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Abstract: Power MOSFETs are found to be very vulnerable to single-event burnout (SEB) in space
irradiation environments, and the military components generally require that devices could operate
reliably as the temperature varies from 218 K to 423 K (−55 ◦C to 150 ◦C); thus, the temperature
dependence of single-event burnout (SEB) in power MOSFETs should be investigated. Our simulation
results showed that the Si power MOSFETs are more tolerant to SEB at a higher temperature at the
lower LET (10 MeV·cm2/mg) due to the decrease of the impact ionization rate, which is in good
agreement with the previous research. However, the state of the parasitic BJT plays a primary role in
the SEB failure mechanism when the LET value is greater than 40 MeV·cm2/mg, which exhibits a
completely different temperature dependence from that of 10 MeV·cm2/mg. Results indicate that
with the temperature increasing, the lower difficulty to turn on the parasitic BJT and the increasing
current gain all make it easier to build up the regenerative feedback process responsible for SEB
failure. As a result, the SEB susceptibility of power MOSFETs increases as ambient temperature
increases when the LET value is greater than 40 MeV·cm2/mg.

Keywords: power MOSFETs; temperature dependence; LET; single-event burnout (SEB)

1. Introduction

Power MOSFETs are widely used in space electronic systems, attributed to their
strong driving ability, low power consumption, and high block voltages [1,2]. However,
power MOSFETs are also found to be very vulnerable to single-event burnout (SEB) in a
space irradiation environment, which is a catastrophic failure and can be triggered by the
energetic particle penetrating the device in the off-state [3–5].

It has been extensively proven that the SEB failure of power MOSFETs is related to the
establishment of the regenerative feedback process, where the two relevant mechanisms
are the current amplification of the parasitic BJT and the carrier multiplication at the N-
epi/N+sub junction [3,6]. That is, the turn-on and amplification of the parasitic BJT can be
maintained with the hole current provided by the impact ionization process, meanwhile,
the carrier impact ionization at the N-epi/N+sub junction can also be fed by the electron
current coming from the parasitic BJT. This continuous reaction can ultimately lead to the
catastrophic and permanent thermal failure of power MOSFETs. Nowadays, the Technology
Computer-Aided Design (TCAD) simulator can help us know more details about the SEB
failure in power MOSFETs and study other radiation-hardened techniques easily [7–9].

As we know, the ambient temperature varies dramatically in space flight missions;
therefore, we have to consider the influence of the ambient temperature on the radiation
tolerance of power MOSFETs. Some research has revealed that the SEB tolerance of power
MOSFETs increases with the increase of ambient temperature, that is, the worst case for
SEB occurs at a lower temperature [10–13]. This is due to that the impact ionization rate
decreases with increases in temperature. However, on the other hand, the increase in
temperature will increase the forward current of the emitter junction of parasitic BJT, which
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makes it easier to form a local hot spot and induce the SEB failure. Therefore, the two
factors influenced by ambient temperature exhibit a completely opposite effect on the SEB
performance of power MOSFETs. Thus, to get a better understanding of the temperature
dependence of the SEB failure in power MOSFETs, we have to find out which factor plays a
leading role in the different conditions.

In this paper, we find that for power MOSFETs, the SEB failure has an opposite
temperature dependence at the lower and higher LET. At the lower LET (10 MeV·cm2/mg),
the SEB susceptibility of power MOSFETs decreases with the increasing temperature since
the decrease of the impact ionization rate plays a dominant role in this case, which agrees
well with the previous research [10–12]. While, at the higher LET (100 MeV·cm2/mg), the
condition is just the opposite. With the increase in temperature, the transient response of
power MOSFETs to the high-energy particle strike is stronger. This is because the parasitic
BJT starts to play a primary role in the regenerative feedback mechanism now. Due to the
lower difficulty to turn on the parasitic BJT and the increasing current gain at a higher
temperature, the worst case for SEB occurs at a higher temperature at the higher LET.

2. TCAD Simulation Model

The schematic cross-sectional view of the simulated power MOSFET device is shown
in Figure 1. Table 1 gives the corresponding device structure parameters in detail. As
shown in Figure 2, the breakdown voltage (BV) and threshold voltage (VTH) of the device
are 424 V and 5.5 V, respectively, which are in good agreement with [7,14]. The single event
burnout (SEB) threshold voltage of the device in [14] is 330 V (50% BV) under a LET value
of 17 MeV·cm2/mg, and the simulated device in this paper has a SEB threshold voltage of
307 V (72% BV) under the same LET value, exhibiting an increase of about 20% since the
adoption of the SEB hardening techniques of the Pplus extension and the insertion of the
buffer layer in our device structure [15–17].
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Figure 1. Schematic cross-sectional view of the simulated power MOSFET. 

Table 1. Device structural parameters for simulations. 

Device Parameters Values 

Gate Oxide Thickness (nm) 100 

N+ Source Doping (cm−3) 2 × 1020 
Pplus Doping (cm−3) 2 × 1019 

P-Body Doping (cm−3) 2 × 1017 
N-Drift Thickness (µm) 25 
N-Drift Doping (cm−3) 5 × 1014 

N Buffer Thickness (µm) 30 
N Buffer Doping (cm−3) 5 × 1015 

Figure 1. Schematic cross-sectional view of the simulated power MOSFET.

Table 1. Device structural parameters for simulations.

Device Parameters Values

Gate Oxide Thickness (nm) 100
N+ Source Doping (cm−3) 2 × 1020

Pplus Doping (cm−3) 2 × 1019

P-Body Doping (cm−3) 2 × 1017

N-Drift Thickness (µm) 25
N-Drift Doping (cm−3) 5 × 1014

N Buffer Thickness (µm) 30
N Buffer Doping (cm−3) 5 × 1015
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Figure 2. Static characteristics of the power MOSFET device (a) breakdown characteristic and (b) 
transfer characteristic. 

The numerical simulations are performed using the Sentaurus TCAD simulator in 
this paper. Several physical models have been used to simulate the SEB failure process, 
including (1) the mobility degradation model, which contains ionized impurity scattering, 
carrier–carrier scattering, interface scattering, and high field velocity saturation. (2) recom-
bination model, which includes Shockley Read Hall (SRH) recombination considering 
doping concentration and temperature dependence, Auger recombination regarding the 
high carrier densities caused by the heavy ion impact. (3) University of Bologna impact 
ionization model, which is developed to model the carrier multiplication at the N-
epi/N+sub junction. (4) electro-thermal model, which considers the lattice temperature 
variation induced by the large current density after a heavy ion’s strike by adding the 
thermodynamic model to simulate the lattice self-heating effect. In this paper, we define 
the substrate contact as an ideal heat sink, and its temperature is fixed at the ambient 
temperature. 

Moreover, the heavy ion model is activated to simulate the transient response of the 
power MOSFET to the ion. The carrier generation rate induced by the heavy ion is com-
puted by: 𝐺(𝑙, 𝜔, 𝑡) = 𝐺௅ா்(𝑙)𝑅(𝜔, 𝑙)𝑇(𝑡) (1)

where l is the length of the particle strike track, ω is the radius defined as the perpendicu-
lar distance to the track and t is the transient time. In addition, R(ω,l) and T(t) are Gaussian 
functions describing the spatial and temporal variations of the carrier generation rate with 
a characteristic radius of w0 and a characteristic time of Shi, respectively. The LET is as-
sumed to be a constant value when the energetic ion passes through the device. In this 
work, the particle strike track is perpendicular to the surface of the device, and the track 
length is set to 80 µm, which is able to penetrate the entire device. Table 2 shows the de-
fault heavy ion parameters used for our simulations. 

Table 2. Parameters used for the heavy ion simulations. 

Track 
Length 

l0 

Track 
Radius 

w0 

Characteristic Time 
of Gaussian Function Shi 

Peak Charge 
Generation Time 

t0 

Ion Incident  
Position  

x0 
80 µm  0.02 µm 4 ps 2 ns 40 µm 

3. Results and Discussion 
3.1. Single Event Burnout Sensitive Region 

Previous investigations have shown that the neck region of power MOSFETs is the sen-
sitive area to SEB [8,12,18,19]. This is because the neck region, which is far from P-body, is 
more resistive when the lateral hole current flows to the source electrode, developing a larger 

Figure 2. Static characteristics of the power MOSFET device (a) breakdown characteristic and
(b) transfer characteristic.

The numerical simulations are performed using the Sentaurus TCAD simulator in
this paper. Several physical models have been used to simulate the SEB failure process,
including (1) the mobility degradation model, which contains ionized impurity scattering,
carrier–carrier scattering, interface scattering, and high field velocity saturation. (2) re-
combination model, which includes Shockley Read Hall (SRH) recombination considering
doping concentration and temperature dependence, Auger recombination regarding the
high carrier densities caused by the heavy ion impact. (3) University of Bologna impact ion-
ization model, which is developed to model the carrier multiplication at the N-epi/N+sub
junction. (4) electro-thermal model, which considers the lattice temperature variation in-
duced by the large current density after a heavy ion’s strike by adding the thermodynamic
model to simulate the lattice self-heating effect. In this paper, we define the substrate
contact as an ideal heat sink, and its temperature is fixed at the ambient temperature.

Moreover, the heavy ion model is activated to simulate the transient response of
the power MOSFET to the ion. The carrier generation rate induced by the heavy ion is
computed by:

G(l, ω, t) = GLET(l)R(ω, l)T(t) (1)

where l is the length of the particle strike track, ω is the radius defined as the perpendicular
distance to the track and t is the transient time. In addition, R(ω,l) and T(t) are Gaussian
functions describing the spatial and temporal variations of the carrier generation rate with a
characteristic radius of w0 and a characteristic time of Shi, respectively. The LET is assumed
to be a constant value when the energetic ion passes through the device. In this work, the
particle strike track is perpendicular to the surface of the device, and the track length is set
to 80 µm, which is able to penetrate the entire device. Table 2 shows the default heavy ion
parameters used for our simulations.

Table 2. Parameters used for the heavy ion simulations.

Track
Length

l0

Track
Radius

w0

Characteristic Time
of Gaussian
Function Shi

Peak Charge
Generation Time

t0

Ion Incident
Position

x0

80 µm 0.02 µm 4 ps 2 ns 40 µm

3. Results and Discussion
3.1. Single Event Burnout Sensitive Region

Previous investigations have shown that the neck region of power MOSFETs is the
sensitive area to SEB [8,12,18,19]. This is because the neck region, which is far from P-body,
is more resistive when the lateral hole current flows to the source electrode, developing a
larger ohmic voltage drop across the emitter-base junction, making the parasitic BJT easier
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to be forward biased. Thus, the corresponding neck region from x0 = 31 µm to x0 = 50 µm
of the simulated power MOSFET is chosen to obtain the most sensitive ion strike position
in our simulations. Figure 3 exhibits the relationship between the ion’s incident position x0
and SEB threshold voltage (Vth,SEB) at LET = 75 MeV·cm2/mg, where Vth,SEB is defined as
the minimum drain voltage required to trigger SEB. It can be concluded that x0 = 40 µm is
the most sensitive incident position with the lowest Vth,SEB of 164 V. Therefore, x0 = 40 µm
is selected as the default incident position in our following simulations so as to obtain the
worst case for SEB. In addition, it should also be pointed out that we regard the SEB failure
criterion as the maximum lattice temperature of the device after the ion strike reaches the
melting point of silicon (1688 K) [9,20].
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3.2. The Temperature Dependence of SEB at Different LETs

Figure 4 shows Vth, SEB as a function of ambient temperature (Ta) at different LETs.
Our selected ambient temperature varies from 218 K to 423 K (−55 ◦C to 150 ◦C), which
corresponds to the operating temperature range of military components. It is obvious that
the SEB response exhibits different temperature dependencies at different LET values. At
the lower LET value of 10 MeV·cm2/mg, Vth,SEB increases slightly with the increase of
ambient temperature. On the contrary, with the LET value greater than 40 MeV·cm2/mg,
Vth,SEB decreases as temperature increases. To get a better understanding of the discrepancy
of the temperature dependence of SEB at different LETs, the following discussions are
mainly focused on the two conditions: condition A is at the lower LET (10 MeV·cm2/mg)
and Vds = 300 V; condition B is at the higher LET (100 MeV·cm2/mg) and Vds = 100 V.
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3.2.1. The Temperature Dependence of SEB at the Lower LET

In order to analyze the influence of ambient temperature on SEB sensitivity at the
low LET, Figure 5 demonstrates the impact ionization rate distributions at Ta = 250 K and
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Ta = 423 K under condition A (LET = 10 MeV·cm2/mg, Vds = 300 V). From Figure 5, we
can find that the peak impact ionization rate is located at the P-body/N-epi junction after
the ion strike 100 ps, while it shifts to the N-epi/N-buffer interface after the ion strike 10 ns.
This is due to the Kirk effect caused by the injection of electrons from the emitter to the
collector and the resulting less positive total charge density in the collector region [18,21].
At Ta = 250 K, the peak impact ionization rates are 9.71 × 1025/cm3·s and 6.08 × 1025/cm3·s
after the ion strike 100 ps and 10 ns, respectively. However, when Ta = 423 K, the peak
impact ionization rates are 6.68 × 1025/cm3·s and 4.06 × 1025/cm3·s, respectively, which
decreases about 40% with the increase of Ta from 250 K to 423 K. This is because the increase
of temperature will aggravate the vibration of the lattice, which will lower the mean free
path of the carriers and decrease the impact ionization rate in the device. Therefore, the
transient current induced by the carrier multiplication process will be smaller at a higher
ambient temperature. Consequently, the maximum lattice temperature after the ion strike
at Ta = 423 K (826 K) decreases compared with the case at Ta = 250 K (928 K) as shown in
Figure 6. Our simulations show that the SEB tolerance of power MOSFETs has a positive
correlation with the ambient temperature at the lower LET, which is in good agreement
with the literature report [10–12].
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Figure 6. The temperature response after the ion strike under condition A (LET = 10 MeV·cm2/mg
and Vds = 300 V).
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3.2.2. The Temperature Dependence of SEB at the Higher LET

Then, the condition at the higher LET (condition B) is discussed. Figure 7 shows
the lattice temperature and drain current variations of the device versus time at different
Ta under condition B (LET = 100 MeV·cm2/mg and Vds = 100 V). It can be seen that
the ambient temperature has an important influence on the SEB performance of power
MOSFETs. With Ta increasing, the maximum lattice temperature after the ion strike varies
from 604 K (Ta = 250 K) to 1010 K (Ta = 350 K). These values do not exceed the melting point
of silicon and the lattice temperature can eventually recover to the ambient temperature,
indicating no burnout. However, at Ta = 398 K, the maximum lattice temperature rises
rapidly and can even exceed 1688 K, leading to catastrophic failure, and the drain current
can maintain a high level. Once the SEB failure criterion is triggered, the simulation is
terminated, and thus the simulation stops at about 100 ns at Ta = 398 K. From the transient
temperature response, it can be observed that the device is more sensitive to SEB at a
higher temperature under condition B, completely different from which we observed under
condition A.
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To find out the reason why the temperature dependence of SEB differs at the different
LETs, the electric field distributions at the lower LET and higher LET are comparatively
studied in Figure 8. As we can see, because of the Kirk effect after the ion strike, the
maximum electric field will move from the P-body/N-epi junction to the N-epi/N+buffer
interface (N-buffer/N+sub interface) as time increases. However, the fewer generated
charges at the lower LET cannot maintain the peak electric field at the N-epi/N-buffer
interface and the maximum electric field returns to the P-body/N-epi junction after the
ion strike 5 µs. In contrast, at the higher LET, it will be easier to maintain the peak electric
field at the N-buffer/N+sub interface due to the more deposited charges in the epitaxy
layer [16]. Therefore, at the higher LET, whether the SEB will occur or not mainly depends
on the state of the parasitic BJT, that is to say, whether the electron current provided by
the amplification of parasitic BJT can sustain the impact ionization process to build up the
regenerative feedback. As a result, the influence of temperature on parasitic BJT plays a
dominant role in SEB failure under condition B.

Figure 9 shows the electron current density distributions near the parasitic BJT at
(a) Ta = 250 K and (b) Ta = 423 K under condition B. It can be seen that the electron current
density near the collector region increases greatly as time increases. This is because the
heavy ion-induced hole current moves laterally through the P-body to be collected by the
source electrode, resulting in a forward voltage drop across the emitter junction to turn
on the parasitic BJT and amplify the current. Compared with the case at Ta = 250 K, the
electron current density at Ta = 423 K is larger, especially after 150 ps. We assume that
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the parasitic BJT is turned on when the ratio of the source electron current to source total
current reaches 0.97 in our simulations, while it indicates that the emitter junction is turned
on and the electron current has become the dominating part of the source total current.
For Ta = 423 K, it only takes 99.2 ps to turn on the parasitic BJT while it takes 225.8 ps
for Ta = 250 K. Thus, it can be concluded that the parasitic BJT at Ta = 423 K is turned on
at about 100 ps earlier than that at Ta = 250 K. This is because the ambient temperature
has a significant influence on the built-in voltage of the emitter-base junction and the
base resistance (RB). With the increasing temperature, the intrinsic carrier concentration
will increase exponentially, reducing the built-in potential of the emitter-base junction,
meanwhile, RB increases caused by the decreased mobility, both making the parasitic BJT
easier and earlier to be turned on [22,23].
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Besides, we know that the lifetime of the carriers will increase with rising temperature,
and it can be modeled by a power law [24,25]:

τ(T) = τ0

(
T

300 K

)α

(2)
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where τ0 is the carrier lifetime when the lattice temperature is 300 K, T is the lattice
temperature and α is 2.1 [26]. Figure 10 shows a comparison of the minority carrier electron
lifetime distribution in the base region of the BJT at Ta = 250 K and Ta = 423 K, from which
we can observe the longer minority carrier electron lifetime at Ta = 423 K and it is consistent
with the relationship between carrier lifetime and temperature as shown in (2). Thus, with
the higher ambient temperature, more electrons injected from the emitter can be collected
by the reverse-biased collector junction, resulting in a larger current gain.

Micromachines 2023, 14, x FOR PEER REVIEW 8 of 10 
 

 

Time=1 ps

Time=150 ps

Time=200 ps

Time=300 ps

Time=1 ps

Time=150 ps

Time=200 ps

Time=300 ps

(a) (b)

Abs(eCurrentDensity)
（A·cm-2）

 
Figure 9. The electron current density distributions near the parasitic BJT after the ion strike at (a) 
Ta = 250 K and (b) Ta = 423 K under condition B. 

 Ta=250 K Ta=423 K

base region base region

 (a)  (b) 

eLifetime (s)

 
Figure 10. The minority carrier electron lifetime distribution in the base region under condition B 
after the ion strike 500 ps at (a) Ta = 250 K and (b) Ta = 423 K. 

The current gain β of the parasitic BJT in the power MOSFET cannot be obtained 
directly because of the unmeasurable base current IB. So, we calculate the common-base 
current gain α of the parasitic BJT firstly by extracting the ratio of the drain current (col-
lector current) to the source current (emitter current) of the power MOSFET. Then we get 
the common-emitter current gain β of the BJT through the relationship between α and β 
as shown in (3). Table 3 gives the calculation results of the current gain of the parasitic BJT 
under condition B. As we can see, in the whole temperature range, the current gain varies 
from 19.44 to 123.24, increasing by a factor of five to six. The current gain of the BJT in-
creases strongly with the increasing temperature, which is responsible for the large drain 
current and higher temperature rise at higher ambient temperature in Figure 7. 𝛽 =  𝛼1 − 𝛼 (3)

In conclusion, with the LET value increasing to 40 MeV·cm2/mg, the temperature de-
pendence of SEB in power MOSFET is completely different from that of 10 MeV·cm2/mg. 
Due to the more deposited charges in the epitaxy region, it will be easier to maintain the 
peak electric field at the N-epi/N-buffer junction (N-buffer/N+sub interface), therefore, 
whether the parasitic BJT can provide continuous and enough electron current for the 
carrier multiplication process becomes extremely important. Our research shows that 
with the ambient temperature increasing, the difficulty to turn on the parasitic BJT de-
creases due to the lower built-in potential and the increasing base resistance, meanwhile, 
the current gain increases due to the increasing minority electron lifetime in the base 

Figure 10. The minority carrier electron lifetime distribution in the base region under condition B
after the ion strike 500 ps at (a) Ta = 250 K and (b) Ta = 423 K.

The current gain β of the parasitic BJT in the power MOSFET cannot be obtained
directly because of the unmeasurable base current IB. So, we calculate the common-base
current gain α of the parasitic BJT firstly by extracting the ratio of the drain current (collector
current) to the source current (emitter current) of the power MOSFET. Then we get the
common-emitter current gain β of the BJT through the relationship between α and β as
shown in (3). Table 3 gives the calculation results of the current gain of the parasitic BJT
under condition B. As we can see, in the whole temperature range, the current gain varies
from 19.44 to 123.24, increasing by a factor of five to six. The current gain of the BJT
increases strongly with the increasing temperature, which is responsible for the large drain
current and higher temperature rise at higher ambient temperature in Figure 7.

β =
α

1 − α
(3)

Table 3. The current gain of the parasitic BJT of power MOSFET as a function of Ta under condition B
after the ion strike 500 ps.

Ta β(BJT)

250 K 19.44
300 K 24.95
350 K 40.49
400 K 82.27
423 K 123.24

In conclusion, with the LET value increasing to 40 MeV·cm2/mg, the temperature
dependence of SEB in power MOSFET is completely different from that of 10 MeV·cm2/mg.
Due to the more deposited charges in the epitaxy region, it will be easier to maintain the
peak electric field at the N-epi/N-buffer junction (N-buffer/N+sub interface), therefore,
whether the parasitic BJT can provide continuous and enough electron current for the
carrier multiplication process becomes extremely important. Our research shows that with
the ambient temperature increasing, the difficulty to turn on the parasitic BJT decreases due
to the lower built-in potential and the increasing base resistance, meanwhile, the current
gain increases due to the increasing minority electron lifetime in the base region [27–30].
As a result, it is easier to form a local hot spot and induce the SEB failure at a higher
temperature, thus power MOSFET is more sensitive to SEB at a higher temperature when
the LET value is greater than 40 MeV·cm2/mg.
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4. Conclusions

This paper presents the simulation-based comparison of the temperature dependence
of single-event burnout (SEB) for power MOSFETs at different LETs. Our simulations
show that at the lower LET (10 MeV·cm2/mg), with the ambient temperature (ranging
from −55 ◦C to 150 ◦C) increasing, the peak impact ionization rate decreases, resulting in
stronger robustness to SEB at a higher temperature. However, the temperature dependence
of SEB exhibits different responses when the LET value increases to 40 MeV·cm2/mg. This
is because the more deposited charges in the collector region make it easier to maintain
the carrier multiplication thus the state of the parasitic BJT starts to play a dominant role
in the regenerative feedback mechanism. When the LET is 100 MeV·cm2/mg, the time to
turn on the parasitic BJT reduces from 225.8 ps to 99.2 ps, and the current gain increases
from 19.44 to 123.24 due to the increase of the minority lifetime in the base region with the
temperature increasing from 250 K to 423 K, which will be easier to form a local hot spot
and induce the SEB failure at a higher temperature. Consequently, the power MOSFET
exhibits stronger SEB robustness at a lower temperature at the higher LET.
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