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Abstract: Micro-opto-electro-mechanical (MOEM) accelerometers that can measure small accel-
erations are attracting growing attention thanks to their considerable advantages—such as high
sensitivity and immunity to electromagnetic noise—over their rivals. In this treatise, we analyze
12 schemes of MOEM-accelerometers, which include a spring mass and a tunneling-effect-based
optical sensing system containing an optical directional coupler consisting of a fixed and a mov-
able waveguide separated by an air gap. The movable waveguide can perform linear and angular
movement. In addition, the waveguides can lie in single or different planes. Under acceleration, the
schemes feature the following changes to the optical system: gap, coupling length, overlapping area
between the movable and fixed waveguides. The schemes with altering coupling lengths feature the
lowest sensitivity, yet possess a virtually unlimited dynamic range, which makes them comparable to
capacitive transducers. The sensitivity of the scheme depends on the coupling length and amounts to
11.25 × 103 m−1 for a coupling length of 44 µm and 30 × 103 m−1 for a coupling length of 15 µm.
The schemes with changing overlapping areas possess moderate sensitivity (1.25 × 106 m−1). The
highest sensitivity (above 6.25 × 106 m−1) belongs to the schemes with an altering gap between
the waveguides.

Keywords: MOEM-accelerometer; optical measuring transducer; inertial mass; movable and fixed
waveguides; optical transmission coefficient; coupling length; threshold sensitivity; directional
coupler; silicon-on-insulator (SOI)

1. Introduction

The accelerometer consists of a mechanical sensing element with an inertial mass and
an optical electronic unit. The former converts acceleration into a displacement, while the
latter senses the displacement. The accelerometers do not measure the acceleration signal
directly, but by measuring the displacement of the inertial mass or the mechanical loads
applied to the spring suspension system and induced by acceleration inertial forces. This
can be achieved through various transformation methods, such as capacitive, piezoresistive,
piezoelectric, thermal, optical, electromagnetic, tunneling effect, etc.

Micro-opto-electro-mechanical (MOEM) accelerometers are attracting growing atten-
tion due to the appreciable advantages of the sensors over their typical rivals. MOEM-
accelerometers provide optical measurements via technologies used in microelectrome-
chanical systems (MEMS) [1–6]. They are immune to electromagnetic noise, electrically
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insulated, corrosion–resistant and provide remote sensing and high sensitivity, which
makes them preferable over rivals. These types of accelerometers cover many fields of ap-
plication that state various requirements to their characteristics. For instance, in automotive
electronics [7,8], the accelerometers are used to measure the accelerations in airbags, braking
systems, electronic suspension and navigation systems. These applications do not require
high accuracy of the accelerometers, while they state strict requirements of their size and
cost. High bandwidth is critical for acoustic and vibrational measurements [9]. In an inertial
navigation system, the accelerometer must generate low noise and possess fair stability
at zero displacement [10]. For example, sensing acceleration in microgravity conditions
requires extremely high acceleration sensitivity (less than µGal), long-term stability and
uniform low-frequency characteristics [11]. The accelerometers play a crucial role in build-
ing monitoring systems. The measurement of building vibrations can detect defects and
provide early warning. The accelerometers are used for monitoring seismic activity, drilling
processes, high and low tides, volcanic events and other processes and operations [12–16].
Such accelerometers require superhigh sensitivity and a low-frequency response.

The principles of the optical measurement of displacement can be formed based
on geometrical or wave optics [17]. The designs based on geometrical optics are simple
and feature a high dynamic range, yet possess limited sensitivity due to their working
principle [18–21].

In the wave-optics-based accelerometers, the acceleration alters the parameters of the
light flux (phase, frequency, intensity, etc.). MOEM-accelerometers based on wave optics
are tunnel, grating or interferometric resonators [22–24], Fabry-Perot resonators [25–28],
photon crystals [29–31] and others. At present, MOEM-accelerometers based on the fiber
Bragg grating (FBG) with direct integration into optical fiber are widely used [32–35].

Among the MOEM-accelerometer designs considered above, the highest variability,
performance and applicability for measuring super low displacements are held by the
systems based on the optical tunneling effect. The basic functional element with the highest
practical potential in the optical transducer of a MOEM-accelerometer is the directional
coupler. In the world literature, there are few studies describing the application of the
optical tunneling effect for measuring acceleration. In particular, optical resonators are
used to increase the sensitivity. For instance, Bhola [36] studies an accelerometer with a
displacement sensitivity of 31 pm/g. Jian [37] presents an accelerometer with a Q–factor of
8.8 × 107, sensitivity of 9 pm/g and measurement range of 130 g. F. Wan et al. constructed
an accelerometer based on the Fano resonance in a ring resonator and interferometer, as
per the Mach–Zehnder scheme, with a theoretical sensitivity of 111.75 mW/g [38]. G. H.
Dushaq et al. measured the acceleration outside the sensor plane using a disk in a spring
suspension mounted over a waveguide at a distance of 1 µm and achieved a sensitivity
of 3 dB/g [39]. Table 1 summarizes the literature review. Evidently, the characteristics of
the MOEM-accelerometers are given in different units, which is due to the choices of the
respective authors.

Following Table 1, the optical measurement transducers cannot be adequately com-
pared because the output values depend on the type of optical measuring transducer, the
values of the inertial mass, transmission coefficients of the photodiodes and other optical
and electrical components of the accelerometer. Therefore, they will be different for each
device. This statement is particularly true for directional coupler-based schemes.

There are very few studies that compare various designs of accelerometers based
on a directional coupler and the optical tunneling effect and analyze their strong and
weak points and resulting characteristics. Hence, the analysis of the feasible designs of
MOEM-accelerometers is a promising task.

The design of a MOEM-accelerometer starts with the choice of the functional scheme.
Further, the scheme should be validated for its achievable characteristics and general feasi-
bility. The experimental study of various schemes is extremely time- and cost-consuming
due to the complexity of experimental specimen fabrication.
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Table 1. Summarized literature review.

Device Type Sensitivity Resonance
Frequency [Hz] Self-Noise Dynamic

Range [g]
Bandwidth

[Hz]

Michelson interferometer [2] 3.638 nm/g 1742.2 Hz – ±500 –
Photonic crystal zipper [4] 10 mg/

√
Hz – – – 20,000

Subwavelength grating pair [3] 1.56 nm/mg – – – –
Fiber Bragg gratings [5] 0.997 V·g – – – –
Fiber Bragg grating [16] 14.4–7.5 pm/g 444–940 Hz 15 ng/

√
Hz 0.2–20 400–900

Optical polymers
waveguides [20] 34.1 µm/g – – – –

On–chip optical
interferometry [22] 24.4 µg/

√
Hz 4500–6400 43.7 ng/

√
Hz – –

Fabry-Pérot resonator [27] 12.5 µW/g 1872 – ±1 –
Fabry–Pérot interferometer [28] 1.022–1.029 mV/(m/s2) 1274 – – –

Hemispherical optical
cavity [29] 1 µg/

√
Hz >30,000 – – –

Mach–Zehnder
interferometer [30] – 646.56 7.8 × 10−5 (m/s2)/Hz – –

Fibre cantilever [31] – – ~0.2 g – 10–2000
Fiber Bragg grating [32] 450 pm/g – – – –

Optical microring
resonator [36] 31 pm/g – – ±7 –

Resonant optical tunneling
effect [37] 9 pm/g – – ±130 10–1500

Mach–Zehnder
interferometer [38] 111.75 mW/g – – – –

Optical tunneling effect [39] 3 dB/g – – 1–10 –

The aim of this study is to simulate and compare different functional schemes of
MOEM-accelerometers featuring optical measuring transducers based on the directional
coupler and the optical tunneling effect. This article presents possible designs of MOEM-
accelerometers featuring different types of displacements of the waveguide with the inertial
mass. We also present an analysis of the strong and weak points of the suggested schemes
from the perspective of the complexity of the fabrication technology and anticipated
sensitivity. This will provide minimal labor consumption for determining the concept of
MOEM micro–g accelerometer fabrication using conventional technology.

2. Micromachined Sensing Chip
2.1. Sensor Fabrication

A MOEM-accelerometer includes three parts: mechanical, optical and electronic. To its
simplest extent, an accelerometer can be represented as a “spring–mass–damping” scheme
(Figure 1).
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Figure 1. Functional scheme of an accelerometer.

The accelerometer consists of the inertial mass m mounted in the housing on the
spring suspension with stiffness k. The mass displaces relative to the fixed wafer under
the acceleration a. The displacement x that is proportional to the acceleration is measured
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by an optical–electronic unit. The gap between the moving and fixed waveguides can be
adjusted by the electrode structure that implements the electrostatic force Fel.

The displacement of the inertial mass in relation to the fixed housing is provided by
the force coupled with it, as per Newton’s second law:

F = m ·
(
a− ..

x
)
. (1)

During displacement, the inertial mass is affected by the spring force of the suspension
and the motion resistance force. Their sum equals F in Equation (1). As per Hooke’s law,
the spring force is calculated as follows:

Fs = −k · x,

where k is the spring suspension stiffness.
The force of the inertial mass motion resistance in relation to the housing is:

Fr = −µ · .
x,

where µ is the coefficient of the viscous damping forces.
The differential equation of the accelerometer’s inertial mass motion becomes the

following:
m · ..

x + µ · .
x + k · x = m · a + Fel . (2)

Equation (2) can be transformed as follows:

..
x +

ωa

Q
.
x + ω2

a x = a +
1
m

Fel , (3)

where ωa is the eigenfrequency of the accelerometer’s mechanical resonance, Q is the
mechanical Q-factor of the accelerometer, ω2

a x = k
m is the resonance frequency of the

mechanical part of the accelerometer.
When the frequency of the measured acceleration is much less than the eigenfre-

quency ωa of the structure, the displacement x of the mass is proportional to the measured
acceleration:

x =
1

ω2
a

a. (4)

The optical subsystem includes a laser and an optical measurement transducer based
on the optical tunneling effect and implemented as the directional coupler. The directional
coupler is an optical “medium–air gap–medium” modulator that contains a fixed waveg-
uide mounted on the housing and a movable waveguide mounted on the inertial mass.
The waveguides are fabricated from silicon nitride [35–37] due to it possessing the lowest
resulting losses compared to silicon photonics.

The design of a microaccelerometer is mainly determined by the technological process
that is used for its fabrication. A MOEM-accelerometer can be made in two ways. The first
method includes a one-step formation of interacting moving and fixed waveguides in a
single plane (Figure 2). The base material is a silicon-on-insulator (SOI) wafer (Figure 2a).
The waveguides are formed by depositing a silicon nitride layer on the device layer of the
SOI wafer through a layer of dielectric material. The device layer of the SOI wafer is used
to form the moving and fixed parts of the MEMS’s structure.

At the first stage, the mask for etching the handle layer of the SOI wafer is formed.
Then, liquid etching of the silicon down to the SOI buried oxide (BOX) layer occurs
(Figure 2b). Then, from the side of the SOI wafer device layer, silicon oxide (SiO2) and
silicon nitride (Si3N4) are deposited to form the waveguides (Figure 2c). After that, the
mask is formed and Si3N4 is etched down to the waveguide BOX layer (Figure 2d). At
the next step, a SiO2 layer is deposited (Figure 2e) and the mask for SiO2 etching down to
the device silicon layer is formed (Figure 2f). Then, the waveguide BOX layer is etched
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(Figure 2g) and deep etching of the SOI wafer device layer down to the SOI BOX layer is
performed (Figure 2h). To release the moving mass, the passivation of the SOI wafer and
liquid etching of the SOI BOX layer occur (Figure 2i). Figure 2j depicts a finished transducer
after the passivating layer is removed. It is important to note that the working gap (less
than 500 nm) formed between the waveguides, in this example of the technological process,
exceeds the required value (by units of micrometers), and is then adjusted to the required
value by the working gap adjustment system [39]. The fabrication of the transducer without
the working gap adjustment system is possible, but comes with the complication of the
technology. In this investigation, such a point is not critical and is not considered.
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Figure 2. Technological process of a MOEM-accelerometer fabrication with single-plane waveguides.
(a) SOI wafer; (b) Etching of SOI wafer handle layer; (c) Deposition of Si3N4 and SiO2 layers;
(d) Etching of Si3N4; (e) Deposition of SiO2 covering layer; (f) Photoresist mask formation; (g) Etching
of SiO2; (h) Deep etching of SOI wafer device layer; (i) Passivation of SOI wafer and SOI BOX layer
removal; (j) Passivation layer removal.

The second fabrication method includes the arrangement of the waveguides in dif-
ferent planes through layer-by-layer growing (Figure 3), with a SOI wafer as the base
material (Figure 3a). In this case, the working gap between the waveguides is determined
immediately by the thickness of the material layers.
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Figure 3. Technological scheme of MOEM-accelerometer fabrication with different–plane waveguides.
(a) SOI wafer; (b) Etching of SOI wafer handle layer; (c) Deposition of Si3N4 and SiO2 layers;
(d) Formation of moving Si3N4 waveguides; (e) Deposition and smoothing of SiO2, formation of
photoresist sacrificial layer; (f) Formation of Si3N4 fixed waveguides; (g) Deposition of SiO2 covering
layer; (h) Photoresist sacrificial layer removal; (i) Etching of SOI BOX layer, device layer and SiO2;
(j) Photoresist removal.

First, the mask for etching the handle layer of the SOI wafer is formed. Then, liquid
etching of the silicon down to the SOI BOX layer occurs (Figure 3b). After that, SiO2 and
Si3N4 are deposited from the side of the SOI wafer device layer (Figure 3c), the mask
is formed, and Si3N4 is etched to create the moving waveguides (Figure 3d). Next, the
deposited SiO2 layer and moving waveguides are smoothed out, and the sacrificial layer
of the photoresist is formed (Figure 3e). Subsequently, Si3N4 is deposited, and the fixed
waveguide is formed through the photoresistive mask (Figure 3f). Then, the covering SiO2
layer is deposited and the photoresistive mask is used to open the windows to remove the
photoresist sacrificial layer (Figure 3g). Figure 3h presents the transducer with a removed
sacrificial layer of the photoresist and a column with the fixed waveguide. To release the
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moving part of the transducer, a mask on the other side of the SOI wafer is formed, and the
consequent etching of the SOI BOX layer, device layer and SiO2 occurs (Figure 3i). Figure 3j
depicts the finished transducer.

2.2. Functional Schemes of Accelerometer with Single-Plane Waveguides

Depending on the type of spring suspension, the moving waveguide, together with
the inertial mass, can perform linear or angular movement along three axes. Thus, six types
of functional schemes of MOEM-accelerometers can be built (Figure 4) with single-plane
waveguides and different changing parameters of optical radiation. The first three schemes
correspond to the linear displacement of the moving waveguide along axes X, Y and Z. In
Schemes 4–6, the moving waveguide, together with the inertial mass, performs an angular
movement along axes X, Y and Z. When measuring micro-g acceleration, the displacement
of the waveguide with an inertial mass is measured in small values; hence, to high accuracy,
we may assume that the angular movement of the waveguide is equivalent to its linear
movement. Then, we may assume that in Schemes 1 and 4, the gap is changed; in Schemes
2 and 5, the coupling length is changed; in Schemes 3 and 6, the overlapping area between
the moving and fixed waveguides is changed.
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Figure 4. Functional schemes of the MOEM-accelerometer with single-plane waveguides. (a) Scheme
1, displacement along Y axis (gap change); (b) Scheme 2, displacement along X axis (length change);
(c) Scheme 3, displacement along Z axis (overlap change); (d) Scheme 4, displacement around Z axis
(gap change); (e) Scheme 5, displacement around Z axis (length change); (f) Scheme 6, displacement
around X or Y axis (overlap change).
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2.3. Functional Schemes of Accelerometer with Different-Plane Waveguides

The possible schemes of the MOEM-accelerometer with different-plane waveguides
are presented in Figure 5. In Schemes 7–9, the moving waveguide, together with the inertial
mass, performs a linear movement along axes X, Y and Z. In Schemes 10–12, the moving
waveguide, together with the inertial mass, performs an angular movement along axes X,
Y and Z.
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Figure 5. Functional schemes of the MOEM-accelerometer with different-plane waveguides.
(a) Scheme 7, displacement along Y axis (overlap change); (b) Scheme 8, displacement along X
axis (length change); (c) Scheme 9, displacement along Z axis (gap change); (d) Scheme 10, displace-
ment around Z axis (overlap change); (e) Scheme 11, displacement around Z axis (length change);
(f) Scheme 12, displacement around X or Y axis (gap change).

When measuring the acceleration in Schemes 7 and 10, the overlapping gap between
the moving and fixed waveguides changes; in Schemes 8 and 11, the coupling length
between the waveguides changes; in Schemes 9 and 12, the gap between the waveg-
uides changes.

3. Optical Measuring Transducer
3.1. Coupling Length

The optical measuring transducer (OMT) is part of the accelerometer, which is a MEMS
structure with moving and fixed parts that have an air gap between them.
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The threshold sensitivity of the accelerometer—the minimal signal that can be
measured—can be quantitatively estimated as the noise–equivalent acceleration (NEA) in
units of g/

√
Hz (g = 9.81 m/s2) [40,41].

NEA =
√

a2
BR + a2

L + a2
PH . (5)

The first term in the NEA expression is due to the thermal Brownian motion of
the molecules in the accelerometer’s moving system. The rest of the terms in the NEA
expression represent the laser (aL) and photodiode (aPH) noise.

The Brownian noise of the accelerometer is determined differently:
(a) for the accelerometer with linear displacement of the waveguide:

aBR =

√
4KbTωa

mQ
=

√
4KbT

Q

√
k

m3 , (6)

(b) for the accelerometer with angular displacement of the waveguide:

aBR =

√
4KbTωa Jy

mQ · l . (7)

where Kb is the Boltzmann constant that equals 1.38 × 10−23 J/K; T is the absolute tempera-
ture, K; Jy, and l are the moment of inertia and the displacement of the center of mass of the
inertial mass in relation to the axis of its spring suspension.

According to Equations (6) and (7), the Brownian noise of the accelerometer can be
reduced by increasing the mass of the moving system, reducing the resonance frequency
and increasing the Q-factor [42]. A massive mechanical system is difficult to fabricate,
while the reduction in the stiffness is less consuming.

At the same time, Equations (6) and (7) mean that the accelerometer with an angular
movement of the waveguide presents

√
(m/l) times higher Brownian noise compared to

the accelerometer with linear displacement at the same resonance frequency.
Considering the above, the schemes with angular movement have no advantages over

linear schemes in terms of sensitivity. Therefore, let us determine the characteristics of the
OMT only for the schemes with a linear displacement of the waveguides.

The choice of an optimal design of accelerometer requires studying the characteristics
of the proposed schemes at various types of waveguide displacements and assessing the
sensitivity (the slope of the optical transmission coefficient). The directional coupler—which
is the basic element of the OMT—is characterized by the coupling length Lcr, at which the
optical power is completely transferred from one waveguide into another. The coupling
length is calculated as per Equation (8) and corresponds to the minimal transmission
coefficient at the output of the passthrough port [43].

Lcr =
λ

2∆ne f f
, (8)

where λ is the wavelength (nm), ∆neff is the difference between the effective refraction
indices of even (neff even) and odd (neff odd) harmonics of the carrier mode in the waveguides.
The dependence of the coupling length on the geometric dimensions of the single-plane
waveguides are presented in Figure 6.
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Figure 6. Dependence of the coupling length on the waveguide parameters.

Following the figure, increasing the height and width of the waveguides will increase
the coupling length. As the OMT is a MEMS structure with small gaps between the moving
and fixed parts, the choice of the waveguide dimensions with lower coupling lengths is
reasonable to reduce the probability of waveguides touching each other due to the skewing
of the spring suspension caused both by the loads and fabrication process.

3.2. Characteristics of OMT

The external view of the OMT under investigation with different alignments of the
waveguides is presented in Figure 7.
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The optical transmission coefficient (Tdrop) is the relation of the transmitted optical
power (Pdrop) at the output of the drop port to the input power (Pinput), and is determined
as follows [44]:

Tdrop =
Pdrop

Pinput
= sin2

(
π∆ne f f

λ
Lco

)
. (9)

The dependencies of the optical transmission coefficient Tdrop for the drop port on the
air gap G and coupling length Lco for different fabrication technologies are presented in
Figure 8. The calculations were made in the COMSOL Optics software package using the
Finite-Difference Eigenmode (FDE) solver. The coupling length under study was limited to
100 µm due to the fabrication technology and to reduce the risk of moving and fixed parts
of the MEMS structure touching each other; the air gaps under investigation were limited
to 600 nm to reduce the crystal area and coupling length of the photonic integrated circuit
(PIC).
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Figure 8. Dependence of the optical transmission coefficient of the directional coupler on the coupling
length and gap. (a) Single-plane waveguides with dimensions of 300 × 1000 nm; (b) Different-plane
waveguides with dimensions of 300 × 1000 nm; (c) Single-plane waveguides with dimensions of
300 × 750 nm; (d) Different-plane waveguides with dimensions of 300 × 750 nm.

According to the analysis, the technology of the different-plane waveguides allows the
waveguide gap to be increased considerably while preserving the same coupling length.
For instance, the required air gap for the OMT with a single-plane waveguide is 100 nm
at a coupling length of 50 µm, while for different-plane waveguides, the gap amounts to
520 nm. For a coupling length of 50 µm and single-plane waveguides, the gap is 350 nm.
The reduction in the waveguide width from 1000 to 750 nm—while preserving the same
height—allows a reduction in the coupling length of the directional coupler or a further
increase in the initial gap of the OMT.
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3.2.1. Changing the Coupling Length

In Functional Scheme 2 (Figure 4b) and Scheme 8 (Figure 5b), the inertial mass moves
along axis X, and the coupling length of the directional coupler changes. Figure 9 presents
the dependencies of the optical transmission coefficient on the coupling length. Evidently,
the decreased gap reduces the period of the optical transmission coefficient sine. Hence,
the sensitivity increases. From this point onward, to assess the sensitivity and the dy-
namic range of the obtained characteristics, let us choose the point that corresponds to a
transmission coefficient of 0.5 and set it as the reference point for a corresponding axis.
Figure 10 presents the dependencies of the transmission coefficient on the inertial mass
movement along axis X at fixed gaps, where Lco is the initial coupling length. For the waveg-
uides with dimensions of 300 × 1000 nm, the sensitivity can vary between 12.5 × 103 and
33 × 103 m−1, while for the waveguide with dimensions of 300 × 750 nm, it can vary
between 10 × 103 and 83 × 103 m−1 (Figure 10).
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Figure 9. Dependence of the optical transmission coefficient on the coupling length for the OMT
with single-plane waveguides (Scheme 2). (a) Waveguides with dimensions of 300 × 1000 nm;
(b) Waveguides with dimensions of 300 × 750 nm.
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Figure 10. Dependence of the optical transmission coefficient on the inertial mass displacement along
axis X for the OMT with single-plane waveguides (Scheme 2). (a) Waveguides with dimensions of
300 × 1000 nm; (b) Waveguides with dimensions of 300 × 750 nm.

The same analysis was performed for Functional Scheme 8 (Figure 5b) with different-
plane waveguides (Figures 11 and 12).

According to Figures 11 and 12, for the waveguide with dimensions of 300 × 1000 nm,
the sensitivity may vary between 12.5 × 103 and 250 × 103 m−1, while for the waveguide
with dimensions of 300 × 750 nm, it varies between 12.5 × 103 and 500 × 103 m−1.
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Figure 11. Dependence of the optical transmission coefficient on the coupling length between
the waveguides for the OMT with different-plane waveguides (Scheme 8). (a) Waveguides with
dimensions of 300 × 1000 nm; (b) Waveguides with dimensions of 300 × 750 nm.

According to the analysis of the various schemes of the accelerometer’s OMT, implying
the movement of the waveguides along axis X and taking into account their fabrication
technologies, the minimal sensitivity for each OMT type under study has identical slopes.
An increased gap increases the sensitivity. An increased coupling length allows an increase
in both the OMT’s dynamic range and the initial gap, while decreasing the sensitivity. In
the case of OMTs with different-plane waveguides, the sensitivity can be adjusted in more
ways as the optical coupling follows not the waveguide’s height, but its width. In addition,
the different-plane waveguides are more flexible in the case of gaps exceeding 200 nm.
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3.2.2. Changing the Gap

For Functional Scheme 1 (Figure 4a) with single-plane waveguides, the inertial mass
moves along axis Y. For Functional Scheme 9 (Figure 5c) with different-plane waveguides,
the inertial mass moves along axis Z. The characteristics of the OMT with altering gaps are
presented in Figures 13–16. The coupling length Lco remains the same.
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Figure 13. Dependence of the optical transmission coefficient on the gap change for the OMT with
single-plane waveguides (Scheme 1, movement along axis Y). (a) Waveguides with dimensions of
300 × 1000 nm; (b) Waveguides with dimensions of 300 × 750 nm.

Evidently, the movement of the waveguide with the inertial mass along axis Y (axis Z
for different-plane waveguides) at a fixed coupling length changes the optical transmission
coefficient according to the sine law. The sinusoid period decreases with the decreasing
gap. An increased coupling length increases the number of sinusoid periods. A decreased
gap increases the slope (Figures 14 and 16).

For the waveguides with dimensions of 300 × 1000 nm, the sensitivity can vary
between 6.25 × 106 and 25 × 106 m−1, while for the waveguide with dimensions of
300 × 750 nm, it can vary between 6.25 × 106 and 50 × 106 m−1. For the different-plane
waveguides with dimensions of 300× 1000 nm, the sensitivity can vary between 6.25 × 106

and 250 × 106 m−1, while for the waveguide with dimensions of 300 × 750 nm, it can vary
between 6.25 × 106 and 160 × 106 m−1.

According to the analysis of the two types of waveguides and two different fabrication
technologies, the minimal sensitivity for each of the OMTs under study has identical slopes.
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The increased coupling length and preserved sensitivity may provide an increased initial
gap. In the case of OMTs with different-plane waveguides, the sensitivity can be adjusted
in more ways as the optical coupling follows not the waveguide’s height, but its width.
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Figure 15. Dependence of the optical transmission coefficient on the gap for the OMT with
different-plane waveguides (Scheme 9, movement along axis Z). (a) Waveguides with dimensions of
300 × 1000 nm; (b) Waveguides with dimensions of 300 × 750 nm.

3.2.3. Changing the Overlapping Area

For Functional Scheme 3 (Figure 4c) with single-plane waveguides, the inertial mass
moves along axis Z. For Functional Scheme 7 (Figure 5a) with different-plane waveguides,
the inertial mass moves along axis Y. The characteristics of the OMT with altering over-
lapping areas are presented in Figures 17–20. The coupling length Lco and gaps remain
the same. Evidently, the decreased gap increases the number of sinusoid waves. An in-
creased coupling length allows an increase in the initial gap, while preserving the sensitivity.
Increased sensitivity is possible at a considerably decreased initial gap.
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dimensions of 300 × 1000 nm; (b) Waveguides with dimensions of 300 × 750 nm.
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Figure 17. Dependencies of the optical transmission coefficient on the inertial mass linear displace-
ment along axis Z for the OMT with single-plane waveguides (Scheme 3). (a) Waveguides with
dimensions of 300 × 1000 nm; (b) Waveguides with dimensions of 300 × 750 nm.

For the waveguides with dimensions of 300× 1000 nm, the sensitivity can be 1.25 × 106

or 5 × 106 m−1, while for the waveguide with dimensions of 300 × 750 nm, it can be
1.25 × 106, 5 × 106 or 10 × 106 m−1.

For the different-plane waveguides (Figures 19 and 20), the decreased gap increases the
number of sinusoid periods, while the sensitivity weakly depends on the coupling length.
For the different-plane waveguides with dimensions of 300 × 1000 nm, the sensitivity can
vary between 1.25 × 106 and 10 × 106 m−1, while for the waveguide with dimensions of
300 × 750 nm, it can vary between 1.25 × 106 and 12.5 × 106 m−1. Table 2 summarizes the
data for all of the functional schemes.
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dimensions of 300 × 1000 nm; (b) Waveguides with dimensions of 300 × 750 nm.
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dimensions of 300 × 1000 nm; (b) Waveguides with dimensions of 300 × 750 nm.
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Table 2. Summarized data for the functional schemes of the accelerometer.

Scheme Altering
Parameter

Waveguide
Dimensions [nm]

Sensitivity
[m−1]

Dynamic Range
[nm]

Same–plane waveguides

1, 4 gap 300 × 1000 (6.25–25) × 106 ±20–80
300 × 750 (6.25–50) × 106 ±15–80

2, 5 coupling length 300 × 1000 (12.5–33) × 103 ±15,000–40,000
300 × 750 (10–83) × 103 ±6000–40,000

3.6
waveguide
overlapping

300 × 1000 (1.25–5) × 106 ±100–400
300 × 750 (1.25–10) × 106 ±100–400

Different–plane waveguides

9, 12 gap 300 × 1000 (6.25–250) × 106 ±2–80
300 × 750 (6.25–160) × 106 ±6–80

8, 11 coupling length 300 × 1000 (1.25–250) × 103 ±3000–40,000
300 × 750 (1.25–500) × 103 ±1000–40,000

7, 10
waveguide
overlapping

300 × 1000 (1.25–10) × 106 ±60–400
300 × 750 (1.25–12.5) × 106 ±40–400

4. Discussion

From the perspective of fabrication, the MOEMS accelerometers with different-plane
waveguides are more complex because they require more technological operations, in-
cluding a complicated lift-off process. This reduces the percentage of usable samples and
increases the final cost of the device. Moreover, the technology states high requirements for
the flatness of the moving and fixed parts of the OMT.

The technology further complicates the case of feedback systems implemented as
capacitive flat electrodes. In the case of single-plane waveguides, the feedback attenuators
are much easier to implement as comb electrodes in the SOI wafer device layer.

The accelerometer pendulum in Schemes 9–12, with angular movement, can be fab-
ricated by the same technology as the schemes with linear movement. They have no
advantages over those with linear movement in terms of the sensitivity and dynamic
range, yet they generate more Brownian noise, which raises the sensitivity threshold of the
accelerometer.

The highest sensitivity (6.25 × 106 m−1) belongs to the schemes with an altering gap
between the waveguides. Functional Schemes 9 and 12, with different-plane waveguides
in the case of the gaps, and an identical coupling length to those in Schemes 1 and 4, may
feature higher sensitivity at gaps less than 100 nm (up to 500 × 106 m−1). The dynamic
range of all such schemes is limited to 80 nm, which appreciably hinders the practical
application of the accelerometers that lack the feedback system for maintaining the inertial
mass in place.

The schemes with changing overlapping areas (Schemes 3, 6, 7 and 10) possess mod-
erate sensitivity (1.25 × 106 m−1). The dynamic displacement range may reach ±400 nm.
The technological complications, in this case, include the fabrication of different-plane
waveguides. The interaction of the optical fields of the OMT waveguides also includes
displacement, which may introduce additional modal distortion and losses.

The schemes with altering coupling lengths (Schemes 2, 5, 8 and 11) feature the lowest
sensitivity, yet possess a virtually unlimited dynamic range, which makes them comparable
to capacitive transducers. The sensitivity of the design depends on the coupling length
and amounts to 11.25 × 103 m−1 for a coupling length of 44 µm, and to 30 × 103 m−1

for a coupling length of 15 µm. The sensitivity of these schemes can be increased by
implementing the feedback systems.

The analysis presented in this article allows the choice of the accelerometer scheme that
will implement the required characteristics. It should be noted that the final accelerometer’s
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sensitivity in units of pm/g, A/g or V/g will depend on the inertial mass, spring suspension
stiffness, photodetector sensitivity and other parameters.

5. Conclusions

We have developed functional schemes of accelerometer OMTs based on the optical
tunneling effect and have calculated their characteristics. Twelve OMT schemes with
different positionings and displacements of the moving waveguide were considered. The
schemes were compared in terms of their characteristics and fabrication technologies.

The results allow the choice of the accelerometer scheme with the required characteris-
tics. Further studies will be aimed at the fabrication of the chosen accelerometer scheme
and its experimental investigation.
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