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Abstract: Elements of micromachines can be driven by light, including structured light with phase
and/or polarization singularities. We investigate a paraxial vectorial Gaussian beam with multiple
polarization singularities residing on a circle. Such a beam is a superposition of a cylindrically
polarized Laguerre–Gaussian beam with a linearly polarized Gaussian beam. We demonstrate that,
despite linear polarization in the initial plane, on propagation in space, alternating areas are generated
with a spin angular momentum (SAM) density of opposite sign, that manifest about the spin Hall
effect. We derive that in each transverse plane, maximal SAM magnitude is on a certain-radius circle.
We obtain an approximate expression for the distance to the transverse plane with the maximal SAM
density. Besides, we define the singularities circle radius, for which the achievable SAM density is
maximal. It turns out that in this case the energies of the Laguerre–Gaussian and of the Gaussian
beams are equal. We obtain an expression for the orbital angular momentum density and find that it
is equal to the SAM density, multiplied by −m/2 with m being the order of the Laguerre–Gaussian
beam, equal to the number of the polarization singularities. We consider an analogy with plane
waves and find that the spin Hall affect arises due to the different divergence between the linearly
polarized Gaussian beam and cylindrically polarized Laguerre–Gaussian beam. Application areas of
the obtained results are designing micromachines with optically driven elements.

Keywords: cylindrical vector beam; radial polarization; polarization singularity; Gaussian beam;
Laguerre–Gaussian beam; spin angular momentum; optical spin Hall effect; orbital angular momentum

1. Introduction

In micromachines, elements that can be driven by light and optical vortex beams are
widely adopted in optical tweezers. One of the natural generalizations of optical vortex
beams are light fields with multiple vortices. Rather general expressions for describing
such fields have been obtained by G. Indebetouw [1] and E.G. Abramochkin et al. [2].
Such fields propagate in free space without changing their transverse intensity shape, up
to scale and rotation around the optical axis. In addition to the optical vortices, which
are phase singularities or points with an uncertain phase, vector light fields can have
polarization singularities, where uncertain is polarization. Polarization singularities were
investigated in a huge number of papers. Recently, a review about polarization singularities
was published [3]. Most widely studied polarization singularities are radial and azimuthal
polarization, and their superposition known as cylindrical polarization [4]. Such light fields
can be constructed as superpositions of optical vortices with opposite circular polarizations
and with opposite topological charges of ±1 [5]. Based on this scheme, we investigated
in 2018 light fields with multiple polarization singularities residing on a circle with the
center on the optical axis [6,7]. Such fields have locally linear polarization. We found
that, in contrast to the phase singularities, which conserve in an arbitrary transverse
plane, polarization singularities appear only in a discrete number of transverse planes. We
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discovered that the singularities can transform, for instance, from radial and azimuthal
polarization in the initial plane to, respectively, azimuthal and radial polarization in the far
field. However, we did not investigate what happens with polarization between the planes
where polarization singularities reconstructed, i.e., between the planes with locally linear
polarization. In [8], it was noticed that along the propagation direction, such singularities
generically split into a pair of C-points with opposite circular polarization. As it turns out,
such splitting is a manifestation of the optical spin Hall effect, which means that alternating
areas with the spin angular momentum of opposite sign appear, despite linear polarization
in the initial plane. The Hall effect was discovered for metals by Edwin Hall back in 1878.
Later, in 1971, it was discovered by M.I. Dyakonov and V.I. Perel for semiconductors [9].
In 2004, this effect was also found to occur in photonics [10]. The photonic spin Hall
effect [11,12] consists of the separation of photon paths depending on their spin. The optical
Hall effect can be divided into a spin Hall effect [13], orbital Hall effect [14], and spin-orbital
Hall effect [15]. The spin Hall effect can take place when light is passed through a medium
interface [16] or an inhomogeneous medium or in microcavities [17], metamaterials [18],
dielectric gratings [19], and in free space in the tight focusing conditions [20].

Thus, we were interested in whether such an effect can arise in free space, without any
material structures, and even without tight focusing, i.e., in paraxial light beams, that can
be easily generated by a spatial light modulator.

In this work, therefore, we investigate this phenomenon in the paraxial Gaussian beam
with multiple polarization singularities from [6,7]. Such a beam is a superposition of a
cylindrically polarized Laguerre–Gaussian (LG) beam with a linearly polarized Gaussian
beam. We found that maximal SAM density magnitudes appear on a circle and the radius
of this circle has been derived. It was obtained that the maximal SAM density is generated
in a certain transverse plane, the distance to which has been obtain approximately. It was
derived that the maximal SAM density can be achieved when the singularities circle has a
definite radius, such that the energy of the Gaussian beam is equal to the energy of the LG
beam. We revealed the mechanism of the spin Hall effect in such beams. This effect arises
due to the different divergence of the LG beam and of the Gaussian beam.

2. Paraxial Light Fields with Multiple Phase or Polarization Singularities

It has been shown (Equation (17) in [2]) that any function given by

E(r, ϕ, z) =
1
q

exp

(
− r2

qw2
0

)
f
(

reiϕ

qw0

)
, (1)

where (r, ϕ, z) are the cylindrical coordinates, w0 is the waist radius of the Gaussian beam,
q = 1 + iz/z0, z0 = kw0

2/2 is the Rayleigh distance, k is the wavenumber, and f (reiϕ) is an
arbitrary entire analytical function, describes a solution of a paraxial Schrödinger-type
Helmholtz equation: 2ik(∂E/∂z) + (∂2E/∂x2) + (∂2E/∂y2) = 0.

The light field described by Equation (1) propagates in free space without changing its
shape. The parameter q defines the scaling and rotation of the light field: at distance z the
field becomes |q| = [1 + (z/z0)2]1/2 times wider and rotates around the optical axis by an
angle equal to the Gouy phase ψ = arg q = arctan(z/z0).

Using Equation (1), it is possible to obtain a solution of the paraxial Helmholtz equation
with optical vortices located in arbitrary points with their polar coordinates in the initial
plane (rp, ϕp) (p = 0, 1, . . . , m − 1). In an arbitrary transverse plane, the complex amplitude
of such a field takes the form [1]:

E(r, ϕ, z) =
1

qwm
0

exp

(
− r2

qw2
0

)
m−1

∏
p = 0

(
reiϕ

q
− rpeiϕp

)
. (2)
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Choosing the vortices on a circle with the radius a0, i.e., rp = a0, ϕp = 2πp/m, we get

E(r, ϕ, z) =
1

qw|m|0

exp

(
− r2

qw2
0

)[(
r
q

)|m|
eimϕ − a|m|0

]
. (3)

This field is a superposition of a single-ringed mth-order Laguerre–Gaussian (LG)
beam with a fundamental Gaussian beam.

It has been known [5] that radially polarized light can be expressed as a superposition
of optical vortices of the ±1st order and of the opposite handedness since the Jones vector
can be presented as (

cos ϕ
sin ϕ

)
=

1
2

eiϕ
(

1
−i

)
+

1
2

e−iϕ
(

1
i

)
. (4)

If, in this expression, eiϕ and e–iϕ are replaced by the field (3) of the orders, respectively,
m and −m, we get a vector light field with m polarization singularities located on a circle of
the radius a0 [6,7]:

E(r, ϕ, z) =
1

qm+1wm
0
√

W0
exp

(
− r2

qw2
0

)[
rm cos mϕ− am

0 qm

rm sin mϕ

]
, (5)

where the multiplier

W0 =
πw2

0
2

[
m!
2m +

(
a0

w0

)2m
]

(6)

is introduced for normalizing the beam energy (making it equal to unit and thus equal for
all values m and a0).

Examples of such field with m = 2, 3, 4 are shown in Figure 1. Since the vortices
reside on a circle with the radius a0, from now on, we call this parameter a singularities
circle radius.
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Figure 1. Intensity distributions of the light field (5) in the initial plane (z = 0) for the following pa-
rameters: wavelength λ = 532 nm, Gaussian beam waist radius w0 = 1 mm, number of polarization 
singularities m = 2 (a), m = 3 (b) and m = 4 (c), radius of the singularities circle a0 = 600 μm (a), a0 = 
700 μm (b), a0 = 800 μm (c). Size of all figures is 5 × 5 mm2, scale mark in each figure denotes 1 mm. 
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We note that the field (5) can be treated as a superposition of two single-ringed La-
guerre–Gaussian beams with opposite topological charges and with circular polariza-
tions, and of a linearly polarized Gaussian beam: 

Figure 1. Intensity distributions of the light field (5) in the initial plane (z = 0) for the following
parameters: wavelength λ = 532 nm, Gaussian beam waist radius w0 = 1 mm, number of polarization
singularities m = 2 (a), m = 3 (b) and m = 4 (c), radius of the singularities circle a0 = 600 µm (a),
a0 = 700 µm (b), a0 = 800 µm (c). Size of all figures is 5 × 5 mm2, scale mark in each figure denotes
1 mm. Arrows show the directions of linear polarization.



Micromachines 2023, 14, 777 4 of 18

We note that the field (5) can be treated as a superposition of two single-ringed
Laguerre–Gaussian beams with opposite topological charges and with circular polariza-
tions, and of a linearly polarized Gaussian beam:

E(r, ϕ, z) = 1
2
√

W0
LGm(r, ϕ, z)

[
1
−i

]
+ 1

2
√

W0
LG−m(r, ϕ, z)

[
1
i

]
− 1√

W0

(
a0
w0

)m
LG0(r, ϕ, z)

[
1
0

]
,

(7)

with LGm (r, ϕ, z) being the scalar mth-order single-ringed Laguerre–Gaussian beam:

LGm(r, ϕ, z) =
1
q

(
r

qw0

)|m|
exp

(
− r2

qw2
0
+ imϕ

)
. (8)

The first two terms in Equation (7) are responsible for constructing polarization
singularity (m-order radial polarization with the Jones vector J = [cos mϕ, sin mϕ]), while
the third term splits this singularity into m first-order polarization singularities residing on
a circle of the radius a0. The same splitting effect, but for phase singularities, was reported
in [21].

3. Intensity Distribution

From Equation (5), the intensity distribution is given by

I(r, ϕ, z) = |Ex(r, ϕ, z)|2 +
∣∣Ey(r, ϕ, z)

∣∣2
= 1
|q|2m+2w2m

0 W0
exp

(
− 2r2

|q|2w2
0

)[
r2m + a2m

0 |q|
2m − 2am

0 |q|
mrm cos(mψ) cos(mϕ)

]
,

(9)

with ψ = arctan(z/z0) being the Gouy phase.
It is seen that the intensity nulls can appear only in a discrete set of transverse planes,

where cos(mψ) = ±1, i.e., tan(mψ) = 0, which is consistent with [6,7].
In the initial plane, the intensity is

I(r, ϕ, 0) =
1

w2m
0 W0

exp

(
−2r2

w2
0

)[
r2m + a2m

0 − 2am
0 rm cos(mϕ)

]
. (10)

However, the beam from Equation (5) is a superposition of circularly polarized single-
ringed LG vortex beams of the orders ±m and of a linearly polarized Gaussian beam. At a
small singularities circle radius a0, the LG beam overwhelms and the intensity looks like a
ring (Figure 2a,d). At large a0, vice versa, the Gaussian beam is brighter and the intensity
looks more like a spot (Figure 2b,e). In some applications, however, it is desirable to confine
the intensity nulls between the light walls. For instance, in 2008, Dienerowitz et al. showed
that a vortex beam with annular profile can confine metal nanoparticles in the dark region
of the beam center [22]. Thus, the intensities from Figure 2a,b,d,e are undesirable. Now,
we try to find the radius a0 such that the intensity in the beam center and in the edges,
beyond the intensity nulls, are nearly the same. Since the first intensity null is at ϕ = 0, this
condition can be written as

I(0, 0, 0) = max
r>a0

I(r, 0, 0), (11)

or, after taking the square root of both parts of Equation (11),

am
0 = max

r>a0

{
exp

(
− r2

w2
0

)
(rm − am

0 )

}
. (12)



Micromachines 2023, 14, 777 5 of 18Micromachines 2023, 14, x  5 of 19 
 

 

 
Figure 2. Intensity distributions of the light field (5) in the initial plane (z = 0) for the following pa-
rameters: wavelength λ = 532 nm, Gaussian beam waist radius w0 = 1 mm, number of polarization 
singularities m = 5 (a–c) and m = 6 (d–f), radius of the singularities circle a0 = 800 μm (a,d), a0 = 1200 
μm (b,e), a0 = 942 μm (c), a0 = 1041 μm (f). Size of all figures is 8 × 8 mm2, scale mark in each figure 
denotes 1 mm. Blue dashed circles (c,f) denote the radius of the maximal peripheral intensity 
computed by Equation (20). 

Thus, we need to determine the maximal peripheral intensity, beyond the null. 
Taking the derivative of the right part of Equation (12) with respect to r yields an equa-
tion for the radial coordinate r0,max of the maximal intensity in the initial plane: 

( ) 2 2
max 0 0 0,max2 m m mr a mw r −− = . (13) 

This equation can be solved only for small values m. However, we do not need to 
solve it, since we are interested in a0 rather than in r0,max. Expressing a0 via r0,max and sub-
stituting it into Equation (12), we get 

22 2
0,max2 20 0

0,max 0,max 0,max 2
0

exp
2 2

m m m rmw mw
r r r

w
− −  

− = −  
 

. (14)

Division of both parts by ( )2 2
0 0,max2 mmw r −  yields a simple equation: 

( )2 1 exp
m

− = −ξ ξ . (15)

with ξ = (r0,max/w0)2. Since for large m an approximate solution is ξ ≈ m/2, we denote ξ = 
m/2 + η and get 

( )22   1me
m

−≈ −η η  (16)

and, therefore, 
2

2 2

m

m
e
m e

−

−≈
+

η . (17)

Returning back to ξ, we obtain the solution 

2
11

2 2 m
m

m e
 

= + + 
ξ . (18)

Thus, we get the singularities circle radius a0, for which the intensity in the center 
and at the edge (near the dark spot) is nearly the same: 

Figure 2. Intensity distributions of the light field (5) in the initial plane (z = 0) for the following
parameters: wavelength λ = 532 nm, Gaussian beam waist radius w0 = 1 mm, number of polarization
singularities m = 5 (a–c) and m = 6 (d–f), radius of the singularities circle a0 = 800 µm (a,d), a0 = 1200 µm
(b,e), a0 = 942 µm (c), a0 = 1041 µm (f). Size of all figures is 8 × 8 mm2, scale mark in each figure
denotes 1 mm. Blue dashed circles (c,f) denote the radius of the maximal peripheral intensity
computed by Equation (20).

Thus, we need to determine the maximal peripheral intensity, beyond the null. Taking
the derivative of the right part of Equation (12) with respect to r yields an equation for the
radial coordinate r0,max of the maximal intensity in the initial plane:

2(rm
max − am

0 ) = mw2
0rm−2

0,max. (13)

This equation can be solved only for small values m. However, we do not need to
solve it, since we are interested in a0 rather than in r0,max. Expressing a0 via r0,max and
substituting it into Equation (12), we get

rm
0,max −

mw2
0

2
rm−2

0,max =
mw2

0
2

rm−2
0,max exp

(
−

r2
0,max

w2
0

)
. (14)

Division of both parts by
(
mw2

0/2
)
rm−2

0,max yields a simple equation:

2
m

ξ − 1 = exp(−ξ). (15)

with ξ = (r0,max/w0)2. Since for large m an approximate solution is ξ ≈ m/2, we denote
ξ = m/2 + η and get

2
m

η ≈ e−m/2(1− η) (16)

and, therefore,

η ≈ e−m/2

2/m + e−m/2 . (17)

Returning back to ξ, we obtain the solution

ξ =
m
2

(
1 +

1
m/2 + em/2

)
. (18)
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Thus, we get the singularities circle radius a0, for which the intensity in the center and
at the edge (near the dark spot) is nearly the same:

a0 =

(
rm

0,max −
mw2

0
2

rm−2
0,max

)1/m

, (19)

with

r0,max = w0

√
m
2

√
1 +

1
m/2 + em/2 . (20)

It is seen that the first two multipliers are equal to the maximal-intensity radius of
a single-ringed mth-order LG beam with the waist radius w0, while the third multiplier
tends to unit with growing number of singularities m. Shown in Figure 2c,f are the intensity
distributions with the singularities circle radius obtained by Equation (19). These figures
confirm that Equation (19) allows making the intensities in the center and in the periphery
nearly equal.

In optical tweezers, the intensity distribution affects where the particles are trapped.
However, the motion of particles is governed by the spin and orbital angular momenta.

4. Spin Angular Momentum Density

In paraxial light fields, only the longitudinal component of the SAM vector can be
significant. It is equal to

Sz = 2Im
{

E∗x Ey
}

, (21)

Substituting here Equation (5) for the light field, we get

Sz =
2

|q|2W0

(
a0r
|q|w2

0

)m

exp

(
− 2r2

|q|2w2
0

)
sin(mψ) sin(mϕ), (22)

where ψ = arctan(z/z0) is the Gouy phase.
It is seen from this expression that there are transverse planes where the SAM is zero,

i.e., polarization is linear. In these planes, sin(mψ) = 0, i.e., they are located at the following
distances [6,7]:

z = z0 tan
(πp

m

)
, (23)

with p = 0, 1, . . . , [m/2], where [.] means the integer part of a fractional number.
In other planes, the SAM is generally nonzero, but in each plane, it equals to zero at

the polar angles ϕp = πp/m with p = 0, . . . , m − 1.
Comparison of the expressions for the SAM and for the intensity reveals that in an

arbitrary transverse plane, the light field has C-points, where polarization is circular [23,24].
Equation Sz(r, ϕ, z) = ±I(r, ϕ, z) leads to the following C-points coordinates:{

r = a0|q|,
ϕ = ±ψ + 2πp

m ,
(24)

where p = 0, . . . , m − 1. Thus, there are m points with right circular polarization (at ϕ = ψ +
2πp/m) and m points with left circular polarization (at ϕ = –ψ + 2πp/m).

It is seen that on propagation, C-points with right and left circular polarization are
rotated around the optical axis in opposite directions. When passing through the planes
given by Equation (23), coordinates of these C-points coincide, they annihilate each other
and polarization becomes linear. Evolution of the C-points is illustrated in Figure 3.
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in opposite directions. When approaching the next plane with linear polarization (c), given by
Equation (23), C-points with right and left circular polarization merge again. The numbers 0–5 denote
respective C-points, while red and blue color means respectively right and left circular polarization.

Now, we try to determine where the SAM achieves zero or maximal magnitudes.
If sin(mψ) > 0 in Equation (22), then the maximal and minimal SAM density is achieved,

respectively, at the polar angles ϕp = (π + 4πp)/(2m) and ϕp = (–π + 4πp)/(2m) with p = 0,
. . . , m − 1, and these angles are independent of the propagation distance and on the
singularities circle radius a0. However, after passing the planes with linear polarization and
with the polarization singularities (Equation (23)), the angles of the maximal and minimal
SAM density are swapped.

Differentiating Equation (22) by r yields that at a fixed propagation distance z and at
the angles ϕp, maximal SAM density is achieved on a circle with the radius

r =
w0|q|

2
√

m. (25)

This radius is
√

2 times smaller than the radius of maximal intensity of a single-ringed
mth-order LG beam, i.e., of the beam from Equation (8), whose maximal-intensity ring
radius is r = w0|q|(m/2)1/2 (Equation (10) in [25]).

Substituting the radius from Equation (25) into Equation (22) for the SAM, we get the
maximal SAM density in a transverse plane at a distance z from the initial plane:

max
r,ϕ

Sz =
2

|q|2W0

(
a0
√

m
2w0

)m

exp
(
−m

2

)
sin(mψ). (26)

Now, after obtaining the maximal SAM in each transverse plane, we find the planes
with where the SAM achieves the maximal value. For this plane, the following condition
should be fulfilled:

∂

∂z

(
max

r,ϕ
Sz

)
= 0, (27)

Substituting here the maximal SAM in the plane [Equation (26)], we get

∂

∂z


(

1 +
z2

z2
0

)−1

sin
[

marctan
(

z
z0

)] = 0. (28)

This equation leads us to the following distance zmax to the plane with the maximal
SAM:

tan
(

marctan
(

zmax

z0

))
=

mz0

2zmax
. (29)

This equation can also be written in a short form via the Gouy phase ψmax of this
plane:

tan(ψmax) tan(mψmax) = m/2, (30)
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Both these equations indicate that the distance to the plane with maximal SAM is
independent of the radius of the singularities circle a0.

Equations (29) and (30) are valid for any value m, but analytically they can be solved
only for small values m. For instance, z = z0/

√
2 at m = 1 and z = z0/

√
3 at m = 2. For larger

values m, these equations lead to a problem of finding roots of high-order polynomials, but
we try to estimate the solutions. Since

sin(mψmax) =
1√

1 + 1/tan2(mψmax)
=

m√
4 tan2(ψmax) + m2

=
m√

4(zmax/z0)
2 + m2

, (31)

we get the following expression for the SAM in the planes, where it achieves extreme
magnitudes:

max
r,ϕ

Sz(z = zmax) =
2

W0

(
a0
√

m
2w0

)m e−m/2[
1 + (zmax/z0)

2
][

1 + (2/m)2(zmax/z0)
2
]1/2 . (32)

This expression indicates that in each such plane with locally maximal SAM, the SAM
achieves lower and lower magnitude, i.e., the strongest SAM is in the first plane given by
Equations (29) and (30).

The left and right parts of Equation (29) are shown in Figure 4. The right part is always
positive and decays hyperbolically. The left part is a discontinuous function with the zeros
in the points z1,p = z0 tan(πp/m) (p = 0, 1, . . . ) and with the discontinuities in the points
z2,p = z0 tan(π(2p + 1)/(2m)) (p = 0, 1, . . . ). The roots of Equation (29) are thus in the
intervals [z1,p, z2,p].
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On the other hand, the left part of Equation (30) grows slower than the function
tan(mψ) without the multiplier tan(ψ). Thus, the first root of Equation (30) should be
between the values ψ = m−1arctan(m/2) and the discontinuity ψ = π/(2m).

Thus, the first root of Equation (29) is in the interval from z = z0tan[m–1arctan(m/2)] to
z = z0 tan(π/(2m)). In our work, we will use the average value

zmax ≈
z0

2
tan
[

arctan(m/2)
m

]
+

z0

2
tan
[ π

2m

]
. (33)

Section 7 below confirms that this is a good approximation at m > 3.
We note that the SAM magnitude is different for different values a0. In two extreme

cases, when all the vortices merge in the center (a0 = 0) and when they move to infinity
(a0 → ∞) the SAM should be equal to zero. In the first case, the light field reduces to an LG
beam with mth-order cylindrical polarization which is not destroyed on propagation and
the field has inhomogeneous linear polarization in an arbitrary transverse plane. In the
second case, the superposition (5) consists only of the fundamental Gaussian beam while
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the portion of the LG beam with mth-order polarization vortex tends to zero. The Gaussian
beam is linearly polarized and therefore the SAM should tend to zero.

To derive the radius of the polarization singularities that yield the maximal SAM, we
should differentiate Equation (26) by a0. Thus, we get

a0,max = (m!)1/(2m) w0√
2

. (34)

At this value, the maximal SAM in an arbitrary transverse plane is then equal to

max
r,ϕ

Sz(α0 = α0,max) =
2

πw2
0

1

|q|2
√

m!

(m
2

)m/2
exp

(
−m

2

)
sin(mψ). (35)

Applying the Stirling’s approximation m! ~ (2πm)1/2(m/e)m [26], we get

max
r,ϕ

Sz(α0 = α0,max) ≈
2

πw2
0

1

|q|2(2π)1/4
1

2m/2m1/4 sin(mψ) ≤ 2

πw2
0(2π)1/4

1
2m/2m1/4 . (36)

This estimation indicates that the maximal achievable SAM decreases with increasing
number of the polarization singularities.

We note that the linearly polarized Gaussian beam in the whole field has the following
initial intensity distribution:

IGB(r, ϕ, 0) =
1

W0

(
a0

w0

)2m
exp

(
−2r2

w2
0

)
(37)

and its energy fraction in the whole energy is

WGB = 2π
∞∫
0

IGB(r, ϕ, 0)rdr

= 2π
W0

(
a0
w0

)2m ∞∫
0

exp
(
− 2r2

w2
0

)
rdr =

(
a0
w0

)2m
[

m!
2m +

(
a0
w0

)2m
]−1

.
(38)

At the singularities circle radius from Equation (34) this energy reduces to

WGB(a0 = a0,max) =
1
2

. (39)

Thus, the maximal SAM density is achieved when the energy of the linearly polarized
Gaussian beam in the superposition (5) is equal to the energy of the cylindrically polarized
LG beam, i.e., equal to the half of the energy of the whole light field.

5. Orbital Angular Momentum Density

In paraxial light fields, only the longitudinal component of the OAM vector can be
significant. It is equal to [27,28]:

Jz = Im
{

E∗x
∂Ex

∂ϕ
+ E∗y

∂Ey

∂ϕ

}
. (40)

Substituting here the light field from Equation (5), we get

Jz = 1
|q|2m+2w2m

0 W0
exp

(
− 2r2

|q|2w2
0

)
×Im

{(
rm cos mϕ− am

0 qm)∗ ∂
∂ϕ

(
rm cos mϕ− am

0 qm)+ (rm sin mϕ)∗ ∂
∂ϕ (r

m sin mϕ)
}

.
(41)
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The second term is real and its imaginary part is zero. Then, the OAM density reduces to

Jz = 1
|q|2m+2w2m

0 W0
exp

(
− 2r2

|q|2w2
0

)
Im
{(

rm cos mϕ− am
0 q∗m)(−mrm sin mϕ)

}
= −m
|q|2W0

exp
(
− 2r2

|q|2w2
0

)(
a0r
|q|w2

0

)m
sin(mψ) sin(mϕ).

(42)

It is seen that the OAM is equal to the SAM from Equation (22) but multiplied by
−m/2.

It is in contrast with the conventional vortex beams with homogeneous circular polar-
ization, whose OAM exceeds SAM m of −m times.

6. Analogy with Plane Wave and Revealing the Mechanism

According to Equation (5), the light field includes two opposite-charge circularly polar-
ized LG beams. On propagation in free space, they rotate clockwise and counterclockwise.
Thus, an angular analogue of standing wave is generated. This leads to a natural question
whether the above-described effect can occur with the conventional standing wave if it
is composed of two plane waves that have opposite tilt to the optical axis and opposite
circular polarization. When superimposed with a plane wave without the tilt, such a field
has the following complex amplitude:

E(x, y, z) = 1√
W1

exp(ikxx + ikzz)
[

1
−i

]
+ 1√

W1
exp(−ikxx + ikzz)

[
1
i

]
+ a0√

W1
exp(ikz)

[
1
0

]
,

(43)

where k2
x + k2

z = k2 = (2π/λ)2 and kx = sin α with α being the tilt angle. The multiplier
a0 defines the relative strength of the plane wave without the tilt. The field (43) is of infinite
energy, but to make the energy equal for different values a0, we introduced the multiplier
W−1/2

1 with W1 = 4 + a2
0 (four scalar tilted plane waves and one wave without the tilt and

with the amplitude proportional to a0).
It turns out that, on propagation in space, such a field also acquires nonzero SAM

density:

Sz(x, y, z) = 2Im
{

E∗x Ey
}

=
−4a0

4 + a2
0

sin(kxx) sin[(k− kz)z]. (44)

Due to infinite energy, plane waves do not spread on propagation. Therefore, the SAM
density is repeated periodically and does not decay, in contrast to the realistic finite-energy
beam (5), whose SAM density decays.

It is seen in Equation (44) that no matter how the beam without the tilt is polarized,
the nonzero SAM would not occur without the difference k − kz. Figure 5 illustrates
schematically interaction of two tilted plane waves with and without the non-tilted wave.
The depicted area in Figure 5 has the size of 2λ × 2λ and computed for α = π/6. Thus, since
kx = π/λ, the horizontal size of 2λ includes a single period over which the polarization
direction rotates by an angle of 2π. Due to circular polarizations, electric vectors of the tilted
plane waves rotate, but in opposite directions. These rotations cancel each other out and
common polarization of tilted waves is inhomogeneous but remains linear (Figure 5a). The
direction of linear polarization changes with the period of λ/sin α, which is decreasing with
growing tilt. Adding linearly polarized non-tilted beam changes polarization direction, but
leaves it linear in the initial plane, where all the waves are superimposed in phase. But on
propagation, tilted waves become retarded compared to the non-tilted wave (Figure 5b).
Thus, a phase delay appears between the tilted waves and non-tilted one. This delay means
elliptic polarization.
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opposite tilts and with opposite circular polarizations (a), generating nonzero SAM density in a
superposition of two tilted circularly polarized plane waves with a linearly polarized wave without
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circles and black arrows in the initial fields denote respectively waves with right and left circular
polarization as well as a linearly polarized wave. In the output distributions, blue and red arrows
denote directions of linear polarization generated respectively by the circularly polarized waves and
by the linearly polarized wave.

However, if the electric field of the linearly polarized wave greatly exceeds or, vice
versa, is much weaker than the electric field of tilted circularly polarized waves, then,
despite the phase delay between them, elliptic polarization is close to linear and the SAM
density is small. Thus, a question arises about the energies of the tilted waves and of the
non-tilted wave that leads to the maximal SAM. Equation (44) follows that the maximal
SAM magnitude is achieved at a0 = 2. This means that the energy of the linearly polarized
wave is half of the energy of the whole superposition. Thus, we obtained just the same
result as for the field (5) with multiple polarization singularities: the energy of the linearly
polarized term should amount to half the energy of the whole field.

Elliptic polarization is not generated when the linear polarization of the two tilted
circularly polarized plane waves is parallel to linear polarization of the non-tilted wave.
Thus, according to Equation (44), if kxx = πp (p is an integer), then polarization is linear.
On the contrary, when these vectors are orthogonal, polarization is closest to circular. This
happen when cos(kxx) = 0. Thus, the maximal SAM magnitude of the field (5) should
be achieved when LGm(r, ϕ, z) + LG−m(r, ϕ, z) = 0, i.e., when cos(mϕ) = 0. This occurs
exactly at the above obtained polar angles ϕp = (±π + 4πp)/(2m) (p = 0, . . . , m − 1).

The above explanation of the nonzero SAM also explains the proportionality between
the OAM and SAM densities. It has no special physical meaning, but it is a consequence of
the special-type complex amplitude (5). Indeed, the SAM density is due to the phase delay
between the terms rmsin(mϕ) and (a0q)m, whereas the OAM is contributed only by the Ex
component and it is due to the phase delay between the terms rmcos(mϕ) and (a0q)m. It can
be shown that for an arbitrary vector light field given by

E(r, ϕ, z) =

[
A(r, ϕ)eiΨ(r) + B(r)eiX(r)

γ(∂A/∂ϕ)eiΨ(r)

]
, (45)

with A, B, Ψ, X being real functions and with γ being a real number, the SAM and the OAM
densities are equal to

Sz = 2γB(∂A/∂ϕ) sin(Ψ− X),
Jz = B(∂A/∂ϕ) sin(Ψ− X).

(46)
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Thus, Jz = Sz/(2γ). For the field (5), γ = −m. That is why the OAM density in
Equation (42) equals the SAM density (22) multiplied by (−m/2).

7. Simulation

Figure 6 depicts the initial intensity distributions of the light field (5) for several orders
m as well as the intensity and SAM density distributions on propagation in space to the
plane with the maximal SAM. The singularities circle radius a0 was chosen so as to equalize
the intensities in the center and in the periphery, i.e., by Equation (19). The intensity
distributions were obtained by Equation (9), but were compared with those obtained by
the numerical Fresnel transform implemented as a convolution with using the fast Fourier
transform. All the figures looked identical. To make the magnitudes of the order of units,
all field components were multiplied by a constant factor C0 = 3000.
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Figure 6. Intensity distributions in the initial plane (a–e) and at the maximal-SAM distance (33)
(f–j), as well as SAM density distributions at the maximal-SAM distance (k–o) for the following
parameters: wavelength λ = 532 nm, Gaussian beam waist radius w0 = 1 mm, number of the
polarization singularities in the initial plane m = 4 (a,f,k), m = 5 (b,g,l), m = 6 (c,h,m), m = 7 (d,i,n),
m = 8 (e,j,o), radius of the singularities circle a0 = 828 µm (a,f,k), a0 = 942 µm (b,g,l), a0 = 1041 µm
(c,h,m), a0 = 1129 µm (d,i,n), a0 = 1210 µm (e,j,o), propagation distance is z = 0.349z0 (a,f,k), z = 0.284z0

(b,g,l), z = 0.240z0 (c,h,m), z = 0.208z0 (d,i,n), z = 0.183z0 (e,j,o). The radii a0 were computed by
Equation (19) to equalize the intensities in the center and in the periphery. Circles on the SAM
distributions (k–o) show the maximal-SAM radii obtained by Equation (25). All quantities (maximal
intensity and SAM magnitude) are given in arbitrary units. Scale mark in each figure denotes 1 mm.
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Figure 6 confirms that the singularities circle radius computed by Equation (19) allows
equalizing the beam intensity in the center and in the periphery. Figure 6 also confirms that
in the transverse plane the maximal SAM magnitude is achieved at a circle of the radius
given by Equation (25), which is

√
2 times smaller than the radius of maximal intensity of a

single-ringed mth-order LG beam.
If is also seen in Figure 6 that the transverse plane with the maximal SAM is closer

and closer to the initial plane with increasing number of singularities m. This is because
this plane should be close than the first transverse plane with linear polarizations, which is
also closer and closer, according to Equation (23).

To verify the approximate expression (33) for finding the plane with the maximal SAM,
Figure 7 illustrates the SAM dependence on the propagation distance for the beams shown
in Figure 6. The SAM was computed by Equation (26). Dots in the top of each plot indicate
the maximal-SAM distance obtained by Equation (33).
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Figure 8 depicts the initial intensity distributions of the light field (5) as well as the
intensity and SAM density distributions on propagation in space to the plane with the
maximal SAM with all parameters being the same as in Figure 6, but the singularities circle
radius is chosen so as to maximize the SAM density.

It is seen in Figure 8 that for each number of singularities m, the SAM density achieves
magnitudes nearly 1.5 times higher than those in Figure 6.

In addition, it is seen that the initial fields have the same maximal intensity indepen-
dently of m. This is because the maximal SAM is achieved, according to the above theory,
when the energy of the Gaussian beam is equal to the half of whole beam energy. The rest
energy of the same amount goes into the light ring and the intensity of this ring is weaker
than the central intensity of the Gaussian beam. Thus, the central part of the intensity
patterns of all the beams in Figure 8 is the Gaussian beam of the same energy, i.e., of the
same amplitude. That is why the central intensity is the same.

Now we verify that indeed the singularities ring radius a0 from Equation (34) yields
the maximal SAM density over other radii. Figure 9 illustrates the longitudinal SAM
distributions of the light field (5) at a0 given by Equation (34) and at some other values a0.
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Figure 8. Intensity distributions in the initial plane (a–e) and at the maximal-SAM distance (33) (f–j),
as well as SAM density distributions at the maximal-SAM distance (k–o) for the following parameters:
wavelength λ = 532 nm, Gaussian beam waist radius w0 = 1 mm, number of the polarization
singularities in the initial plane m = 4 (a,f,k), m = 5 (b,g,l), m = 6 (c,h,m), m = 7 (d,i,n), m = 8 (e,j,o),
radius of the singularities circle a0 = 1052 µm (a,f,k), a0 = 1141 µm (b,g,l), a0 = 1223 µm (c,h,m),
a0 = 1300 µm (d,i,n), a0 = 1371 µm (e,j,o), propagation distance is z = 0.349z0 (a,f,k), z = 0.284z0 (b,g,l),
z = 0.240z0 (c,h,m), z = 0.208z0 (d,i,n), z = 0.183z0 (e,j,o). The radii a0 were computed by Equation (34)
to maximize the SAM over all other radii a0. Propagation distances were computed by Equation (33)
to maximize the SAM density. Circles on the SAM distributions (k–o) show the maximal-SAM radii
obtained by Equation (25). All quantities (maximal intensity and SAM magnitude) are given in
arbitrary units. Scale mark in each figure denotes 1 mm.
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Figure 9. Maximal SAM of the light field (5) at m = 6 for several values of the singularities circle
radius a0: a0 = a0,max given by Equation (34) (curve E), a0 = 0.8a0,max (curve A), a0 = 1.2a0,max (curve
B), a0 = 0.9a0,max (curve C), a0 = 1.1a0,max (curve D). Dashed line indicates the maximal-SAM distance
obtained by the approximate Formula (33), which is independent on a0.
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Figure 9 confirms that the maximal SAM is achieved at a0 given by Equation (34).
Finally, we compute the OAM density of the light field (5).
Figure 10 depicts the OAM density distributions of the light field shown in Figure 8.

The OAM distributions look like inverted SAM distributions, but they were obtained by
a quite different way: by Equation (40) where the angular derivative was represented as
∂/∂ϕ = x∂/∂y − y∂/∂x and was computed by using finite differences.
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Figure 10. Distributions of the OAM density of the light field (5) at the maximal-SAM distance (33) for
the following parameters: wavelength λ = 532 nm, Gaussian beam waist radius w0 = 1 mm, number
of the polarization singularities in the initial plane m = 4 (a), m = 5 (b), m = 6 (c), m = 7 (d), m = 8 (e),
radius of the singularities circle a0 = 1052 µm (a), a0 = 1141 µm (b), a0 = 1223 µm (c), a0 = 1300 µm (d),
a0 = 1371 µm (e), propagation distance is z = 0.349z0 (a), z = 0.284z0 (b), z = 0.240z0 (c), z = 0.208z0

(d), z = 0.183z0 (e). The radii a0 were computed by Equation (34) to maximize the SAM (and thus the
OAM) over all other radii a0. Propagation distances were computed by Equation (33) to maximize
the SAM (OAM) density. All quantities are given in arbitrary units. Scale mark in each figure denotes
1 mm.

The maximal OAM magnitudes confirm that the OAM exceeds the SAM −m/2 times.

8. Experiment

In this section we experimentally show that, indeed, a superposition of mth-order
and of 0th-order vector beams has 2m areas where polarization is elliptic and has different
rotation direction. For the light beam we generated in the experiment, the Jones vector is
given by

E =

(
cos mϕ
sin mϕ

)
+

(
a
0

)
. (47)

Figure 11 shows the experimental setup. A linearly polarized light beam from a
solid-state laser with a wavelength of 532 nm is divided into two identical beams after
the splitting cube BS1. In one arm of the Mach–Zender interferometer, the beam passes
through the first order q-plate (PCVB), which generates a cylindrical vector beam with m = 1.
In the other arm of the interferometer, the amplitude of the beam with linear polarization is
changed so that it is equal to a = 0.5. After the second splitting cube BS2, both beams are
combined into one beam with the amplitude proportional to the beam (47).

In front of the registering camera, we placed a linear polarizer (P3) and a quarter-wave
plate (λ/4) for measuring the components of the Stokes vector.

Figure 12 illustrates the beam intensity, registered by the CCD-camera without the
polarizer P3 and quarter-wave plate in front of it, whereas Figure 13 depicts the components
of the Stokes vector measured at different positions of the polarizer P3 and of the quarter-
wave plate in front of the camera.
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For comparison, Figure 14 shows results of a numerical simulation of focusing a light
field with polarization (47) by using the Richards–Wolf formulae for the parameters m = 1
and a = 0.5 and for a lens with a low numerical aperture NA = 0.3.
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Comparison of Figures 13 and 14 indicates that in the beam from Equation (47) with
the parameters m = 1 and a = 0.5, areas appear with elliptic polarization. These areas are
observed both in the beam itself and when it is focused by a low-numerical-aperture lens.

9. Conclusions

We investigated paraxial light beams with multiple polarization singularities residing
evenly on a circle (singularities circle). In the initial plane, polarization of such light beam
is linear in all points, and the beam has zero spin and orbital angular momenta (SAM and
OAM). When such a beam is propagating in free space, polarization is, in general, elliptic,
and there are alternating areas with the positive and negative SAM, i.e., the spin Hall effect
arises. In each transverse plane, the maximal SAM density magnitudes are achieved in 2m
points (m points of maximal SAM density and m points of minimal SAM density) on a ring
with a radius, equal to the half of the Gaussian beam radius multiplied by the square root
from the number of singularities.

We obtained an approximate expression [Equation (33)] for the propagation distance
where the SAM density achieves maximal magnitudes. This distance is independent of
the singularities circle radius. We also derived an exact expression [Equation (34)] for the
singularities circle radius that maximizes the SAM density. The maximal achievable SAM
density is shown to decrease with the number of singularities m.

The investigated light beam is a superposition of a cylindrically polarized LG beam
and of a linearly polarized Gaussian beam. We found that the maximal SAM density of the
superposition is achieved when the energies of both beams are equal.

By considering an analogy with plane waves we found a reason of arising the spin Hall
effect for the studied vector light field. It is due to different divergence of the cylindrically
polarized LG beam and of the linearly polarized Gaussian beam.

We performed an experiment by generating a superposition of a linearly polarized
beam with a cylindrical vector beam. This experiment confirmed that, indeed, 2m areas are
generated where polarization is elliptic and has different rotation directions.

Application areas of the results obtained are designing micromachines for optical
driving biological objects [29,30] or microtools in a lab-on-a-chip [31]. The SAM causes
particles to rotate around their centers of mass [32] and engineering the SAM density
distribution can allow simultaneous manipulating by an ensemble of particles. Another
application is optical information transmission where the SAM density distribution can be
used for encoding the data.
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