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Abstract: Electrowetting Display (EWD) is a new reflective display with an outstanding performance
of color video playback. However, some problems still exist and affect its performance. For instance,
oil backflow, oil splitting, and charge trapping phenomena may occur during the driving process of
EWDs, which would decrease its stability of multi-level grayscales. Therefore, an efficient driving
waveform was proposed to solve these disadvantages. It consisted of a driving stage and a stabilizing
stage. First, an exponential function waveform was used in the driving stage for driving the EWDs
quickly. Then, an alternating current (AC) pulse signal waveform was used in the stabilizing stage
to release the trapped positive charges of the insulating layer to improve display stability. A set of
four level grayscale driving waveforms were designed by using the proposed method, and it was
used in comparative experiments. The experiments showed that the proposed driving waveform
could mitigate oil backflow and splitting effects. Compared to a traditional driving waveform, the
luminance stability was increased by 8.9%, 5.9%, 10.9%, and 11.6% for the four level grayscales after
12 s, respectively.

Keywords: electrowetting; multi-level grayscales; driving waveform; oil backflow

1. Introduction

With the continuous progress of science and technology, display technology has
developed rapidly, including EWDs [1–5]. As a new type of display device based on
electrowetting (EW) technology, EWDs are widely used in wearable electronic devices,
electronic tags, and other fields due to their low power consumption, wide viewing angle,
and excellent readability in sunlight [6–8]. Therefore, EWDs have a high development
value and broad development prospects [9].

EW technology was proposed by G. Beni as early as 1981 [10]. In 2003, Hayes prepared
an EWD based on pixels [11,12]. The performance of EWDs introduced in 2004 went even
further; the luminance of the EWDs was four times that of conventional reflective liquid
crystal displays (LCDs) [13]. In 2011, a method of filling different colored oil into sub-
pixels was achieved for realizing a single-layer, multi-color EWD [14]. Despite tremendous
progress in the development of EWDs, some defects, such as oil splitting, oil backflow,
charge trapping, and hysteresis effect [15–20], have a bad effect on the display quality.
Regarding display principles, EWDs can be improved from interface materials, pixel

Micromachines 2023, 14, 1123. https://doi.org/10.3390/mi14061123 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi14061123
https://doi.org/10.3390/mi14061123
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0001-7670-7916
https://doi.org/10.3390/mi14061123
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi14061123?type=check_update&version=2


Micromachines 2023, 14, 1123 2 of 14

structures, fluid motion mechanisms, and driving waveforms [21–25]. Many scholars
have contributed to improving the performance of EWDs mainly in terms of display
principles and driving waveform design, which can be reflected by grayscale stability, and
the grayscale stability is affected by oil splitting and oil backflow [26–28]. Oil splitting
is mainly caused by a sudden change in the driving voltage [29,30]. Therefore, a linear
function waveform and an exponential function waveform were proposed to solve this
problem [31,32]. Oil backflow is a phenomenon of decreasing aperture ratio caused by
charge trapping, which can trap charges in an insulating layer of the EWDs [33]. In
order to resolve oil backflow, a driving waveform with a reset signal was proposed for
releasing captured charges [34]. These excellent driving waveforms provided inspiration
and precious experience for driving waveform design. However, EWDs still do not obtain
good stability at multi-level grayscales.

In this paper, based on the analysis of the driving principle, a combined driving
waveform was proposed to improve the stability of multi-level grayscales. An exponential
function waveform was used to decrease sudden changes in the driving voltage, which can
prevent oil splitting. According to charge trapping theory, an AC pulse signal waveform
can be used to release trapped charges, which can improve the stability of EWDs.

2. Driving Principle of EWDs

Principle of EWDs
EW technology means that the wettability of droplets on a substrate can be changed by

applying a voltage [35–37]. Based on the EW principle, the EWD structure can be designed,
whose main component is pixels; each pixel consists of a substrate, a pixel electrode, an
insulating layer, a pixel wall, colored oil, NaCl solution, a common electrode, and a top
plate [2,38–41]. Its structure is shown in Figure 1.
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Figure 1. A three-dimensional schematic diagram of pixels in EWDs. It is composed of a substrate, a pixel
electrode, an insulating layer, pixel wall, colored oil, NaCl aqueous solution, and a common electrode.

In terms of EWD parameters, the threshold voltage, contact angle, and aperture ratio
are used to explain the driving process. The threshold voltage of EWDs is the minimum
voltage at which the luminance begins to change during the driving process. When a
voltage applied between two electrodes is less than the threshold voltage, the insulating
layer appears hydrophobic, and colored oil is laid flat in the pixel, as shown in Figure 2.
The original equilibrium state of the system is broken, and the solid–liquid contact angle
gradually decreases when the voltage between the two electrodes gradually increases.
The wettability of the insulating layer is changed, and it appears oleophobic. Thus, the
colored oil is pushed to a corner of the pixel by the NaCl aqueous solution, as shown in
Figure 3. The contact area between the shrinking oil and the hydrophobic insulating layer
is gradually decreased, and eventually, the entire system can reach a new equilibrium
state. When the colored oil is pushed away, the ratio of the uncovered area of the colored
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oil to the area of the pixel is called the aperture ratio, which reflects the luminance of
EWDs. The contact angle is another critical parameter in measuring the performance of
EWDs, which is a tangency angle at the intersection of solid, liquid, and gas phases. The
famous Lippmann–Young Equation derived in 1875 can be used to describe the relationship
between the contact angle and applied voltage [42], as shown in Equation (1).

cos θV − cos θ0 = KV2 (1)
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Figure 3. A two-dimensional structure diagram and planform of a pixel in an EWD when a voltage
is applied.

θ0 and θV are the contact angles before and after the application of a driving voltage,
respectively, and K is a constant related to the material and structure of the EWDs. Ideally,
the square of the driving voltage is proportional to the contact angle. However, due to
factors such as oil backflow and charge trapping, the Equation (1) can be optimized as
Equation (2); VG is the voltage generated by the charge trapping.

cos θV − cos θ0 = K(V − VG)
2 (2)

3. Experimental Results and Discussion
3.1. Experimental Platform

In this experiment, an integrated experiment platform was built to measure and record
luminance and response time values, which consisted of a computer, a function generator,
a voltage amplifier, a colorimeter, and a microscope. The entire system could be operated
as follows. First, driving waveforms were designed on the computer by using professional
software (Matlab R2019a). A binary file would be generated, which would describe driving
waveforms, and then the file would be stored in the function generator. Due to the limited
output voltage of the function generator, the voltage amplifier was used to amplify the
driving waveform for driving the EWDs. During the driving process, the colorimeter was
applied to measure and record the luminance of the EWDs, and the microscope was used
to observe the colored oil in the pixels. The parameters of the instruments used above are
shown in Table 1, and the whole experiment platform is shown in Figure 4.
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Table 1. Parameters of the experimental instruments.

Name Model Manufacturers Region Region

Computer H430 Lenovo Beijing China
Function generator AFG3022C Tektronix Beaverton USA
Voltage amplifier ATA-2022H Agitek Xian China

Microscope
Colorimeter

SZ680
Arges-45

Cnoptec
Admesy

Chongqing
Ittervoort

China
Netherlands
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Figure 4. The experimental platform for evaluating the performance of EWDs. It was composed of a
computer, a microscope, a function generator, a voltage amplifier, a colorimeter, and an EWD. The
EWD was the testing object. The computer was used to design the waveforms. The microscope was
used to observe the microscopic forms of the EWD. The function generator and voltage amplifier
were used to generate the driving waveforms. The colorimeter was used to measure the luminance of
the EWD.

In the experiment, the EWD used for testing was designed and manufactured by us,
as shown in Figure 5. The parameters of the EWD are shown in Table 2.
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Table 2. Parameters of the EWD panel.

Panel Size Oil Color Resolution Pixel Size Pixel Wall
Hight

Insulating Layer
Thickness

Electrode Plates
Thickness

10 × 10 cm magenta 320 × 240 150 × 150 µm 18 µm 1 nm 2.5 nm

3.2. Proposed Driving Waveforms

In order to drive the EWDs to realize maximum luminance and stable performance
at a specific grayscale, a driving waveform based on an exponential function and an AC
square wave was proposed, including a driving stage and a stabilizing stage, as shown in
Figure 6.
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Figure 6. Schematic diagrams of the proposed driving waveform. (a) The diagram of the driving
stage. VMAX was a voltage at which the pixel could be driven to the target grayscale, and it was
also called a target driving voltage. VN was a negative voltage, which could release trapped charges.
V0 was an initial rising voltage. T was the duration of a display cycle. T1 was the duration of the
exponential function waveform. T2 was the duration of the DC driving process. T3 was the duration
of the negative voltage in the driving stage. (b) The diagram of the stabilizing stage. T4 was the
duration of the DC driving process in the stabilizing stage. T5 was the duration of the negative
voltage in the stabilizing stage.

In the driving stage, the proposed waveform was mainly based on an exponential
function and an AC square. The exponential function was used to drive the EWDs to
achieve maximum luminance quickly. The AC square was used to release trapped charges,
which can reduce the effect of VG in Equation (2) and suppress oil backflow in the driving
stage. The equation of the exponential function is shown in Equation (3).

U = (V0 − 1) + eat (3)

U is the driving voltage in real-time. a is a time constant. V0 is the initial voltage.
It could be observed that a affected the rising rate of the driving voltage. Therefore, T1
could keep a constant by adjusting a when the target driving voltage was different. In the
stabilizing stage, the proposed driving waveform was composed of many display cycles.
Each display cycle had an AC square, which was used to keep the EWD’s display stable.

3.3. Parameter Optimization of the Driving Stage

In the driving stage, parameters would be optimized according to the relationship
between the luminance and the driving voltage. Therefore, to obtain the relationship, a DC
waveform was designed, which was set to 0 V to 25 V, and the maximum voltage was set
to 25 V to protect the EWDs. Figure 7 shows the corresponding relationship between the
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DC driving voltage and the luminance. The luminance showed an upward trend, and the
growth rate decreased gradually. The EWD could not be driven when the positive voltage
was lower than 7 V. The EWD also could not be driven when the negative voltage was
lower than 4 V. Therefore, the positive and negative threshold voltage amplitude were set
to 7 and 4 V, respectively.
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Figure 7. The luminance of the EWD, which was applied to different DC voltages. The luminance
was 240 when the positive DC voltage was less than 7 V. The luminance was 243 when the negative
DC voltage was less than 4 V. The maximum luminance was obtained when the DC voltage was 25 V.

According to Figure 7, the maximum luminance was 857 when 25 V-positive DC
voltage was applied. In this paper, the number of grayscales was set to four as an illustrative
example, and the luminance of four grayscales was set to 400, 500, 600, and 700. The target
driving voltages were set to 10 V, 12 V, 14 V, and 18 V, and the luminance values were 403,
490, 600, and 717, respectively. The display cycle T was set to 20 ms because 50 Hz was
a usual frequency that could not be recognized by eyes. VN was used to release trapped
charges. T1 was set to 5 ms. T2 was set to 13 ms to drive the EWD at the maximum
luminance. T3 was set to 0.25 ms to release trapped charges, which could prevent oil
backflow caused by charge trapping. According to Equation (3), V0 was set to 7 V, 9 V,
11 V, and 14 V to obtain driving waveforms of the same shape in four grayscales when T1
was 5 ms. The range of VN was set to 4–10 V, 6–12 V, 8–14 V, and 12–18 V. The luminance
between different grayscales and VN in 200 ms is shown in Figure 8.
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Figure 8. The luminance of the EWD when different negative voltages were applied. The median
line, mean, and other parameters reflect the distribution of the luminance. (a) Relationship between
luminance values and negative voltages at the first grayscale. (b) Relationship between luminance
values and negative voltages at the second grayscale. (c) Relationship between luminance values and
negative voltages at the third grayscale. (d) Relationship between luminance values and negative
voltages at the fourth grayscale.

According to Figure 8, the luminance of the EWD barely changed when VN was lower
than VMAX. In the first grayscale, the median luminance was maintained at approximately
402 when VN was set to 4–10 V. The average luminance was slightly less than the median
luminance but remained above 400. The interquartile range (IQR) was maintained at
approximately 3. The difference between the burr signal and the stable luminance was
within 12. In the second grayscale, the median luminance was maintained at approximately
500 when VN was set to 6–12 V. The average luminance was slightly less than the median
luminance, but it was very close to 500. The IQR was maintained at approximately 3.
The difference between the burr signal and the stable luminance was within 18. In the
third grayscale, the median luminance was maintained at approximately 599 when VN
was set to 8–14 V. The average luminance was slightly less than the median luminance,
but it was very close to 598. The IQR was maintained at approximately 4. The difference
between the burr signal and the stable luminance was within 25. In the fourth grayscale, the
median luminance was maintained at approximately 698 when VN was set to 12–18 V. The
average luminance was slightly less than the median luminance, but it was very close to
694. The IQR was maintained at approximately 3. The difference between the burr signal
and the stable luminance was within 62. The applied negative voltage hardly influenced the
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luminance. Therefore, VNs were set to 4 V, 6 V, 8 V, and 12 V in different grayscales. Figure 9
demonstrates the relationship between the driving time and the luminance of the EWD
when negative voltages were set to 4 V, 6 V, 8 V, and 12 V in four grayscales, respectively.
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Figure 9. The luminance of the EWD when different amplitude negative voltages were applied.

3.4. Testing of the Stabilizing Stage

In the driving stage, the applied negative voltage was evaluated to obtain the optimum
negative voltage. The luminance would decrease when a negative voltage was applied. T3
was set to 0.25 ms due to the limitation of the display cycle. In the stabilizing stage, only
T4 and T5 would be considered. T4 was set to 15 ms to keep a stable luminance. T5 could
be set to 0.1 ms, 0.25 ms, 0.5 ms, 1 ms, and 2 ms in four grayscales, respectively. Negative
voltages were set to 4 V, 6 V, 8 V, and 12 V, respectively. Figure 10 shows the relationship
between luminance and T5 in different grayscales within 200 ms.

According to Figure 10, the luminance distribution of the EWD changed when T5 was
changed. As T5 increased, the luminance fluctuation also increased. In the first grayscale,
the median luminance of the EWD maintained at approximately 401 when T5 was set to
0.1 ms, 0.25 ms, 1 ms, and 2 ms. The average luminance declined below 400 when T5 was
set to 1 and 2 ms. The IQR increased from 2 to 10 when T5 increased; therefore, the display
stability became worse. The EWD had better stability within 200 ms when T5 was lower than
2 ms. In the second grayscale, the median luminance and average luminance maintained at
approximately 500 when T5 was set to 0.1 ms, 0.25 ms, and 0.5 ms. The median luminance
and average luminance decreased below 500 when T5 was set to 1 ms and 2 ms. The IQR
increased from 2 to 20 when T5 increased. The EWD had better stability within 200 ms
when T5 was lower than 2 ms. In the third grayscale, the median luminance and average
luminance maintained at approximately 600 when T5 was set to 0.1 ms, 0.25 ms, and 0.5 ms.
The median luminance and average luminance decreased below 600. The IQR increased
from 2 to 20 when T5 increased. The EWD had better stability within 200 ms when T5 was
smaller than 1 ms. In the fourth grayscale, the median luminance and average luminance
maintained at approximately 700 when T5 was set to 0.1 and 0.25 ms. The median luminance
and average luminance increased over 600 when T5 was set to 0.5 ms, 1 ms, and 2 ms. The
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IQR increased from 2 to 10 when T5 increased. Therefore, the EWD had better stability
within 200 ms when T5 was set to 0.1 ms, 0.25 ms, and 0.5 ms in four grayscales.
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Figure 10. The luminance of the EWD within 200 ms when negative voltages were applied. The
median line, mean, and other parameters reflect the distribution of the luminance. (a) Relationship
between luminance values and negative voltages at the first grayscale. (b) Relationship between
luminance values and negative voltages at the second grayscale. (c) Relationship between luminance
values and negative voltages at the third grayscale. (d) Relationship between luminance values and
negative voltages at the fourth grayscale.

The stability of the EWDs could not be completely proven in a short duration. The
relationship between driving time and voltage in a long display duration must be consid-
ered in terms of practicality. Due to the charge trapping effect, the insulating layer of the
EWD stored charges continuously when a unipolar voltage was applied for a long duration,
which caused oil backflow and affected the display performance. Therefore, the negative
voltage was designed to suppress the oil backflow. Figure 11 demonstrates the relationship
between the driving time and the luminance of the EWDs for a long duration when the
negative voltage was set to 4 V, 6 V, 8 V, and 12 V in four grayscales, respectively.
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Figure 11. The luminance of the EWDs during a long duration when different negative voltages
were applied. (a) Relationship between luminance values and the negative voltage at the first
grayscale. (b) Relationship between luminance values and the negative voltage at the second
grayscale. (c) Relationship between luminance values and the negative voltage at the third grayscale.
(d) Relationship between luminance values and the negative voltage at the fourth grayscale.

According to Figure 11, T5 was an essential part of the EWD’s stability. In the first
grayscale, the EWDs obtained the shortest response time when T5 was set to 0.1 ms. Oil
backflow occurred when T5 was set to 0.1 ms and 0.25 ms, which affected the display
stability. Therefore, the EWD could display steadily when T5 was set to 0.5 ms and 1 ms.
Compared to 1 ms, the EWD could obtain a higher luminance and a higher response speed
when T5 was set to 0.5 ms. In the second grayscale, the EWD obtained the shortest response
time when T5 was set to 0.1 ms. Oil backflow occurred when T5 was set to 0.1 ms. Therefore,
the EWDs displayed steadily when T5 was set to 0.25 ms and 0.5 ms. Compared to 0.25 ms,
the EWDs could obtain a higher luminance when T5 was set to 0.5 ms. In the third grayscale,
the EWDs obtained the shortest response time when T5 was set to 2 ms and obtained the
longest response time when T5 was set to 0.1 ms. Oil backflow occurred when T5 was set to
0.1 ms. Therefore, the EWDs displayed steadily when T5 was set to 0.5 and 1 ms. Compared
to 0.25 ms, the EWDs could obtain a higher luminance and better stability when T5 was set
to 0.5 ms. In the fourth grayscale, the EWD obtained the shortest response time when T5
was set to 2 ms. Oil backflow occurred when T5 was set to 0.1 ms and 0.25 ms. Therefore,
the EWDs displayed steadily when T5 was set to 0.5 and 1 ms. Compared to 1 ms, the
EWDs could obtain a higher luminance and a shorter response time when T5 was set to
0.5 ms. According to Figure 12, the response time of the EWD increased gradually as the
grayscale increased.
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Figure 12. The luminance of the EWDs within a long duration when the best parameters were applied.
In the first grayscale, VN was set to 4 V, and T5 was set to 0.5 ms. In the second grayscale, VN was set
to 6 V, and T5 was set to 0.5 ms. In the third grayscale, VN was set to 8 V, and T5 was set to 0.5 ms. In
the fourth grayscale, VN was set to 12 V, and T5 was set to 0.5 ms.

3.5. Performance of the Proposed Waveform

As shown in Figure 13, traditional driving waveforms were used to compare perfor-
mance with the proposed driving waveform. The rising duration of the driving stage was
set to 5 ms, and the target driving voltage VMAX was set to 10 V, 12 V, 14 V, and 18 V. The
initial voltage was set to 0 V.
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Figure 13. Proposed driving waveforms and traditional driving waveforms of different grayscales
for performance comparison.
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As shown in Figure 13, traditional driving waveforms were used to compare display
performance with the proposed driving waveform. The rising duration of the driving stage
was also set to 5 ms, and the target driving voltages were set to 10 V, 12 V, 14 V, and 18 V in
four grayscales. The initial voltage was set to 0 V.

According to Figure 14, compared to the traditional driving waveform, the proposed
driving waveform had a better performance. In the first grayscale, the luminance of the
proposed driving waveform steadily increased to approximately 400 and maintained at 400.
Although the traditional driving waveform had a shorter response time, the luminance
started to decline after reaching 400. In the second grayscale, the luminance of the proposed
driving waveform steadily increased to approximately 500 and was maintained at 510. The
luminance of the traditional driving waveform started to decline after reaching 520. In
the third grayscale, the luminance of the proposed driving waveform steadily increased
to approximately 600 and maintained at 600. The luminance of the traditional driving
waveform started to decline after reaching 600. In the fourth grayscale, the luminance of
the proposed driving waveform steadily increased to approximately 700 and maintained at
700. The luminance of the traditional driving waveform started to decline after reaching
700. Generally, the proposed driving waveform solved the oil backflow, which was caused
by charge trapping. Compared to the traditional driving waveform, the EWD had better
stability by applying the proposed driving waveform.
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Figure 14. Luminance curves of different driving waveforms in different grayscales. (a) Luminance
curves of different driving waveforms in the first grayscale. (b) Luminance curves of different driving
waveforms in the second grayscale. (c) Luminance curves of different driving waveforms in the third
grayscale. (d) Luminance curves of different driving waveforms in the fourth grayscale.
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4. Conclusions

In order to achieve a stable display performance of multi-level grayscales, a new com-
bined driving waveform was proposed in this paper, which was based on an exponential
function and AC voltage. Compared to the traditional driving waveform, the effectiveness
of the proposed driving waveform was proven. The proposed driving waveform could
suppress oil backflow at different grayscales and reduce the luminance oscillation of the
EWDs. In addition, the proposed driving waveform could be adapted to drive the EWDs
with more than four grayscales. In summary, the proposed driving waveform provided a
reference value for improving multi-level display performance of the EWDs.
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