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Abstract: SiC detectors based on a Schottky junction represent useful devices to characterize fast laser-
generated plasmas. High-intensity fs lasers have been used to irradiate thin foils and to characterize
the produced accelerated electrons and ions in the target normal sheath acceleration (TNSA) regime,
detecting their emission in the forward direction and at different angles with respect to the normal to
the target surface. The electrons’ energies have been measured using relativistic relationships applied
to their velocity measured by SiC detectors in the time-of-flight (TOF) approach. In view of their high
energy resolution, high energy gap, low leakage current, and high response velocity, SiC detectors
reveal UV and X-rays, electrons, and ions emitted from the generated laser plasma. The electron and
ion emissions can be characterized by energy through the measure of the particle velocities with a
limitation at electron relativistic energies since they proceed at a velocity near that of the speed of
light and overlap the plasma photon detection. The crucial discrimination between electrons and
protons, which are the fastest ions emitted from the plasma, can be well resolved using SiC diodes.
Such detectors enable the monitoring of the high ion acceleration obtained using high laser contrast
and the absence of ion acceleration using low laser contrast, as presented and discussed.

Keywords: electron acceleration; electron detection; graphene oxide; laser-generated plasma;
Schottky diode; silicon carbide; TNSA

1. Introduction

fs laser-generated plasmas have been largely studied in the last ten years, with special
regard to the production of accelerated protons, electrons, and X-rays [1]. In order to
obtain high proton acceleration, useful for many applications (radiotherapy, surface beam
analysis, nuclear reactions and nuclear fusion processes, etc.), the target normal sheath
acceleration (TNSA) regime has been promoted by irradiating thin foils and generating
photons and high energy particle emission in the forward direction (rear side of the tar-
get) [2–5]. The employment of hydrogenated thin targets to produce high proton energies
and currents is particularly interesting, reaching actual values in the order of 100 MeV
and mA, respectively [6]. Moreover, the high X-ray intensity, produced in a very short
time, constitutes a singular non-monochromatic source of X-rays, which can be used for
radiotherapy treatments to facilitate fast radiographic exposures and assist the analysis of
different types of materials [7]. In terms of the energy distribution, flux, and angular distri-
bution of emitted X-rays, electrons, and ions, the plasma characteristics depend strongly
on the laser parameters, irradiating conditions, and target properties. By varying these
parameters, it is feasible to change the temperature and density of the plasma vs. time and
distance from the target, the electric field driving the ion acceleration, the ion charge state
distribution, the particle angular emission, and other quantities [8].
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The fast-generated plasmas can be characterized using several techniques, such as CCD
visible and X-ray streak cameras, Thomson parabola spectrometers [9], Ion energy analyzed,
Faraday cups, Gafchromic films and track detectors, optical spectroscopies, interferometric
imaging, and different types of semiconductor detectors [10,11]. Particularly, the SiC
semiconductor is gathering wide interest for the monitoring of short plasma duration,
having high temperature and density, and emitting energetic and intense spectra of UV and
X-rays, electrons, and low and high energy ions [12,13]. The employment of SiC detectors
for plasma diagnostics is very attractive because they offer the advantage of not being
sensitive to the high emission of visible, soft ultraviolet (UV), and infrared light plasma
emitted. In fact, such photons are not able to produce electron–hole pairs because their
energies are below the 3.3 eV value of the 4H–SiC gap energy [14].

Moreover, SiC detectors offer the advantages of operating under high temperatures,
being highly resistant to defect generation, having a low reverse current, and operating
with a high energy resolution, as reported in the literature [15]. By using a time-of-flight
(TOF) detection configuration, the SiC diodes enable the measurements of the velocity of
the particles emitted from the plasma source, and they are being used for measurements in
plasmas generated by high-intensity lasers irradiating solid targets [16].

The detection of electron emission from laser-generated plasma represents a not
simple aspect due to the high electron velocity, their very low time duration and high
intensity, and their relativistic effects when produced by laser intensities above 1015 W/cm2.
They can be detected using a Thomson parabola spectrometer, fast scintillators, X-ray
CCD streak cameras, Gafchromic films, optical spectrometers, interference imaging, and
Faraday cups [17,18]. The measure of their energy is tricky because their response is often
superimposed on light, UV, X-ray, and ion detection and often involves wide energy ranges.
The electromagnetic wave of the laser light pushes through and separates the electrons
from the plasma, generating coherent relativistic electron emission. The hot electron cloud
and the ions in the target generate an intense electric field that drives the ion acceleration
towards the electron cloud. The electrons acquire speed and, from their initial positions
at rest, accelerate away from the target at an astonishing speed close to the speed of light.
This acceleration allows very high energies to be reached over very small distances, in
the order of millimeters. The electron laser wakefield acceleration (LWFA) in plasmas is
obtaining the highest energy gains, reaching teens of GeVs. The use of short laser pulses
and repetitive pulses support the generation of electron beams nearly monochromatic and
high current beneficial for many applications such as light sources, high-energy physics,
radiotherapy, 3D imaging, materials treatment and analysis, and others [19].

In this paper, some TOF spectra obtained using SiC Schottky diodes to detect photons
and electrons emitted from fs lasers generating plasma in a high vacuum are reported.
The electron energy and energy interval are measured using a relativistic approach. The
presented data are intended to prove the high sensitivity of SiC to the fast and slow electron
emission produced by sub-ns laser-generated plasma in the TNSA regime.

2. Materials and Methods

SiC detectors have been used as Schottky diodes, built on 4H–SiC n-type epitaxial
layers with very low defects concentration and a carrier concentration of about 1014 cm−3, a
thickness of 80 µm, and grown on a highly doped n-type SiC substrate, as similar detectors
presented in the literature [20]. The backside ohmic contact uses a 100 nm thick Ni film. The
frontside contact, realized using standard photolithography, uses a 200 nm nickel silicide
layer (Ni2Si) to optimize the Schottky barrier properties. The SiC Schottky diodes were
characterized by current–voltage (I–V) characteristics, giving a barrier height of 1.65 eV
and a low reverse current density of about 10 nA/cm2 at 700 V reverse bias and 22 ◦C
working temperature.

In our experiment, the active area of the SiC detector was 2 mm × 2 mm, and the used
reverse bias was 600 V, which produces a depletion layer of about 55 µm. In such a configu-
ration, the detector has a high energy resolution, with a full-width-half-maximum (FWHM)
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of 34 eV, high linearity with the radiation energy, and 100% charge collection efficiency, as
demonstrated by detecting alpha particles emitted from radioactive sources [21]. A photo
of the single device (the larger one with respect to the other four) and of all device holders
is shown in Figure 1a,b, respectively. Figure 1c shows the scheme of the SiC Schottky
diode employed in these measurements, as already reported in [16]. Generally, its reverse
bias was maintained at −600 V. Figure 2 shows the detection efficiency of the SiC detector
as a function of the energy of X-rays, electrons, protons, and helium beams (a) [16], and
the reverse current versus the reverse bias voltage at room temperature (22 ◦C) (b). The
detection efficiency was calculated as a function of the energy evaluating the energy release
of photons, electrons, protons, and alpha particles in the SiC active thickness of 80 µm. For
this calculation, CXRO [22] and NIST databases [23], SREM [24], and SRIM [25] codes have
been used. It is possible to observe that at the used experimental conditions, the detection
efficiency is high for photons up to about 20 keV, electrons up to about 1 MeV, and protons
up to about 10 MeV.
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Figure 1. Photo of the SiC detector employed, the larger one of the five reported (a); holder of the SiC
detectors (b); and scheme of the SiC diode employed in this experiment (c).

Micromachines 2023, 14, x  3 of 12 
 

 

In our experiment, the active area of the SiC detector was 2 mm × 2 mm, and the used 

reverse bias was 600 V, which produces a depletion layer of about 55 μm. In such a con-

figuration, the detector has a high energy resolution, with a full-width-half-maximum 

(FWHM) of 34 eV, high linearity with the radiation energy, and 100% charge collection 

efficiency, as demonstrated by detecting alpha particles emitted from radioactive sources 

[21]. A photo of the single device (the larger one with respect to the other four) and of all 

device holders is shown in Figure 1a,b, respectively. Figure 1c shows the scheme of the 

SiC Schottky diode employed in these measurements, as already reported in [16]. Gener-

ally, its reverse bias was maintained at −600 V. Figure 2 shows the detection efficiency of 

the SiC detector as a function of the energy of X-rays, electrons, protons, and helium 

beams (a) [16], and the reverse current versus the reverse bias voltage at room temperature 

(22 °C) (b). The detection efficiency was calculated as a function of the energy evaluating 

the energy release of photons, electrons, protons, and alpha particles in the SiC active 

thickness of 80 μm. For this calculation, CXRO [22] and NIST databases [23], SREM [24], 

and SRIM [25] codes have been used. It is possible to observe that at the used experimental 

conditions, the detection efficiency is high for photons up to about 20 keV, electrons up to 

about 1 MeV, and protons up to about 10 MeV. 

 

Figure 1. Photo of the SiC detector employed, the larger one of the five reported (a); holder of the 

SiC detectors (b); and scheme of the SiC diode employed in this experiment (c). 

 

Figure 2. SiC detection efficiency versus energy for different incident radiations (a) and the reverse 

current versus the reverse bias voltage at room temperature (b). 

The SiC detector was employed in the TOF regime using as a start the laser pulse and 

as a stop the particle detection peak. To this, the flight distance target–detector was fixed, 

generally at d = 82 cm, and a fast storage oscilloscope was employed (Tektronix, 20 GS/s, 

(a)
(b)

Ni2Si Schottky contact

4H–SiC n- doped epilayer

ND ≈ 2  1014 cm-3

4H–SiC n+ doped substrate

ND ≈ 7  1018 cm-3

80 mm

200 nm

2 mm

2 mm

Ni2Si Schottky contact

220 mm

Buffer layer n+ ≈ 1018 cm-3 150 nm

(c)

2 mm

Figure 2. SiC detection efficiency versus energy for different incident radiations (a) and the reverse
current versus the reverse bias voltage at room temperature (b).

The SiC detector was employed in the TOF regime using as a start the laser pulse and
as a stop the particle detection peak. To this, the flight distance target–detector was fixed,
generally at d = 82 cm, and a fast storage oscilloscope was employed (Tektronix, 20 GS/s,
100 MHz). At this distance, the solid angle submitted by the SiC detector is 6.25 µSr. SiC
was coupled to the 50 Ω oscilloscope input through 1 nF capacitance, as reported in [26].
Its temporal resolution is better than 1 ns. The incident laser beam is 0◦ (really 1◦ to avoid
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reflections toward the laser system) while two SiC detectors were employed to monitor the
TOF plasma emissions: SiC 1 in the backward direction at 82 cm distance from the target
and at an angle generally of −25◦; SiC 2 in the forward direction at 82 cm distance from the
target and at angles between 0◦ and +25◦.

Experiments were performed employing a Ti-sapphire laser operating at 800 nm
fundamental wavelength, with 40 fs pulse duration (FWHM), in a single pulse, and at a
laser pulse energy ranging between 100 mJ and 300 mJ. The laser focal spot was 10 µm
in diameter, and the laser beam focal distance (FP) from the target surface generally was
maintained at 0 microns, but also other values have been tested. The maximum laser
intensity corresponds to about 6.4 × 1018 W/cm2. In the first laboratory, the CELIA of
Bordeaux (France) [27], the laser contrast was very low and of about 10−5, while in the
second laboratory, the IPPLM of Warsaw (Poland) [28], it was high and of about 10−9. In
the first laboratory, the high pedestal produces high electron emission at low energy, which
is responsible for the not ion acceleration, while in the second laboratory, the pedestal is
negligible with respect to the main fs laser peak, and the fast electron emission produces
high ion acceleration along the normal to the target surface [19,29]. A scheme of the
experimental set-up, with forward collection radiation and angles of 0◦ ÷ +25◦, backward
detection at −25◦, and flight length of 82 cm, is shown in Figure 3a, while Figure 3b shows
a photo of the scattering chamber and of the thin target in the holder at IPPLM laboratory.
Two similar SiC detectors have been employed, the first in the backward direction, SiC 1,
and the second in the forward one, SiC 2, with the same characteristics.
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Figure 3. Scheme of the experimental setup (a) and a photo of the scattering chamber and of the thin
target in the holder at IPPLM laboratory (b).

The thin targets to be laser irradiated were prepared with an advanced technology
employing nanoparticles (NPs) at the MIFT Department of Messina University. They
consist of hydrogenated thin polymeric foils based on graphene oxide (GO) foils covered
with Au thin films [30]. GO is rich in carbon, oxygen, and hydrogen elements. It was 7 µm
thick and was covered in both faces with 100 nm Au thin films in order to enhance the target
electron density. In fact, as reported in the literature, the electric field E driving the forward
ion acceleration developed in front of the target surface depends on the equation [8]:

E =

√
nekT

ε0
(1)

where ne is the plasma electron density, ε0 is the vacuum permittivity and kT is the equiva-
lent plasma temperature.

Another employed thin target was polyethylene (PE, (CH2)n) based. To accelerate high-
energy protons from this polymer, heavy metallic nanoparticles have been embedded into
PE [31] to increase its electron density. To this, 10 nm diameter spherical gold nanoparticles
at a concentration of about 1 wt % were employed. The target thickness has been 6 µm, at
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which the proton emission has shown high energy acceleration values above 1 MeV. The
foil thickness was chosen on the basis of our previous measurements at IPPLM, which
allowed us to optimize such thickness to obtain a high proton acceleration in the TNSA
regime. [16,32]. The electrons’ energies have been evaluated by measuring their velocities
from the TOF measurements (v = d/∆tTOF) and calculating their kinetic energies E by the
relativistic formulation:

E =
1
2

me√
1 −

( v
c
)2

v2. (2)

Here, me is the electron mass, v is the measured electron velocity, and c is the speed of light.

3. Results and Discussion

A typical SiC-TOF spectrum acquired in the IPPLM laboratory detecting plasma
emission in the forward direction using SiC 2 and 316 mJ laser pulse energy, irradiating
an advanced target constituted by a graphene oxide (GO) foil, 7 µm thick, covered in both
faces with a thin Au foil, 200 nm thick, is displayed in Figure 4.
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Figure 4. SiC-TOF forward spectrum obtained by irradiating a thin foil of Au/GO/Au 7 µm thick in
the TNSA regime at high laser contrast.

The incidence of the laser beam is 0◦ while the detection is at 0◦ in the forward, i.e.,
along the normal to the target surface, where the ion acceleration has maximum energy
and yield. The spectrum shows a main narrow peak (photopeak) due to the laser light,
X-rays plasma produced, and relativistic accelerated electrons, which is used as a trigger
signal for the storage oscilloscope of the plasma emission detection. The detected electrons
have energy (calculated using Equation (2)) higher than about 400 keV; however, slow
electrons at about 90 keV and less are also disclosed. The target’s emitted electron cloud is
very energetic, nearly monochromatic, and leads the ion emission from the target, which is
expected at high energy. This peak, in fact, is followed by a negligible background due to
less energetic electron detection and by a large and intense peak due to ion detection. The
faster ions are protons due to the high hydrogen concentration present in the GO target,
and the slower ions are due to the accelerated carbon ions from C6+, the faster, up to C1+,
and the slower, coming from the graphene target, as reported in our previous papers [16].

In previous papers, using a Thomson parabola spectrometer, the authors have demon-
strated that the TNSA forward carbon ion acceleration from C1+ up to C6+ occurs [33]. By
considering the measured TOF and the flight distance of 82 cm, it is possible to evaluate
the presence of electrons from more than 1 MeV, up to about 100 keV or less, and a maxi-
mum proton energy, measurable from the position of the ion peak growth, at about 37 ns,
corresponding to 2.56 MeV. The ion peak shows a convolution of protons and carbon ions,
indicating that the faster carbon ions have a maximum energy of about 15.36 MeV. This last
evaluation confirms that the faster C ions have an energy corresponding to their charge state
6+ by the ion acceleration of 2.56 MeV per charge state measured for protons, in agreement
with the literature [16]. The long tail of the carbon peak is due to the SiC detection of the
six charge states of carbon ions with energies proportional to their charge state, up to C+
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ions. Each ion has a large ion energy distribution like a Boltzmann–Coulomb-shifted (CBS)
one described in the literature [32].

For good ion acceleration, such as that presented in Figure 4, the reproducibility of the
experiment is high and evaluated in the order of 90%. However, in general, it is lower due
to the laser instability, changes in laser focalization with respect to the target surface, and
target non-homogeneity in composition and thickness.

Another analysis performed at the IPPLM laser laboratory concerns the PE irradiation
in the TNSA regime using the same experimental conditions. Additionally, in this case,
thanks to the high laser contrast, the photopeak is very narrow, demonstrating very good
ion acceleration in the normal direction, as shown in Figure 5.
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The forward spectrum shows a photopeak due to the detection of X-rays and fast
electrons, which last with energies within about 1 MeV and 344 keV. The ion peak evinces
fast protons at a maximum energy of about 1.1 MeV and fast carbon ions with a maximum
energy of about 6.6 MeV, corresponding to the acceleration of C6+ ions. Thus, as expected,
the proton energy is lower with respect to the previous spectrum shown in Figure 4
because the ion acceleration, depending on the driving of the developed electric field pulse
(calculable from Equation (1)), increases with the plasma (i.e., target) electronic density,
which is lower in the case of the polyethylene foil. The maximum carbon ion kinetic
energies enhance with their charge state with the factor 1.1 MeV per charge state. The
reported data are consistent with the literature [32].

To better evince the electron emission from the target and the high-efficiency response
of SiC to the electron detection, some experiments have been performed in the CELIA laser
laboratory at low laser contrast producing electron acceleration both by the pedestal laser
pulse and by the main fs laser pulse [34]. In this case, the electron emission is characterized
by a lower energy, a larger energy distribution, and a larger angular distribution compared
with the high contrast lasers, which generally do not assist high ion acceleration. The laser
incidence was maintained at 0◦, and the detector was placed at different angles within
±25◦, as reported in Figure 2a.

Figure 6 shows a forward SiC spectrum obtained using the low-contrast laser irradi-
ating the above-described target (PE + Au NPs, 6 µm thick). The laser pulse energy was
EL = 120 mJ, the incidence laser angle 0◦, the detection angle 0◦, and the flight distance of
82 cm. In this case, the photopeak is well separated by the multiple electron peaks, which
detect hot and cold electrons. The hot electrons at 1.13 MeV energy are those accelerated
by the main laser pulse, while the successive peak centered to about 112 keV showing the
presence of cold electrons could be due to the laser prepulse acceleration. The less energetic



Micromachines 2023, 14, 811 7 of 11

peak centered at about 11.6 keV probably is due to the preplasma electron emission or to
electron reflection and scattering effects from the stainless-steel walls of the large vacuum
chamber. The faster peak is centered at 2.8 ns with a width (FWHM) of 2 ns, the second is
centered at 4.6 ns with a width of 2.5 ns, and the third at 12.9 ns with a width of 1 ns. The
mean energy of the three electron peaks has been calculated using Equation (2). This result
is interesting because it indicates that the main peak accelerates electrons to a kinetic energy
of about 1 MeV, but other less energetic electrons are generated by the pulse pedestal and
by the induced preplasma, disturbing the ion acceleration process. In fact, no protons are
present in the spectrum either if the detection angle is changed between 0◦ and 26◦ from
the normal to the target surface and the focal position is modified from −100 µm (in front
of the target) up to +100 µm (inside the target).
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thick in the TNSA regime, and low laser contrast.

The electron emission by low laser contrast has also been measured in the backward
direction, noting that even in this direction, their energy remains low. Figure 7 shows the
backward SiC spectrum obtained irradiating the above-described target (PE + Au NPs,
6 µm thick) in the previous laser conditions, i.e., low laser contrast (10−5), laser energy
pulse EL = 120 mJ, SiC 1 detector position −25◦, and flight distance d = 82 cm.
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In this case, the photopeak is time separated by the fast-accelerated electron peak,
being this last centered at about 3 ns with a width of about 2.5 ns. It means that the electron
kinetic energy is centered at about 510 keV, indicating that the backward electron energy is
lower than the forward one, according to the literature data [35]. The presence of reflected
electrons is absent, probably due to the larger vacuum chamber in this direction. However,
a small peak at about 16.8 ns indicates the presence of electrons bunching at about 6.5 keV,
which may have been reflected at low energy and yield. No ion acceleration is detected at
higher TOF values.

At low laser contrast, different tests have been performed to try to accelerate protons
using the two types of targets presented above, but none of them gave positive results.
In fact, the SiC detector has always confirmed the production of electrons emitted at
large angles around the normal direction and not well monochromatic, as a result of the
high preplasma emission from the laser pedestal justifying the not detected forward and
backward ion acceleration.

Figure 8 reports two SiC spectra obtained irradiating the Au/GO/Au 7 µm thick
target at low laser contrast, at 0◦ incidence angle, 0◦ forward detection angle, using a pulse
energy of 120 mJ (a) and 200 mJ (b), and FP = 0 µm (focus on the target surface). Irradiations
at different laser focal positions with respect to the target surface have been performed,
but again proton acceleration was not obtained. The electron peak in both cases is sepa-
rated from the photopeak, demonstrating an energy lower than 1 MeV and insufficient
to induce the high electric field needed for the forward ion acceleration, according to the
literature [12].
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foil at 120 mJ (a) and 200 mJ (b) with FP = 0 µm and irradiating Au/GO/Au foil at 120 mJ with
FP = −100 µm (c) and FP = +100 µm (d).

Figure 8 also shows the SiC-TOF spectra coming from the laser irradiation of the
PE + AuNPs 6 µm foil at 120 mJ pulse energy with FP = −100 µm (c) in front of the target
surface and FP = +100 µm (d) inside the target surface, respectively. In such cases, the
photopeak is near the electron peak, and their convolution is detected as a large initial
peak. From this, an evaluation of the minimum electron energy up to about 190 keV can be
performed. Such a measure indicates that electron energy is too low for the development
of the high electric field needed to produce high ion acceleration in the forward direction.
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In these reported cases, the photopeak is always accomplished by electrons with
energy in the order of hundred keVs, too slow and not sufficiently monochromatic as
required to generate an efficient electric field pulse able to accelerate the emitted target
ions. The electron detection evidences low energy electrons produced at large angles
from the laser pedestal, which cannot achieve an electric field impulse high enough to
accelerate ions.

This electric field, in fact, is too spatially developed (for non-monochromatic electrons)
and too temporally extended (tens of ns) to drive a significant ion acceleration.

Thus, using low laser contrast, generally, no ion acceleration or low ion acceleration
occurs. However, by reducing the pedestal duration and prepulse intensity and increasing
the main laser pulse energy, it is possible to obtain a significant proton acceleration, as
reported in the literature [36–38]. Figure 9 shows a SiC-TOF TNSA forward spectrum
obtained at the CELIA laboratory using a short and less intense laser pedestal, increasing
the laser contrast to about 10−6 and reducing the preplasma formation, and irradiating
an advanced target constituted by 1 µm graphene oxide (GO) covering 5 µm Au thin foil
using a laser pulse of 124 mJ and a main pulse width of 30 fs.
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In such conditions, the SiC detector can detect the photopeak and the relativistic
electrons and allows measurement of the maximum proton and carbon ion energies in the
TOF spectrum, corresponding to 520 keV and 1560 keV, respectively, identifying a plasma
acceleration of 520 keV per charge state.

4. Conclusions

The presented results reveal two important aspects, one related to the physics of
the plasma produced by high-intensity fs lasers irradiating thin advanced foils in TNSA
conditions, and the other validates the use of SiC detectors to characterize the produced
plasma pulse. In particular, this second aspect is more important to clarify in the TOF
approach, SiC can detect the electron emission from the laser–matter interaction and
recognize if the electric field driving the ion acceleration is developed or not. The formation
of a narrow photopeak containing X-rays and relativistic electrons, with energy higher
than 1 MeV, indicates that the forward ion acceleration may occur, as demonstrated by the
proton and light ion acceleration at IPPLM laboratory using a high-contrast fs laser. The
formation of a narrow photopeak containing X-rays and relativistic electrons with energy
higher than 1 MeV supports, in fact, the acceleration of good proton and other light ions, as
observed by the high laser contrast at IPPLM laboratory. On the contrary, the formation of
a large photopeak containing electrons at energies in the order of hundred keVs, generated
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by the pedestal of the low contrast laser, does not allow one to obtain an electric field pulse
so high as to accelerate ions because it is too spatially and temporally distributed.

As a consequence of the high energy gap of silicon carbide, which does not allow the
detection of the high intensity of visible light emitted by the plasma, which gives a low
reverse current also at relatively high temperatures, the detector is very sensitive to the
radiations that invest it, even at low fluences. Moreover, SiC shows high speed of response
and high temporal resolution due to the rapid collection of created pairs. Finally, SiC
provides deeper insight in the mechanisms of plasma formation and particle acceleration
which occur in very short times, especially by using fs lasers irradiating thin foils.
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