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Abstract: Object-space model optimization (OSMO) has been proven to be a simple and high-
accuracy approach for additive manufacturing of tomographic reconstructions compared with other
approaches. In this paper, an improved OSMO algorithm is proposed in the context of OSMO. In
addition to the two model optimization steps in each iteration of OSMO, another two steps are
introduced: one step enhances the target regions’ in-part edges of the intermediate model, and the
other step weakens the target regions’ out-of-part edges of the intermediate model to further improve
the reconstruction accuracy of the target boundary. Accordingly, a new quality metric for volumetric
printing, named ‘Edge Error’, is defined. Finally, reconstructions on diverse exemplary geometries
show that all the quality metrics, such as VER, PW, IPDR, and Edge Error, of the new algorithm
are significantly improved; thus, this improved OSMO approach achieves better performance in
convergence and accuracy compared with OSMO.

Keywords: volumetric additive manufacturing; tomographic reconstruction; optimization; OSMO;
edge enhanced

1. Introduction

Volumetric additive manufacturing (VAM) has introduced a significant improvement
in the development of 3D printing in recent years because of its low surface roughness
and high printing efficiency. Tomographic VAM, as the major VAM implementation, was
derived from computed tomography (CT) and the Fourier slice theorem. In tomographic
VAM printing, a series of 2D optical patterns (known as image sets) are projected onto a
rotating volume, which is filled with photosensitive liquid resin. Then, the expected 3D
structure is polymerized in seconds to minutes and removed from the remaining liquid
resin, as shown in Figure 1.
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1. Introduction 
Volumetric additive manufacturing (VAM) has introduced a significant improve-

ment in the development of 3D printing in recent years because of its low surface rough-
ness and high printing efficiency. Tomographic VAM, as the major VAM implementation, 
was derived from computed tomography (CT) and the Fourier slice theorem. In tomo-
graphic VAM printing, a series of 2D optical patterns (known as image sets) are projected 
onto a rotating volume, which is filled with photosensitive liquid resin. Then, the expected 
3D structure is polymerized in seconds to minutes and removed from the remaining liq-
uid resin, as shown in Figure 1. 
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The progress of VAM technology depends on three elements: optics, material science,
and image computation. Many studies have been reported on the first two elements [1–11],
while research on image computation, especially iterative image optimization of the inverse
math problem, has just begun [12–14].

Derived from computed tomography (CT) and the Fourier slice theorem, the ideal
process of tomographic VAM is to obtain image sets from the model structure by forward-
projection computing and then to obtain the printed structure by digital light processing
(DLP) projection [2,3] (backward projection), as shown in Figure 2A. However, we can only
receive a low-accuracy printed structure due to light scattering, as shown in Figure 2B.
Consequently, it is necessary to optimize the computation before DLP projection to obtain
a structure with higher accuracy, as shown in Figure 2C.
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Light scattering causes it to be unable to propagate along a straight line. Therefore,
some computation methods, such as FBP, gradient-descent optimization, and OSMO, by
frequency filtering or optimization iteration, are used to approximate the printed structure
to the model structure, so as to improve printing accuracy. The relevant optimization
algorithms mentioned in this paper are all discussed based on this premise.

The well-known filtered back projection (FBP) method, constrained by its negative
results, can only produce projector images with low accuracy, while the intensity of these
images must be non-negative [15,16].

Other approaches that use gradient-descent optimization to adjust image sets to im-
prove the volumetric dose reconstruction indirectly have been proposed [12–14]. Different
from the above approaches, OSMO is applied to optimize the structure directly, instead
of optimizing the set of external projection images, and can achieve better printing accu-
racy [13]. In addition, OSMO has two other excellent advantages: flexibility and ease of
implementation and use.
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In this paper, an improved OSMO algorithm is proposed in the context of OSMO,
named ‘edge-enhanced OSMO’. The low surface roughness of a print target depends on the
accurate reconstruction of the target boundary. Therefore, some morphological processing
is imported into OSMO to enhance the target regions’ in-part edges of the intermediate
model and weaken its out-of-part edges to achieve better performance in convergence and
accuracy compared with OSMO. Accordingly, a new quality metric for volumetric printing
is defined to evaluate the accuracy of the reconstructed target boundary as a supplement to
other quality metrics.

2. OSMO Algorithm for VAM

To describe the OSMO algorithm, we use mathematical notation consistent with that
of Rackson and Champley et al. [13]. The desired geometry to print is denoted as fT. The
forward-projection operator that transforms an object to an image set is denoted as P. The
notation is consistent with the fact that it performs the mathematical inverse transformation
of the forward projection, which is denoted as P*. Therefore, PfT is the forward projection
of fT from the object to the image set. Let N be a normalizing operator. Dl and Dh are
defined as the low-dose threshold value and high-dose threshold value, respectively, where
0 < Dl < Dh <1. Here, Mj,j is the object model after j iterations. M0,0 is defined as the initial
model of Mj,j, and its value is set to fT. We define fj,j as the forward projection of Mj,j, any
resultant negative values of which are set to zero. The expression of fj,j is as follows:

fj,j = NP∗max
(
0, PMj,j

)
, (1)

The OSMO iteration process for optimizing from Mj,j to Mj+1,j+1 is shown in Figure 3,
and it includes the following two steps:
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STEP 1: Update the intermediate model Mi,i+1 by subtracting out-of-part voxels with
an unwanted extra dose above the lower threshold Dl from the previous model Mi,i. For
only the out-of-part voxels (in-part voxels remain unchanged from Mi,i):

Mi,i+1 = Mi,i −max(0, fi,i − Dl). (2)

According to Equation (1), the expression of the intermediate reconstruction fi,i+1 is:

fi,i+1 = NP∗max(0, PMi,i+1). (3)
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STEP 2: Update the model Mi+1,i+1 by adding in-part voxels with the desired missing
dose below the upper threshold Dh to the intermediate model Mi,i+1. For only in-part voxels
(out-of-part voxels remain unchanged from Mi,i+1):

Mi+1,i+1 = Mi,i+1 + max(0, Dh − fi,i+1). (4)

According to Equation (1), the expression of the reconstruction fi+1,i+1 is

fi+1,i+1 = NP∗max(0, PMi+1,i+1). (5)

Then, the image sets can be solved after K iterations, as shown in Equation (6):

ImgS = Nmax(0, PMK,K). (6)

3. Edge-Enhanced OSMO Algorithm for VAM
3.1. Edge-Enhanced OSMO Principle

The direct criterion for evaluating the optimization quality of reconstruction algo-
rithms is the degree of separation between the in-part and out-of-part edges in the his-
togram of the reconstructed image. The better the separation is, the less overlap there is,
and the higher the reconstruction accuracy that will be obtained, and vice versa. For ease
of explanation, 2D ‘Reschart’ (as shown in Figure 4) is taken as the example, which can be
considered as one of the 3D geometry’s cross-sections.
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Figure 4. Binary target geometry of ‘Reschart’.

There is still a significant overlap between the histogram’s in-part and out-of-part
edges after 15 optimization iterations (Dh = 0.8, Dl = 0.6) with OSMO (see Figure 5). Using
these image sets corresponding to the above iteration result for printing, the expected
printing accuracy will not be achieved. Therefore, in the case that the number of iterations
is given, or the iteration accuracy is in a convergence state, we need to find ways to
reduce the overlap area between the in-part and out-of-part edges to further improve
printing accuracy.
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In target geometry, the target’s boundaries (or edges) belong to the transition area
between the in-part and out-of-part edges, which are the main part of the dose distribution
histogram’s overlapping area, and the accurate reconstruction of edge regions is the key to
improving printing accuracy. Therefore, it is necessary to enhance the in-part edge regions
and weaken the out-of-part edge regions during the optimization iteration process, as
shown in Figure 6, to further improve the contrast of the edge regions and promote better
separation of the target and background.
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To achieve the above purpose, there are generally two approaches: one is increasing
the number of optimization iterations, and the other is enhancing the edge gradient.

The method of increasing the number of optimization iterations can improve the
separation between the target and background to a certain extent. However, it belongs to
global optimization. On the one hand, it is not possible to just focus on the optimization of
edge regions, which may lead to the iteration falling into local convergence. On the other
hand, it will increase the enormous but unnecessary computation of non-edge regions.

The method of enhancing edge gradients is easily thought of as frequency filtering.
This method also has the same problem of global processing, which may increase unneces-
sary computational cost. In addition, the principle of frequency filtering is to increase or
maintains the edges’ intensity, while weakening the intensity of the regions on both sides
of the edges (including in-part edges and out-of-part edges) without distinction, and there
is a certain deviation from the idea to ‘enhance the in-part edge regions and weaken the
out-of-part edge regions’.

In this paper, the edge-enhanced OSMO algorithm (EE OSMO) is proposed, and it is
an improved algorithm based on OSMO. First, a morphological method is used to extract
in-part edges and out-of-part edges from the original target geometry. Then, the in-part
edges are enhanced, and the out-of-part edges are weakened.

EE OSMO has the following two advantages: Firstly, based on the optimization concept
of OSMO, local enhancement calculations are only performed on the edge regions, thus
can achieve fast and high-precision convergence of the iteration with minimal additional
operations. Secondly, compared with the problem of frequency filtering not being able to
distinguish the two sides of the edge, the EE OSMO method enhances and weakens the edge
regions according to their different regions, which can further improve the reconstruction
accuracy of the edge regions.

Before introducing the algorithm implementation principle of EE OSMO, the extraction
methods of in-part edges and out-of-part edges are explained.

The extraction process of in-part edges is as follows:

1. Erode the target regions of the geometry pattern, and then obtain the eroded target
regions, as shown in the dark blue internal area in Figure 7 (Step A). The structural
element used for erosion is the central symmetric structure (the size is 3 × 3 in
this paper).
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2. Subtract the eroded target regions from the target regions, and then obtain the in-part
edges, as shown Figure 7 (Step B).
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Figure 7. Schematic diagram of edge extraction.

The extraction process of out-of-part edges is as follows:

1. Dilate the target regions of the geometry pattern, and then obtain the dilated target
regions, as shown in the yellow internal area in Figure 7. Step A. The structural
element used for dilation is the central symmetric structure (the size is 3 × 3 in
this paper).

2. Subtract the target regions from the dilated target regions, and then obtain the out-of-
part edges, as shown Figure 7 (Step B).

It should be noted that the extraction of in-part or out-of-part edges is an isotropic
process; therefore, it is required that the structural elements used for erosion and dilation
must be a central symmetric structure, and the unilateral size must be odd to ensure
the same width of edge region in all directions. EE OSMO is a further correction to the
reconstruction accuracy of OSMO, which only needs to enhance the edge area in a small
range. The higher the size value, the greater the stiffness of the edge regions but the lower
the accuracy. On the contrary, the smaller the stiffness of the edge region, the higher the
accuracy. It is generally recommended to have a structural element size in the range of 3–7.

3.2. Edge-Enhanced OSMO Approach

According to the principle described in the previous section, the implementation
process of edge-enhanced OSMO (EE OSMO) is based on the OSMO two-step (STEP 1
and STEP 2) iterative method, and an additional two-step (STEP 3 and STEP 4) edge
enhancement process is added, as shown in Figure 8. The implementation process is
as follows:
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STEP 1: Refer to Section 2 STEP 1 for details.
STEP 2: Refer to Section 2 STEP 2 for details.
STEP 3: Update intermediate Model 3 Mi,i+3 by adding in-part edge voxels with the

desired missing dose below the upper threshold Dh to intermediate Model 2 Mi,i+2. For
only in-part edge voxels:

Mi,i+3 = Mi,i+2 + max(0, Dh − fi,i+2). (7)

According to Equation (1), the expression of the reconstruction fi,i+3 is

fi,i+3 = NP∗max(0, PMi,i+3). (8)

STEP 4: Update the model Mi+1,i+1 by subtracting out-of-part edge voxels with an
unwanted extra dose above the lower threshold Dl from intermediate Model 3 Mi,i+3. For
only the out-of-part edge voxels:

Mi+1,i+1 = Mi,i+3 −max(0, fi,i+3 − Dl). (9)

According to Equation (1), the expression of the reconstruction fi+1,i+1 is

fi+1,i+1 = NP∗max(0, PMi+1,i+1). (10)

After N optimization iterations, the image sets can be achieved, as shown in Equation (6).
For the sake of comparison, the ‘Reschart’ image (as shown in Figure 3) is used as an

example, and the reconstruction results of OSMO and EE OSMO are shown in Figure 9a,b,
respectively, with 15 optimization iterations (Dh = 0.8, Dl = 0.6). The comparison graph
in Figure 9 shows that the reconstruction accuracy of EE OSMO is significantly improved
with the same parameters.
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4. Reconstruction Quality Metrics

According to the literature [13], three metrics for evaluating the quality of a recon-
struction are defined: Voxel Error Rate (VER), Process Window (PW) size, and In-part
Dose Range (IPDR). As a supplement, a new quality metric named Edge Error (EdgeE) is
proposed in order to evaluate the accuracy of the reconstruction’s edge regions.

The calculation of EdgeE consists of two parts: one is the in-part edge voxels error
rate, that is, the in-part edge error rate (IPEER); the other is out-of-part edge voxels error
rate, that is, the out-of-part edge error rate (OPEER). The expression for IPEER is

IPEER =
∑fi,i∈RIPE

Sgn(fi,i < TH)

NIPE
, (11)

where, fi,i is defined as the reconstruction dose distribution for the i-th iteration. RIPE is
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defined as in-part edge regions. NIPE is defined as the total number of in-part edge voxels.
TH is the error threshold in the current iteration, and the expression is

TH = (min(fi,i ∈ RIP) + max(fi,i ∈ ROP))/2, (12)

where RIP is defined as the in-part regions and ROP as out-of-part regions. The expression
for OPEER is

OPEER =
∑fi,i∈ROPE

Sgn(fi,i > TH)

NOPE
, (13)

where ROPE is defined as out-of-part edge regions, and NOPE is defined as total number of
out-of-part edge voxels. The expression for EdgeE is

EdgeE = (IPEER + OPEER)/2. (14)

The accuracy of the reconstruction’s edge regions determines the printing accuracy
and surface smoothness. EdgeE, using the reconstruction accuracy of the target edges as the
evaluation criterion, can intuitively characterize the reconstruction quality. It is a beneficial
supplement to VER, PW, and IPDR.

5. Results and Discussion
5.1. Evaluation of Optimization

Because EE OSMO is the improved algorithm for OSMO, two typical geometric
structures derived from publicly available geometry files are selected as optimization
reconstruction targets in this section to sufficiently evaluate the performance of EE OSMO.
These geometries are descriptively titled ‘Reschart’ and ‘Thinker’, and the target geometries
are shown in Figure 10. The performance of EE OSMO and OSMO are comprehensively
compared using four quality metrics: VER, PW, IPDR, and EdgeE.
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of ‘Thinker’.

VER is defined as the voxel error rate. The closer the value of VER is to 0, the lower
the error rate of printing.

PW is defined as the difference, in normalized units of dose, between the highest-dose
out-of-part voxel and the lowest-dose in-part voxel [13]. There are two ways to define PW:

If PW is defined as
PW = (highest− dose out− of− part voxel)− (lowest− dose in− part voxel), it is

negative when there are no overlaps between the in-part histogram and out-of-part his-
togram, and vice versa.

If PW is defined as
PW = (lowest− dose in− part voxel)− (highest− dose out− of− part voxel), it is

positive when there are no overlaps between the in-part histogram and out-of-part his-
togram, and vice versa.

In this paper, the first definition of PW is used for algorithm evaluation.
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IPDR is defined as the in-part dose range, which is one minus the lowest-dose in-
part voxel. The closer the value of IPDR is to 0, the more concentrated the energy of the
dose distribution.

EdgeE, as described in the previous section, is defined as the edges error rate. The
closer the value of EdgeE is to 0, the lower the error rate of printing.

The optimization algorithm and all ancillary functions are implemented in Python3 us-
ing the python library VAMToolbox [17], which supports the generation of light projections
and the control of a DLP projector for tomographic VAM. All functions are implemented in
Visual Studio Code, which is available on request.

Figure 11 shows the comparison curves of VER, PW, and IPDR of the ‘Reschart’
structure iterated by OSMO and EE OSMO, as well as the comparison images of the dose
histogram. Table 1 shows the final iteration results of the four quality metrics. In the
comparative experiment, the optimization parameters are Dh = 0.9 and Dl = 0.83, and the
number of iterations is 30.
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Table 1. Final iteration results on ‘Reschart’.

Algorithm VER PW IPDR EdgeE

OSMO 0.01410 0.03336 0.153547 0.00237
EE OSMO 0 −0.006759 0.12909 0

Figure 11a–d shows that EE OSMO has better convergence than OSMO. The quality
metric values of 15 iterations of EE OSMO are comparable to those of 30 iterations of
OSMO, while the former consumes only 2/3 of the time of the latter. After 30 iterations,
the EE OSMO voxel error rate reaches 0 (VER = 0), there are no overlaps between the
in-part histogram and out-of-part histogram (PW < 0), and the concentration of the dose
distribution increased by 13%, and the edge’s error rate reaches 0 (EdgeE = 0) compared
with the OSMO results, which are VER > 0, PW > 0, IPDR = 0.153547, and EdgeE = 0.00237,
according to Figure 11e,f and Table 1.

Figure 11g is the difference image between the target geometry and binary image of
the dose distribution, and the dose distribution is obtained with OSMO optimization. The
binarization threshold of the dose distribution is the normalized minimum value of the
dose distribution’s in-part voxels.

Figure 11h is the difference image between the target geometry and binary image of
the dose distribution, and the dose distribution is obtained with EE OSMO optimization.
The binarization threshold of the dose distribution is the normalized minimum value of
the dose distribution’s in-part voxels.

From the comparison between Figure 11g,h, it can also be shown intuitively that the
dose distribution simulation error of EE OSMO is close to 0, while the dose distribution
simulation error with OSMO optimization is still significant.

The same conclusion is also verified by 3D image reconstruction. Figure 12 shows the
comparison curves of VER, PW, and IPDR and EdgeE of the ‘Thinker’ structure iterated by
OSMO and EE OSMO. Table 2 shows the final iteration results of the four quality metrics.
In the comparative experiment, the optimization parameters are Dh = 0.8 and Dl = 0.6,
and the number of iterations is 30.
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Figure 12. OSMO and EE OSMO performance comparison on ‘Thinker’: (a) VER; (b) PW; (c) IPDR;
and (d) EdgeE.
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Table 2. Final iteration results on ‘Thinker’.

Algorithm VER PW IPDR EdgeE

OSMO 0.000578 0.035062 0.299614 0.024669
EE OSMO 0.000110 0.016018 0.286161 0.007178

The above two comparisons show that the results of EE OSMO are significantly
improved in terms of convergence and optimization accuracy compared with OSMO.

Comparisons between OSMO and EE OSMO, including several projector intensity
images, dose distribution slices for the ‘Thinker’ geometries, and difference images between
target geometry slices and dose distribution slices’ binary images, are shown in Figure 13.
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tween target geometry slices and dose distribution slices’ binary images, are shown in 
Figure 13. 
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Figure 13. ‘Thinker’ geometry reconstruction comparison between OSMO and EE OSMO: (a) compu-
tational projections and dose distribution slice comparison; (b) difference comparison between target
geometry slices and dose distribution slices’ binary images.

An the left of Figure 13a are three computational projections at 30◦, 60◦ and 90◦. An
the top right of Figure 13a are five dose distribution slices with different heights. An the
bottom right of Figure 13a are five target geometry slices with different heights, accordingly.

At the top of Figure 13b are the differences between target geometry slices and binary
image of dose distribution slices, and the dose distribution slices are obtained with OSMO
optimization. The binarization threshold of dose distribution is the normalized minimum
value of the dose distribution’s in-part voxels.
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A the bottom of Figure 13b are the differences between target geometry slices and
binary image of dose distribution slices, and the dose distribution slices are obtained with
EE OSMO optimization. The binarization threshold of dose distribution is the normalized
minimum value of dose the distribution’s in-part voxels.

Figure 13a shows that the dose distributions obtained with OSMO and EE OSMO can
both approximate the target geometry better, while the quantitative gap between them
is difficult to distinguish by eye. In order to intuitively demonstrate the reconstruction
quality gap between them further, the respective differences between target geometry slices
and binary image of the dose distribution slices are calculated and shown in Figure 13b.
From Figure 13b, it can be seen that there is a certain edge error in the OSMO’s dose
distribution, while the edge error of EE OSMO’s is almost zero under the same parameters.
After further analysis of Figure 13b, we found that the edge error of OSMO’s is nearly
3 voxels in certain locations. We assume to print a structure with a dimension of 1 cm3,
and the spatial resolution of it is 512 × 512 × 512 voxels, that is, the size of one voxel is
19.5 × 19.5 × 19.5 µm. In the above case, the OSMO’s dose distribution error reaches
nearly 60 µm in one dimension. That is to say, the larger the space occupied by a single
voxel, the greater the error, and the quantitative gap between OSMO and EE OSMO is
more significant.

5.2. The Influence of Frequency Filtering

To avoid the impossible negative light problem of frequency filtering during the
iteration, the OSMO only performs frequency filtering in initialization to improve the
rate of convergence of iterations, but it does not use it during the iteration. EE OSMO is
the improved algorithm of OSMO, and its processing architecture is basically the same
as OSMO. Therefore, in this section, only the error convergence performance difference
between OSMO and EE OSMO is discussed, with and without frequency filtering and just
in initialization.

The ’Reschart’ is selected as the geometry for performance comparison; the optimiza-
tion parameters are Dh = 0.9 and Dl = 0.83, and the number of iterations is 30.

The two red curves in Figure 14 (dashed line for OSMO and solid line for EE OSMO)
show the VER iteration curves of OSMO and EE OSMO with the same parameter but
without frequency filtering initialization. For comparison, the two green curves in Figure 14
(dashed line for OSMO and solid line for EE OSMO) show the VER iteration curves of
OSMO and EE OSMO with the same parameter and with frequency filtering initialization.
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From the comparison of the red and green curves in Figure 14, it can be seen that
under the same initialization conditions, EE OSMO has better convergence than OSMO.
In addition, the target was frequency-filtered to generate an improved initial model. This
reduces the number of algorithm iterations necessary to converge to an accurate solution
compared with simply using the target as the initial model, and using this image as the
initial iteration value has better convergence (as shown by the green curves).

6. Conclusions

We developed a new improved projection optimization algorithm in the image compu-
tation field of tomographic VAM, named ‘EE OSMO’. In this algorithm, some morphological
processing was added to the optimization iteration of OSMO to improve the reconstruction
accuracy of target boundaries (or edges). Accordingly, a new quality metric for volumetric
printing, named ‘Edge Error’, is defined as the accuracy evaluation of target boundaries.
The dose distribution was evaluated computationally. The EE OSMO approach was shown
to perform better than OSMO in nearly all four computational metrics; thus, EE OSMO
could achieve better convergence and higher accuracy.
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