures 6 and 7 are
shown in Table 1.

Table 1. The GDOP of different configurations for non-orthogonal gyro array (ρ = 0).

Scheme Angle α N = 4 N = 5 N = 6 N = 8

GDOP (Scheme 1) α = 60◦ 1.5327 1.3663 1.3089 1.0801
GDOP (Scheme 2) α = 60◦ 1.5275 1.3540 1.2293 1.0609
GDOP (Scheme 2) α = 45◦ 1.7512 1.5275 1.3732 1.1684

Table 1 illustrates that the GDOP will decrease with increasing N under the iden-
tical configuration structure, which indicates that the estimated accuracy of the three-
dimensional orthogonal signal rate in the MIMU’s body coordinate frame will be improved
with increasing N. Furthermore, in order to obtain the optimal α for the conical non-
orthogonal array, the relationship between the GDOP and angle α for different conical
configuration structures are analyzed by Equation (12). It can be seen that the correlation
factor will influence the optimal angle α. When the correlation factor ρ = 0, the relationship
between the GDOP and angle α for a non-orthogonal array with different values of N is
illustrated in Figure 8.
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As for configuration Scheme 1, from Figure 8a it can be found that the GDOP will
decrease as α increases. After reaching a minimum value, it will then gradually increase,
and the angle α corresponding to such a minimum value is the optimal installation angle
for the conical structure. The minimum GDOPs are 1.5001, 1.3417, 1.2248 and 1.0607 for N
= 4, 5, 6 and 8 respectively, and the optimal α is 54.74◦, which indicates that the identical
configuration structures have the same optimal installation angle; ρ = 0 even if N is different.
On the other hand, for configuration Scheme 2, Figure 8b illustrates that the GDOP will
gradually decrease as α increases and then slowly increase. Eventually, it will gently decline
until it reaches a minimum value. The results show that the minimum GDOPs were 1.5000,
1.3416, 1.2247 and 1.0607 for N = 4, 5, 6 and 8, respectively; and the corresponding optimal
angles were 70.53◦, 65.91◦, 63.43◦ and 60.79◦ respectively. This indicates that the optimal
angles α will decrease with increasing N for configuration Scheme 2.

As for conical configuration Scheme 1, the relationship between the GDOP and in-
stallation angle α with different correlation factors was further analyzed. The results are
illustrated in Figure 9, and then the optimal angle α under such a correlation factor can
be obtained from the plot. The results of optimal angle α are listed in Table 2. It can be
seen that the optimal angle α corresponding to the minimum GDOP will be different with
different correlation factors. In addition, Table 2 also shows that the optimal angle α is
different for different N, even if the correlation factor is the same.

Table 2. The optimal angle α with different N and ρ.

Number Correlation Factor Minimum GDOP Optimal Angle α

ρ = 0.2 1.5269 49.94◦

N = 4 ρ = −0.1 1.4671 57.72◦

ρ = −0.2 1.4117 61.75◦

ρ = 0.2 1.4000 49.10◦

N = 5 ρ = −0.1 1.2845 58.71◦

ρ = −0.2 1.1798 65.68◦

ρ = 0.2 1.3076 48.36◦

N = 6 ρ = −0.1 1.1450 59.85◦

ρ = −0.18 1.0160 69.11◦

ρ = 0.2 1.1802 47.05◦

N = 8 ρ = −0.1 0.9353 62.93◦

ρ = −0.14 0.8050 75.57◦
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Additionally, Equation (12) shows that the accuracy of redundant MIMU is also af-
fected by the noise correlation in the sensor array. It is assumed that a constant correlation 
factor ρn exists in the non-orthogonal array, and its range is [−1/(N − 1),1]. The relationship 
between the correlation factor ρn and GDOP is analyzed, and the result is shown in Figure 
10. 
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Figure 9. The relationship between GDOP and angle α for different N with various correlation factors:
(a) N = 4; (b) N = 5; (c) N = 6; (d) N = 8.

Additionally, Equation (12) shows that the accuracy of redundant MIMU is also
affected by the noise correlation in the sensor array. It is assumed that a constant correlation
factor ρn exists in the non-orthogonal array, and its range is [−1/(N− 1),1]. The relationship
between the correlation factor ρn and GDOP is analyzed, and the result is shown in
Figure 10.
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The following can be seen in Figure 10a: (1) The GDOP is positively correlated with
ρn and will increase as factor ρn increases. (2) The effect of ρn on the GDOP depends on
N. Concretely, the GDOP will shrink as N increases under the same factor ρn, leading to
a higher performance. This also verifies that the system’s accuracy will be higher with a
higher N for an identical configuration structure. (3) The effect of ρn on GDOP is different.
The KF’s accuracy with a negative ρn is higher than that with a positive one, which indicates
that the smaller the correlation factor ρn, the better the configuration structure. On the other
hand, Figure 10b shows that: (1) The GDOP will increase as factor ρn increases, reaches
a maximum value and then gradually decreases. (2) The maximum value of GDOP will
decrease as N increases with the optimal angle α. In addition, Figure 10 indicates that
the influence of ρn on GDOP is equivalent for the same configuration structure, and its
influence is different for various configuration structures.

It should be noted that an orthogonal MIMU is usually composed of three gyroscopes
and accelerometers that are orthogonal to each other. According to the GDOP formula
of Equation (12), it is found that the GDOP is equal to

√
3 ≈ 1.7321 no matter what

the correlation factor ρn is, which indicates that the GDOP for the orthogonal MIMU
is independent of the correlation factor, and the correlation factor has no effect on the
orthogonal MIMU’s configuration.

4. Simulation Results and Discussion
4.1. Results of the Static Simulation

The non-orthogonal array of N = 6 in Figures 6c and 7c was chosen to analyze the KF’s
performance. The gyro’s ARW and RRW were set as σn = 0.1◦/

√
h and σb = 600◦/h/

√
h,

respectively. The simulation time and signal sampling period were set to T = 1 h and
Ts = 0.01 s. The correlation factor for RRW noise was chosen as ρb = {−0.19, 0, 0.5}. As for
the conical configuration structure in Figure 6c, the estimated rate in MIMU’s body frame
is shown in Figures 11–13. The Allan variance is shown in Figure 14. The result is listed in
Table 3. Additionally, for the structure with N = 6 in Figure 7c, the Allan variance is shown
in Figure 15, and the result is given in Table 4.
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Figure 11. Fused results of the 6-gyro MIMU system for Scheme 1 (ρ = 0). (a) The output of gyros. (b)
The estimated result of the MIMU.
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Figure 12. Fused results of the 6-gyro MIMU system for Scheme 1 (ρ = −0.19). (a) The output of
gyros. (b) The estimated result of the MIMU.
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Figure 13. Fused results of 6-gyro MIMU system for Scheme 1 (ρ = 0.5). (a) The output of gyros.
(b) The estimated result of the MIMU.
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Figure 14. Plot of the compared Allan variance of 6-gyro MIMU for Scheme 1: (a) ρ = −0.19; (b) ρ = 0;
(c) ρ = 0.5.
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Figure 15. Plot of the compared Allan variance of 6-gyro MIMU for Scheme 2: (a) ρ = −0.19; (b) ρ = 0;
(c) ρ = 0.5.

Table 3. Results of Allan variance of 6-gyro MIMU for Scheme 1.

Correlation Factor MIMU Axis ARW (◦/
√

h) RRW (◦/h/
√

h) BS (◦/h)

ρ = −0.19
Xb 0.0393 279.894 3.8459
Yb 0.0396 256.254 3.8810
Zb 0.0203 105.408 3.0038

ρ = 0
Xb 0.0420 286.842 3.8645
Yb 0.0414 281.496 3.8893
Zb 0.0416 265.800 3.9016

ρ = 0.5
Xb 0.0484 325.752 4.0414
Yb 0.0480 313.020 3.9326
Zb 0.0668 312.582 2.9394

Table 4. Results of Allan variance of 6-gyro MIMU for Scheme 2.

Correlation Factor MIMU Axis ARW (◦/
√

h) RRW (◦/h/
√

h) BS (◦/h)

ρ = −0.19
Xb 0.0398 243.432 3.8092
Yb 0.0398 307.740 3.8684
Zb 0.0675 95.526 2.9332

ρ = 0
Xb 0.0412 292.770 3.9389
Yb 0.0414 289.590 3.8406
Zb 0.0418 266.388 3.9633

ρ = 0.5
Xb 0.0443 255.594 3.9182
Yb 0.0494 258.210 3.8985
Zb 0.0476 302.604 4.3017
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For the conical configuration structure in Scheme 1, it can be seen in Figures 11–13
that the rate in MIMU’s body frame can be estimated well, and the gyro’s error can also
be reduced. Moreover, Figure 14 shows that the Allan variance curve for estimated rate is
lower than that of the single gyroscope, which indicates a remarkable noise reduction. In
addition, Table 3 shows that the noise coefficients of estimated rate differ with the various
values of factor ρ—specifically, the ARW and RRW obtained at ρ = 0.19 are lower than those
for ρ = {0, 0.5}. Thus, the estimation accuracy will be improved as ρ decreases, which is
accordance with the results in Figure 10a, and the gyro’s ARW and RRW are reduced by a
factor about 2.5. On the other hand, as for the conical configuration structure of Scheme 2,
Figure 15 and Table 4 demonstrate that the accuracy is also improved through the signals’
fusion. Compared with the results in Tables 3 and 4, it can be seen that the ARW and RRW
of estimated rate for Schemes 1 and 2 are comparable, while ρ = 0. This is because the
GDOPs of Schemes 1 and 2 are approximately equal while ρ = 0 in Figure 10.

4.2. Results of the Sinusoidal Signal Simulation

The conical configuration structures of N = 6,8 in Figures 6 and 7 were chosen to
implement the sinusoidal simulation. The input sinusoidal rate was set to beωb= [0, 0, 5 ×
sin(0.06πt)]T◦/s. The gyro’s ARW and RRW were set as σn = 0.1◦/

√
h and σb = 600◦/h/

√
h,

respectively, and the correlation factor was set to ρ = 0. The simulation time and signal
sampling period were set to T = 1/6 h and Ts = 0.01 s. For the conical structures of N = 6, 8
in Figure 6c,d, the gyro’s installation angle α was chosen as 54.74◦, and α was chosen as
63.43◦ or 60.79◦ for N = 6,8 in Figure 7c,d, for Scheme 2, respectively. The plots of the
non-orthogonal array and estimated signal rate are shown in Figures 16–19. The results are
listed in Tables 5 and 6.
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Figure 16. Sinusoidal results of the 6-gyro MIMU system for scheme 1. (a) The outputs of the gyros. 
(b) The estimated results of the MIMU. 
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Figure 16. Sinusoidal results of the 6-gyro MIMU system for Scheme 1. (a) The outputs of the gyros.
(b) The estimated results of the MIMU.
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Figure 17. Sinusoidal results of the 8-gyro MIMU system for Scheme 1. (a) The outputs of the gyros.
(b) The estimated results of the MIMU.
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Figure 18. Sinusoidal results of the 6-gyro MIMU system for Scheme 2. (a) The outputs of the gyros.
(b) The estimated results of the MIMU.
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Figure 19. Sinusoidal results of the 8-gyro MIMU system for Scheme 2. (a) The outputs of the gyros.
(b) The estimated results of the MIMU.

Table 5. The estimated errors of 6- and 8-gyro MIMU systems for Scheme 1.

Terms Number Xb Yb Zb Single Gyro

Estimated error
(1σ, ◦/s)

N = 6 0.0142 0.0088 0.0224 0.0622
N = 8 0.0111 0.0068 0.0203 0.0622

Reduction factor
N = 6 4.3803 7.0682 2.7768
N = 8 5.6036 9.1471 3.0640

Table 6. The estimated error of 6- and 8-gyro MIMU systems for Scheme 2.

Terms Number Xb Yb Zb Single Gyro

Estimated error
(1σ, ◦/s)

N = 6 0.0182 0.0107 0.0242 0.0552
N = 8 0.0075 0.0075 0.0200 0.0552

Reduction factor
N = 6 3.0329 5.1589 2.2810
N = 8 7.3600 7.3600 2.7600

In Figures 16–19, it can be seen that the amplitude of estimated signal rate on the
Zb axis reaches the input signal of 5◦/s without attenuation and distortion. Furthermore,
Tables 5 and 6 show the 1σ on the Xb and Yb axes are about 3 to 9 times lower than those of a
single gyroscope, and about 3 times lower on the Zb axis, which indicates that the accuracy
is significantly improved through signal fusion of the non-orthogonal array. Particularly, it
clearly shows that the reduction factor of the estimated error for N = 8 is higher than that
for N = 6 for the conical configuration in Schemes 1 and 2, respectively. This also explains
that for the same installation angle α and correlation factor ρ, the larger the value of N, the
smaller the value of GDOP, and the higher the system fusion and estimation accuracy that
can be achieved.
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5. Experiment

Four individual identical MIMUs were selected to design a redundant MIMU system
(Figure 20), which were installed on the four sides of a tetrahedral pyramid. For the
individual MIMUs, the x axis was defined to be located on the perpendicular bisector of
the bottom line of the tetrahedron pyramid, and the downward direction was the axis of
+X. Here, four x-axis gyros from each single MIMU were chosen to form a non-orthogonal
array. Using the method in [19], the cross-correlation matrix of a redundant 4-MIMU can
be obtained and shown in Table 7, which indicates that the values of correlation factors are
close to zero; thus, such a redundant MIMU can be considered uncorrelated. Consequently,
the angle between tetrahedron’s each side and undersurface was set as 54.74◦ according to
the results of Figure 8a.
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Figure 20. The conical configuration of a 4-MIMU system on the tetrahedral pyramid.

Table 7. Cross-correlation matrix for a redundant 4-MIMU system.

Gyro Number g1 g2 g3 g4

g1 1 0.000309 0.001531 −0.003095
g2 0.000309 1 0.001693 −0.001061
g3 0.001531 0.001693 1 −0.000106
g4 −0.003095 −0.001061 −0.000106 1

5.1. Static Testing Results

The outputs of the 4-MIMU system were collected under static conditions, where the
sampling time and period were set to 1 h and 0.01 s, respectively. Using the presented KF
algorithm of Equation (9), the compared plot of signal rate and Allan variance are shown
in Figures 21 and 22, respectively. The results are listed in Table 8.

Table 8. Comparison results of the Allan variance measurement for 4-MIMU.

Gyro Number ARW (◦/
√

h) RRW (◦/h/
√

h) BS (◦/h)

gyro1 0.1476 4.979 1.0285
gyro2 0.1849 2.8545 0.9711
gyro3 0.1618 2.8764 0.9399
gyro4 0.1519 2.6229 0.9461

Xb-axis 0.0429 1.1954 0.2751
Yb-axis 0.0459 0.6041 0.2287
Zb-axis 0.0525 1.3726 0.2723
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Figure 21. The static estimated results of 4-MIMU. (a) The outputs of gyros. (b) The estimated rate of
the MIMU on the Xb, Yb and Zb axes.
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Figure 22. Plot of Allan variance between the gyros and fused signal rate in MIMU’s body coordi-
nate frame.

Figure 21 indicates that the estimated rate in MIMU’s body frame can be accurately
obtained by fusing the outputs of four gyros in a redundant MIMU. In particular, Figure 22
shows that the Allan variance curves for a fused signal rate on the MIMU’s axes of Xb,
Yb and Zb are lower than that of a single gyroscope. In addition, Table 8 shows that the
ARW and RRW for the fused signal rate are about 3.5 and 2.5 times lower than for single
gyroscopes. The results demonstrate that the accuracy of the MIMU can be effectively
improved by fusing of a non-orthogonal gyroscope array.



Micromachines 2023, 14, 759 19 of 21

5.2. Swing Signal Testing Results

The swing test was carried out on a turntable, and the input signal rate was set to
ωb= [0, 0, 5 × sin(2πft)]T◦/s with f = 0.05 and 0.1 Hz. Therefore, the outputs of component
gyroscopes and fused signal rate in MIMU’s body frame are shown in Figures 23 and 24,
and the estimated error is given in Table 9.
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Figure 23. The swing test results of 4-MIMU with ωz = 5 × sin(2πft)◦/s (f = 0.05 Hz). (a) The outputs
of gyros. (b) The estimated rate of the MIMU on the Xb, Yb and Zb axes.
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Figure 24. The swing test results of 4-MIMU with ωz = 5 × sin(2πft)◦/s (f = 0.1 Hz). (a) The outputs
of gyros. (b) The estimated rate of the MIMU on the Xb, Yb and Zb axes.
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Table 9. The estimated errors (1σ) of 4-MIMU for the swing test (ωz = 5 × sin(2πft)).

Terms Frequency f Xb Yb Zb

Estimated error
(1σ, ◦/s)

f = 0.05 0.0074 0.0078 0.0125
f = 0.10 0.0074 0.0079 0.0124

Single gyro 0.0367 0.0367 0.0367

Reduction factor
f = 0.05 4.9595 4.7051 2.9360
f = 0.10 4.9595 4.6456 2.9597

In Figures 23 and 24, it can be seen that the amplitude of the signal rate on the MIMU’s
Zb axis is similar to 5◦/s, and Table 9 shows that the errors (1σ) on the MIMU’s Xb and Yb
axes were about 4.9 and 4.6 times lower than those of the single gyroscope. On the Zb axis,
it was about 2.9-times lower. This demonstrates that the gyro’s error can be effectively
reduced through fusing the outputs of the non-orthogonal array, thereby improving the
accuracy of the MIMU and navigation system.

6. Conclusions

In this work, a redundant MIMU system was designed by a non-orthogonal gyro array,
and an optimal fused KF algorithm was established by a steady-state gain to fuse array
signals to improve the MIMU’s accuracy. In particular, two different conical configuration
structures of a non-orthogonal array for 4, 5, 6 and 8 gyros were designed and analyzed. The
results showed that N, the conical installation angle (α) and the correlation factor (ρ) will
seriously affect the optimal configuration structures, eventually affecting the performance
of the redundant MIMU system. The results also demonstrate that the input signal rate
in the MIMU’s body frame could be effectively estimated, and the gyro’s error can be
reduced. The experimental results of 4-MIMU illustrate that the gyro’s ARW and RRW
can be decreased by factors of about 3.5 and 2.5 compared to the single gyro, respectively;
and the estimated errors (1σ) on the MIMU’s Xb, Yb and Zb axes were 4.9, 4.6 and 2.9 times
lower than those of a single gyro in the swing test.
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