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Abstract: The application of robots, especially robotic arms, has been primarily focused on the
industrial sector due to their relatively low level of intelligence. However, the rapid development
of deep learning has provided a powerful tool for conducting research on highly intelligent robots,
thereby offering tremendous potential for the application of robotic arms in daily life scenarios. This
paper investigates multi-object grasping in real-life scenarios. We first analyzed and improved the
structural advantages and disadvantages of convolutional neural networks and residual networks
from a theoretical perspective. We then constructed a hybrid grasping strategy prediction model,
combining both networks for predicting multi-object grasping strategies. Finally, we deployed the
trained model in the robot control system to validate its performance. The results demonstrate that
both the model prediction accuracy and the success rate of robot grasping achieved by this study are
leading in terms of performance.

Keywords: hybrid model; robot; grasp; deep learning

1. Introduction

Achieving accurate and efficient grasping is a fundamental requirement for the
widespread implementation of robotic systems. Based on human grasping experience, it
is evident that a well-designed grasping strategy plays a significant role in achieving a
successful grasp, which is essential for the success of a robot’s grasping task. Currently,
robot grasping research primarily focuses on two main directions: top grasping with RGB
input [1–3] and multi pose grasping with RGB-D or point-net as input [4–7]. Despite the
advantage of strong universality, multi-pose grasping relies on 3D point-net, which leads to
slower performance and necessitates the continuous observation of the object from various
angles to achieve a stable grasping strategy in case of occlusion, thereby limiting the wide
application of multi-pose grasp. Conversely, top-grasping based on RGB only needs a
top-view angle to perceive the object’s shape and generate appropriate grasping options,
which makes it run faster. Furthermore, deep learning-based image processing technology
has significantly promoted the advancement of grasping strategy research, thereby expand-
ing the application prospects of top-grasping strategies. One of the mainstream research
methods to improve the object detection algorithm is through the generation of rectangle
grasping strategies [8–15]. For instance, Joseph Redmon et al. [8] developed an object
detection model with a mixture of convolution layer and full connection layer and realized
grasp detection and object classification at the same time, with excellent performance in
speed and accuracy. Victor Parque et al. [11] proposed an RGB-based grasping attitude
prediction model using the GoogLeNet framework. The model can achieve excellent pre-
diction performance under the training of a small number of label datasets. The YOLO
series, as a classic algorithm, has made remarkable achievements in the field of object de-
tection. Therefore, researchers have improved the YOLO series to generate grasp strategies:
Cosimo Della Santina et al. [12] built an anthropomorphic soft hands grasping model based
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on YOLOv2 and achieved a grasping success rate of 81.1%; Wafae SEBBATA et al. [15],
based on YOLOv3, achieved object recognition and attitude estimation at the same time,
achieving a 79.9% success rate of grasping on different objects. With the development of
depth cameras and the improvement of hardware level, it has become a research direction
to realize 3D point-net reconstruction of the object based on RGB-D and then achieve
6-DOF grasping attitude prediction [16–18]. Jens Lundell et al. [16] proposed a generat-
ing deep network—DDGC—which realizes the generation of high-precision 6-DOF grasp
strategy in complex environments. Korrawa Karunratanakul et al. [17] designed a variable
encoding–decoding model based on deep learning for 3D point cloud processing, thereby
generating a reasonable grasp pose. Yongxiang Wu et al. [18] proposed an end-to-end pixel
level grasp prediction network, which realized the conversion from depth images to point
cloud information and achieved 97% and 90% grasp success rates on common and unusual
objects, respectively. The traditional object detection algorithm has low accuracy and poor
generalization performance. While point cloud-based 6-DOF grasp provides high accuracy,
it demands sophisticated hardware and slow model speed. Consequently, research on grasp
strategy based on semantic segmentation has emerged as a viable research direction [19,20].
Douglas Morrison et al. [19] proposed semantic segmentation models using two parallel
fully connected networks for generating grasping strategies. They achieved success rates of
88% and 83% for common and uncommon objects, respectively. Yong Ho Na et al. [20] used
a fully connected network to predict the robot grasping pose based on RGB and achieved
success rates of 79% and 74% on the training and test sets, respectively. The aforementioned
studies demonstrate that semantic segmentation algorithms based on RGB data can achieve
object segmentation at the pixel level without requiring complex point cloud information.
Consequently, these algorithms are a promising avenue for research on grasping strategies.
However, current research primarily focuses on enhancing object detection algorithms for
predicting grasp strategies, which results in poor generalization and low success rates in
actual grasp experiments, thereby limiting their practical applicability. To address these
issues, this paper proposes a novel hybrid segmentation model that merges a convolutional
neural network (CNN) and a residual networks to fully utilize their respective abilities
for information extraction and linear transformation. By comparing various semantic
segmentation algorithms, the proposed hybrid model makes a valuable contribution to the
field. Moreover, to ensure the integrity of the research, the trained model is deployed in a
robot operating system for high-precision grasp verification.

Therefore, the novelty of this paper lies in: (1) conducting theoretical analysis on
the excellent performance and existing issues of residual networks and designing four
improved residual block structures; (2) designing two CNNs and four residual structures
based on the actual working conditions of robot grasping and using them as the foundation
to construct a hybrid model for robot grasping strategy; and (3) not only completing the
training and testing of the hybrid model at the algorithm level but also deploying the model
in the robot operate system to achieve the application validation of robot grasping. By com-
bining theoretical research and practical verification, this paper designs a novel grasping
strategy prediction model and achieves excellent performance in practical grasping.

This paper is divided into five sections. Section 1 provides a summary and analysis
of current mainstream methods, including an evaluation of their advantages and disad-
vantages. Additionally, this section presents the research direction for this paper. Section 2
introduces the principles of two algorithms and constructs a hybrid model. Section 3 de-
scribes the training and testing processes of the model. Section 4 outlines the construction
of the robot grasping application platform. The final section provides the conclusions.

2. Materials and Methods

This paper aims to construct a model for predicting rectangular grasp strategies by
utilizing a combination of CNN and residual networks. By integrating CNN’s semantic
information extraction with residual network linear transformation, we aim to achieve
pixel-level predictions for rectangular grasp strategies.
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2.1. Performance Difference of CNN with Different Structures

The emergence of CNN has sparked a global surge in the adoption of deep learning
techniques. Central to the architecture of CNNs is the convolutional kernel, which is a
digital matrix of a predetermined size. The convolutional kernel’s primary function is to
execute a numerical transformation on the input image, enabling the extraction of feature
information embedded within the image. The characteristic map value can be determined
through the utilization of the following formula:

G(m, n) = ( f ∗ h)[m, n] = ∑
i

∑
k

h[j, k] f [m− j, n− k] (1)

where the input images are marked as f, the convolution kernel is marked as h, the row
and column indexes of the calculation results are marked as m and n, and j and k are
convolutional kernel sizes.

The convolution operation can be classified into two types: valid convolution and
same convolution. In valid convolution, no padding is applied to the input image, resulting
in a gradual reduction in the size of the image after each convolution. On the other hand,
the same convolution utilizes a padding technique where a specific width of zeros is added
around the input image to ensure that the output size is the same as the input size. The
padding width is calculated using a specific formula:

P =
f − 1

2
(2)

where P is the filling size and f is the convolution kernel size (usually odd).
To ensure simultaneous acquisition of semantic information and image resolution, it is

crucial to choose a reasonable number of convolution layers as more layers will decrease
image resolution. The size of the convolution kernel is also an essential parameter of
CNN, as it directly affects the efficiency and ability of CNN to gather semantic information.
Therefore, this paper will optimize the grasp strategy prediction model by considering the
number of convolution layers and the size of convolution kernels while integrating it with
the residual networks. After analyzing the model layers and information acquisition ability,
two CNN structures were designed (as illustrated in Figure 1).
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Figure 1a illustrates that a large convolution kernel provides a broader receptive field,
resulting in better global features with more image information. However, this also causes
a significant increase in computation, which impedes the depth of the model and reduces
its computational efficiency. In contrast, Figure 1b depicts the current prevalent approach
of replacing the large convolution kernel with continuous small convolution kernels. This
results in more nonlinear activation functions, stronger semantic expression capabilities,
fewer parameters, and lower hardware requirements. However, it also introduces new
issues like gradient disappearance and over-fitting. To address these concerns, this paper
proposes two models with different structures.

2.2. Theoretical Analysis of ResNet

From the perspective of the development of deep learning, the depth of the network
plays a crucial role in the performance of the model. Increasing the number of network lay-
ers allows for the extraction of more complex feature patterns, theoretically leading to better
results as the model becomes deeper. However, researchers have found that increasing the
depth of the network also results in the following issues: (1) model overfitting, (2) gradient
vanishing or exploding, and (3) the significant waste of computational resources. The
emergence of ResNet has successfully addressed the long-standing issues of deep learning.
ResNet accomplishes this by constructing a standard forward convolution network and
incorporating a skip connection that circumvents a specific convolution layer. The combina-
tion of the forward convolution network and the skip connection creates a residual module,
as illustrated in Figure 2. Deep networks are more vulnerable to performance degradation
than shallow networks. When multiple layers within a deep network are transformed into
identity maps (h(x) = x), the model regresses to a shallow network. However, deep learn-
ing is a complex nonlinear mapping network, and it is extremely challenging to directly
learn identity mapping. Residual networks introduce a novel approach by structuring the
network in the format presented in Figure 2. Additionally, its mathematical explanation is:

H(x) = F(x) + x ⇒ F(x) = H(x)− x (3)

where F(x) = 0 is the identity map, and F(x) is the residual.
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Residual networks provide two solutions to mitigate the issue of declining model
performance: identity mapping and residual mapping. Identity mapping corresponds to
the straight line depicted in Figure 2, whereas residual mapping relates to the residual part.
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F(x) denotes the network mapping before summation, while H(x) represents the network
mapping from input to model post-summarization. The integration of the residual module
enhances the model’s sensitivity to output fluctuations, augments its ability to adapt to the
weight, and culminates in superior results.

From a mathematical point of view, the residual block can be expressed as:

xl+1 = xl + F(xl , Wl) (4)

Through recursion, the expression of L characteristics of any deep unit in the network
can be obtained:

xL = xl +
L−1

∑
i=l

F(xi, Wi) (5)

That is, W is the weight in convolution calculation, and the characteristics of any deep
unit L can be expressed as the characteristics xl of shallow unit l plus a residual function in

the form of
L−1
∑

i=1
F, which indicates that both (L and l) have residual characteristics.

Similarly, for unit L of any depth, its characteristic is:

xL = x0 +
L−1

∑
i=0

F(xi, Wi) (6)

which is the sum of the output of all previous residual functions and is added to x0 to
obtain the final sum.

The loss function ε with respect to the gradient of xl can be expressed using the
back-propagation derivative chain propagation rule.

∂ε
∂xl

= ∂ε
∂xL

∂xL
∂xl

= ∂ε
∂xL

(
1 + ∂

∂xl

L−1
∑
i=l

F(xi, Wi)

)
= ∂ε

∂xL
+ ∂ε

∂xL
∂

∂xl

L−1
∑
i=l

F(xi, Wi)
(7)

The above formula reflects two attributes of the residual networks:

(1) In the complete training process of the model, the value of ∂
∂xl

L−1
∑
i=l

F(xi, Wi) will not

always be −1, which explains why the gradient in the residual networks does not
disappear;

(2) ∂ε
∂xL

shows that the gradient of layer L in the model can be directly transferred to any

shallow layer l without passing through the weight layer, while ∂ε
∂xL

(
∂

∂xl

L−1
∑
i=l

F(xi, Wi)

)
is transferred through the weight layer.

By examining the forward and backward propagation mechanisms of residual net-
works, it has been concluded that if a residual block meets the two aforementioned con-
ditions, then information can be efficiently transmitted between the shallow and deep
layers, thus making these two conditions sufficient for achieving successful deep model in
residual networks.

From the perspective of necessity, it is assumed that:

h(xl) = λl xl (8)

where λ is the coefficient of identity map in the residual network
At this time, the residual block can be expressed as:

xl+1 = λl xl + F(xl , Wl) (9)
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For deeper L layer, the general expression of residual block can be obtained by substi-
tuting Formula (8) into Formula (6):

xL =

(
L−1

∏
i=l

λi

)
xl +

L−1

∑
i=l

F(xi, Wi) (10)

In order to simplify the problem, this study only considers the left half of the Formula (10):

xL =

(
L−1
∏
i=l

λi

)
xl , the loss function ε calculates the partial differential of x1 to obtain:

∂ε

∂xl
=

∂ε

∂xL

((
L−1

∏
i=l

λi

)
+

∂

∂xl

∧
F(xi, Wi)

)
(11)

The aforementioned formula presents two important attributes.
Specifically, when λ > 1, the gradient is likely to experience an explosion, while when

λ < 1, the gradient is prone to instantaneously change to 0.
The latter situation can significantly hinder the reverse transfer of data in the residual

networks, thus adversely affecting the training process. To mitigate the impact of λ on the
model, it is recommended to set its value to 1.

The fundamental idea underlying the construction of residual networks is to establish
the residual between the input and output, which enables the networks to effectively
integrate information. The residual block depicted in Figure 3a encompasses several typ-
ical convolutions and direct skip connections that link input to output. This strategy of
incorporating skip connections into the model constitutes a structure-based normaliza-
tion technique.
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In addition to the representation of the residual block described by Formulas (4) and (9),
an alternative expression is also possible:

xl+1 = σ( f (xl , Wl) + xl) (12)

In the residual networks, the residual block can be expressed as follows: given an
input xl, f (•) represents the joint operation of several convolution layers in Figure 3, where
Wl represents all the parameters contained in f (•), and σ(•)represents a nonlinear operation.
The activation function used in residual networks is ReLU, which sets every element less
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than 0 in the input to 0. Since σ(•) is a nonlinear function, f(xl, Wl) + xl is not always greater
than 0. Therefore, the following inequality can be derived:

σ( f (xl , Wl) + xl) 6= σ( f (xl , Wl)) + σ(xl) (13)

The above formula indicates that the nonlinearity introduced by the residual block is
responsible for the inadequate learning of the difference between its input xl and output
xl+1 – xl. Similarly, a residual network composed of multiple residual blocks may encounter
difficulties in effectively learning the difference between the input x0 and the output xL of
the entire network.

This study investigates the impact of the nonlinear transformation in residual networks
on the model’s performance, with a focus on normalization (BN) and activation function.
To address this issue, the paper proposes residual blocks with different structures based
on the blocks presented in this work and evaluates their performance. Four residual
network structures, shown in Figure 3, are utilized, and experiments are conducted to
verify their performance differences. Specifically, Figure 3b places batch normalization after
the addition operation, which speeds up model training and reduces the risk of gradient
vanishing but may cause data distortion and negatively affect model accuracy. Figure 3c
eliminates the ReLU layer behind the conventional residual block to avoid altering the
identity transformation of the data. Finally, Figure 3d incorporates ReLU into the skip
connection to mitigate the semantic information loss caused by the nonlinear transformation
of the convolution layer to the image, thus enhancing model accuracy.

2.3. Overall Structure of Hybrid Model

The Cornell Grasp Dataset is used both as the training and testing set in this paper. The
dataset contains labels representing valid grasping positions in the form of grasp rectangles,
as shown in Figure 4. This dataset is a crucial resource for implementing deep learning-
based autonomous robot grasping and contributes significantly to the development of this
field. Many advanced vision-based robot grasping models have been trained and tested us-
ing this dataset. To increase the number of grasping samples, data augmentation techniques
are utilized, resulting in 1035 images and 240 objects. The number of grasping samples is
increased to 51,000 via random cropping, scaling, and rotation. Data augmentation plays a
vital role in enhancing the prediction performance and generalization ability of the model.
The paper sets the training-to-testing ratio to 8:2 to ensure adequate training.
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Currently, a limited number of researchers utilize residual networks for grasp strategy
prediction [21–28], but their research differs from the content of this paper. Table 1 presents
recent papers on robot grasping research based on ResNet and reveals that they are all
based on existing models and do not involve improving the core structure of ResNet. This
paper analyzes the impact of different sizes and numbers of convolutional kernels on CNN
performance and constructs two different CNN structures. It also analyzes the principle of
residual blocks, which is the skip connection, and designs four different architectures of
residual blocks. Finally, it constructs a mixed model of multiple CNN and ResNet structures
to conduct research on robot grasping strategies.
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Table 1. Object grasp papers.

Year Author Model Model Accuracy (%) Experimental Accuracy (%)

2017 Ludovic Trottier [21] C-ResNet 89.15 -
2021 Mingshuai Dong [22] MASK-GD 96.8 -
2020 Sulabh Kumra [25] GRCNN 95.4 93
2022 Maomao Shan [26] CSP-ResNet 96.8 95.6
2022 Juntong Yun [24] ResNet 90.67 87.33
2021 Zheyuan Hu [27] TC-ResNet 96.5 -
2023 Sheng Yu [28] CGNet 92.9 91.7
2022 Li Shaobo [23] C-ResNet 94.5 -

This paper presents a deep learning model that integrates convolution structure and
residual block to generate a rectangle grasp strategy. The model consists of general convo-
lution, residual, and inverse convolution layers, as shown in Figure 5. These layers extract
semantic and policy information and perform up-sampling. Previous performance analysis
has shown that different CNN and ResNet structures produce varying results. Therefore,
this study combines these structures to filter and achieve an accurate grasp strategy.
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3. Results

The convolution and residual modules constitute the central framework of the network,
and the efficacy of their structures significantly affects the model’s performance. This
section aims to optimize the model based on the architecture proposed in Section 2. Table 2
outlines the precise structure of the model proposed in this study, and the performance
evaluation is conducted by incorporating the enhanced CNN and ResNet into diverse
model configurations. Due to the imprudent nonlinear transformation in the residual
structure depicted in Figure 3b, the accuracy of the model is prone to decrease. As a result,
the B and F structures in Table 2 are disregarded.
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Table 2. The structure of model.

A
Conv 9 × 9 Conv 4 × 4 Conv 4 × 4
BatchNorm BatchNorm BatchNorm ResNet (a)

ReLU ReLU ReLU

B
Conv 9 × 9 Conv 4 × 4 Conv 4 × 4
BatchNorm BatchNorm BatchNorm ResNet (b)

ReLU ReLU ReLU

C
Conv 9 × 9 Conv 4 × 4 Conv 4 × 4
BatchNorm BatchNorm BatchNorm ResNet (c)

ReLU ReLU ReLU

D
Conv 9 × 9 Conv 4 × 4 Conv 4 × 4
BatchNorm BatchNorm BatchNorm ResNet (d)

ReLU ReLU ReLU

E
Conv 5 × 5 Conv 3 × 3 Conv 5 × 5 Conv 3 × 3 Conv 3 × 3
BatchNorm BatchNorm BatchNorm BatchNorm BatchNorm ResNet (a)

ReLU ReLU ReLU ReLU ReLU

F
Conv 5 × 5 Conv 3 × 3 Conv 5 × 5 Conv 3 × 3 Conv 3 × 3
BatchNorm BatchNorm BatchNorm BatchNorm BatchNorm ResNet (b)

ReLU ReLU ReLU ReLU ReLU

G
Conv 5 × 5 Conv 3 × 3 Conv 5 × 5 Conv 3 × 3 Conv 3 × 3
BatchNorm BatchNorm BatchNorm BatchNorm BatchNorm ResNet (c)

ReLU ReLU ReLU ReLU ReLU

H
Conv 5 × 5 Conv 3 × 3 Conv 5 × 5 Conv 3 × 3 Conv 3 × 3
BatchNorm BatchNorm BatchNorm BatchNorm BatchNorm ResNet (d)

ReLU ReLU ReLU ReLU ReLU

3.1. Experimental Environment

The training environment is the 64 bit of Ubuntu 18.04, which adopts the pytorch deep
learning framework. The hardware configuration is as follows: core i9-9900x, RAM 128 GB,
NVIDIA GeForce RTX2080Ti*2.

3.2. Combination of Large Convolution Kernel and Residual Networks

A in Table 2 presents the model framework proposed by Sulabh Kumra et al. [9]. The
model inputs an N-dimensional image and outputs three pixel-level grasp options, namely
grasp quality, grasp angle, and grasp width. The model achieves this output through a
process that involves passing the image through three convolution layers and five residual
layers, followed by a convolution transposition layer that generates four images: grasp
quality score, cos and sin values of the grasp angle, and grasp width. The grasp angle range
is subsequently converged to [−π/2, +π/2] by fusing the cos and sin values. The model
achieves an accuracy of 97.7% and 96.6% for image and object, respectively. However, the
model’s performance in IOU training and prediction fluctuates significantly, indicating that
its stability is poor. As IOU is crucial to the rationality of the grasp strategy, the model’s
weak generalization performance is mostly due to over-fitting, as revealed by the loss and
predicted value of the model on the test set that fluctuate greatly, while the loss curve on
the test set rebounds slightly with increasing number of iterations. Figure 6a illustrates
the training and prediction results of the model. This figure is the previous work of the
authors of this paper [23], and this method only combines the large convolution kernel
and classical residual. In this section the comprehensive performance of CNN and residual
networks with different structures and the deployment of the optimal model on robot for
grasping experiments will be presented.
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To alleviate over-fitting, this paper proposes using dropouts to enhance the model’s
generalization performance. The analysis of Figure 6b suggests that while dropout has
some effect on stability and accuracy, its impact is limited. This implies that the model’s
structure itself may be flawed and cannot be improved solely through the implementation
of dropout.

The activation function is crucial in deep learning to stimulate hidden nodes and
introduce nonlinear features. ReLU is a popular activation function, but its problem of a
negative value of 0 reduces model performance. This study aims to improve the activation
layer to enhance performance. Figure 7 illustrates the loss and prediction curve under the
model structure in C in Table 2. Removing the ReLU layer leads to a well-suppressed loss
curve fluctuation on the test set, indicating better convergence towards the optimal value.
Reducing nonlinear transformation at a specific position in the residual network improves
model stability. However, the IOU prediction curve shows that the test set model stability
still slightly improves but fluctuates significantly, with a slightly lower accuracy rate than
Figure 6b, due to the reduced semantic information extraction ability after reducing the
nonlinear change structure.
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The skip connection is the central aspect of residual networks, effectively solving the
problem of information loss due to the convolution layer’s nonlinear transformation of
the image. To further enhance residual networks, this study proposes advancing the skip
connection’s position to the ReLU layer, as shown in Figure 3d. This modification helps
the neural network preserve more image information and reduces the risk of overfitting.
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Figure 8 illustrates the improved model’s loss and performance curve, demonstrating
reduced model volatility after adjusting the skip connection to the ReLU layer. However,
the model’s performance on the test set remains poor due to the nonlinear transformation
position’s significant impact on semantic segmentation accuracy and stability. Therefore,
further improvements are necessary to achieve both objectives.
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Our research shows that the improved residual module significantly reduces the
model’s performance fluctuation on the test set. However, beyond a certain number of
iterations, the model’s loss value and accuracy no longer improve due to the model’s insuf-
ficient semantic information extraction ability. To address this issue, we propose improving
the CNN connected to the residual networks to enhance the model’s performance. Figure 5
illustrates the convolution structure divided into 9 × 9–4 × 4–4 × 4 and 5 × 5–3 × 3–3
× 3–3 × 3–3 × 3. While the 9 × 9–4 × 4–4 × 4 convolution structure used previously
increased the receptive field and extracted more information to obtain better features,
it also resulted in higher computational requirements and was not conducive to deeper
model structures. Previous studies have shown that using several smaller size convolution
kernels achieves better performance [29,30], such as the VGG model. Therefore, this paper
proposes changing the model’s convolution kernel from a three-layer 9 × 9–4 × 4–4 × 4 to
a five-layer 5× 5–3× 3–3× 3–3× 3–3× 3–3× 3 structure to improve the model’s semantic
information extraction ability while alleviating the residual networks’ shortcomings. To
ensure the study’s integrity and systematicness, this paper proposes three improved model
structures of convolution layers (EGH in Table 2).

3.3. Combination of Small Convolution Kernel and Residual Networks

Figure 9 illustrates the training and test curves of E in Table 2. Reducing the convo-
lution kernel to 5 × 5–3 × 3–3 × 3–3 × 3–3 × 3 from 9 × 9–4 × 4–4 × 4 improves the
stability of both loss and predicted values. Increasing the convolution layer allows the
model to obtain more semantic information, thereby enhancing feature fitting. Figure 10
shows the training and test curves of G in Table 2, which exhibits stable but poor accuracy
due to the reduced nonlinear transformation. A five-layer CNN before the residual layer
alleviates accuracy problems caused by insufficient information extraction. Compared
with Figure 8, the model in G in Table 2 has lower loss values, indicating enhanced fitting
ability. Although the fitting ability of the G structure is slightly lower than that of E, the
generalization ability has improved, leading to good performance in the test set.
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To obtain the H structure in Table 2, we combine the convolution module of 5 × 5–3 ×
3–3 × 3–3 × 3–3 × 3 with the structure in Figure 3d to form a new residual network. This
network advances the skip connection to the end of the ReLU, integrating more information
before the convolution layer and completing the prediction of the grasp strategy after
further information extraction through the convolution layer. Figure 11 illustrates the loss
and prediction curve of the H structure. The model’s accuracy continues to improve steadily
with the increase of iterations after advancing the ReLU layer. The loss value steadily
decreases, indicating significantly improved fitting ability. The prediction curve shows
that the model has excellent stable and strong generalization performance with gradually
improving accuracy as the number of iterations increases without major fluctuations.
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3.4. Further Optimization of Parameters

The integration of CNN and residual networks has significantly improved stability and
accuracy through the improvement of the model structure. In this study, we optimize the
model hyperparameters based on the optimal architecture (H in Table 2). Hyperparameters
can be manually adjusted before or during training and are divided into three types:
network parameters, optimization parameters, and normalization parameters. Since the
network parameters have been optimized, we focus on optimizing the optimization and
normalization parameters. Increasing the batch size can reduce training time and improve
stability, but it can also reduce the model’s generalization ability if it exceeds the critical
value. If the batch size is too small, it can result in lengthy and inefficient training. Assuming
a batch size of 1, each training iteration involves a single datapoint. When dealing with
a large dataset (e.g.: 100,000 pieces of data), the model needs to be fed with data 100,000
times. Completing a full pass through the data would take a significant amount of time,
resulting in low training efficiency. Additionally, a small batch size can make it difficult for
the model to converge, leading to underfitting. In the case of batch size 1, training with
individual data introduces significant parameter variations due to differences between
individual instances or the influence of outliers. This high randomness in gradients at each
layer requires a considerable amount of time and makes it challenging for the model to
converge. Therefore, increasing the batch size moderately greatly benefits model training,
but it also imposes higher hardware requirements. A larger batch size reduces training time
while requiring more memory capacity. With the same number of epochs, a larger batch
size reduces the number of batches needed, resulting in faster processing speed and shorter
training time. However, if the batch size is too large, for instance, batch size = 100,000,
attempting to feed all 100,000 data into the model at once may cause memory overflow.
Moreover, while a larger batch size enhances stability, it may also lead to a decline in the
model’s generalization ability. Within a certain range, increasing the batch size promotes
convergence stability, but as the batch size continues to increase, the model’s generalization
performance tends to deteriorate. If the batch size is set to the maximum value (equal
to the total number of samples), each parameter update would be based on the same set
of samples, resulting in a nearly deterministic descent direction. This scenario would
adversely impact the model’s generalization performance.

Therefore, we increase the batch size from 32 to 64 after referring to relevant pa-
pers [31,32]. Figure 12 shows the loss and performance prediction curve of the model after
adjusting the parameters. The model’s stability does not change significantly after the
batch size increases. However, the loss curve on the test set increases instead of decreasing
with the increase of iterations, and the prediction performance slightly decreases. This is



Micromachines 2023, 14, 1392 14 of 23

because increasing the batch size alone increases the risk of over-fitting and reduces the
generalization of the model, which is not conducive to improving model performance.
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Based on previous research and relevant papers [33,34], this study modifies the op-
timization algorithm from SGD (stochastic gradient descent—SGD is a gradient-based
optimization algorithm used to update the parameters of deep neural networks) to Adam
(Adam uses momentum and adaptive learning rate to accelerate the convergence speed)
while maintaining the same batch size. The major drawback of SGD is its slow convergence
and susceptibility to local optima, which can significantly affect model performance. To
address these issues, Adam, an integrated optimization algorithm, is proposed. First-
order momentum is added to SGD to obtain SGD-M, while AdaGrad and AdaDelta add
second-order momentum to SGD. Adam is developed by combining both first and second-
order momentum.

The first-order momentum of SGD is

mt = β1 ×mt−1 + (1− β1)× gt (14)

and the second-order momentum of AdaDelta is

Vt = β2 ×Vt−1 + (1− β2)× g2
t (15)

The two most common hyperparameters (β1 and β2) in the above formula, and the former
controls the first-order momentum and the latter controls the second-order momentum.

Figure 13 illustrates the loss and performance curve of the model following the opti-
mizer modification. Despite a slight rebound in the loss value, the model demonstrated
outstanding prediction performance on the test set. These findings indicate that Adam
exhibits favorable optimization performance, attributable to its ability to merge the benefits
of Adarad and RMSprop when dealing with sparse gradients and non-stationary objects.
Furthermore, Adam computes distinct adaptive learning rates for each parameter, facili-
tating faster iterations at the initial training stages, followed by a gradual reduction in the
learning rate as the optimal value is approached, thereby enhancing the model’s stability.
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4. Discussion
4.1. Model Prediction Results

The previous sections discussed various improvements and optimizations that have
significantly enhanced the stability and accuracy of the model. This section aims to provide
an objective and intuitive evaluation of the model’s performance, including stability and
visualization. Table 3 presents a detailed overview of the performance of hybrid networks
with different structures, indicating that the model’s overall performance steadily improves
with each epoch. An epoch refers to each complete cycle of forward and back propagation of
the model for all data during the training process. The model’s fitting ability to the training
set gradually improves with an increase in epoch, indicating continuous performance
improvement. However, exceeding a certain epoch value can lead to over-fitting, causing a
decline in generalization performance. The specific epoch value needs to be determined
based on comprehensive consideration of the model’s complexity and the dataset size. In
this paper, an epoch value of 200 was selected after conducting several experiments.

Table 3. Performance comparison under different structures.

Epoch
Method (%) 944 +

ResNet (a)
944 +

ResNet (c)
944 +

ResNet (d)
53,333 +

ResNet (a)
53,333 +

ResNet (c)
53,333 +

ResNet (d)
Adam—SGD,
Epoch: 32–64

10 89.89 88.70 80.41 88.54 89.59 88.64 79.78
20 89.89 90.87 86.67 91.60 93.45 95.42 83.15
30 91.01 89.11 85.34 93.24 91.96 94.06 86.64
40 86.52 91.92 84.97 92.05 91.95 95.11 88.76
50 94.38 92.00 85.41 92.37 91.72 95.15 91.01
60 83.15 90.60 85.09 91.84 92.39 94.67 92.13
70 93.26 92.80 85.73 91.52 92.69 94.46 94.36
80 94.38 91.50 87.02 92.35 92.28 94.61 95.03
90 95.51 90.52 87.09 92.37 92.26 95.18 95.45

100 88.76 90.76 87.63 92.27 91.63 95.67 95.68
110 92.13 91.08 87.95 91.00 92.06 95.32 95.47
120 92.13 90.69 88.20 90.48 93.02 95.81 95.5
130 93.26 91.80 88.64 91.37 92.99 95.64 95.5
140 89.89 93.97 89.30 92.61 91.92 95.51 96.52
150 88.76 91.67 88.12 92.81 92.34 95.55 96.63
160 92.13 91.57 87.14 92.59 92.55 96.28 97.43
170 88.76 92.29 87.12 92.07 93.36 96.44 97.75
180 95.51 91.22 87.63 92.08 92.20 95.65 98
190 94.38 90.39 87.36 92.45 91.41 94.82 98.32
200 89.89 91.82 86.81 93.09 93.25 93.67 98.5

To ensure a systematic and comprehensive study, this paper further enhances the model’s
performance by optimizing hyperparameters and conducting depth optimization regarding
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batch size and optimizer. The analysis of the data presented in Table 3 indicates a significant
improvement in the model’s prediction performance following parameter optimization.

Table 3 demonstrates an improvement in the model’s performance through the opti-
mization and adjustment of the number and size of convolution kernels and the location of
nonlinear transformations. Initially, the model’s convolution kernel was adjusted from a
9 × 9–4 × 4–4 × 4 to a 5 × 5–3 × 3–3 × 3–3 × 3–3 × 3 structure. The smaller convolution
kernels increase the number of layers of the model, which improves the nonlinear expres-
sion ability. Additionally, small convolution kernels have more convolution times, which
means stronger feature extraction capabilities. Moving the skip connection forward allows
the model to comprehensively utilize shallow layer and low complexity features, resulting
in a smooth decision function with better generalization performance. Therefore, the H
structure in Table 2 has optimal performance.

Figure 14 presents the results of the predictions, displaying successful and failed grasp
strategies. The model successfully predicts appropriate grasp strategies for irregular and
circular objects. The center point represents the central coordinate of the grasp strategy, the
short side refers to the gripper side, the long side indicates the gripper’s travel distance,
and the rectangle’s angle represents the gripper’s grasp angle. The results reveal that a
reasonable grasp angle has a significant impact on the success rate, and failure strategies
are primarily due to the following reasons: First, the unreasonable position of the grasp
is one of the important reasons for the grasp’s failure (such as stapler and high-heeled
shoes). Secondly, inappropriate grasping angles can also lead to grasping failure (such as
toothbrushes and goggles).

Micromachines 2023, 14, x FOR PEER REVIEW 17 of 24 
 

 

 
Figure 14. Data visualization results: the first row is the success of prediction, and the second row 
is the failure of prediction. 

Table 4 provides a detailed breakdown of the prediction performance of various 
models, facilitating comparison between the proposed model and previous research. The 
results reveal that some existing research achieves high algorithmic accuracy but lacks 
application verification or does not translate well to actual grasp accuracy. For instance, 
the full convolution network [36] of Elias De Coninck et al. achieves impressive theoretical 
prediction accuracy but experiences a significant drop in success rate during actual object 
grasping due to the study’s use of synchronous motion between the camera and manipu-
lator, which increases the difficulty of image processing. On the other hand, the emergence 
of semantic segmentation algorithms has enabled researchers to integrate them into grasp 
strategy generation. In 2021, Mingshuai Dong et al. [22] propose a two-step grasp strategy 
prediction model that utilizes a residual networks as the backbone. This model first seg-
ments the object to be grasped from the image and subsequently predicts the grasp strat-
egy accurately based on the segmentation results. Although this approach is generaliza-
ble, it is yet to be verified through real-world applications. In the field of machine vision, 
object detection and semantic segmentation are the two primary research areas. However, 
object detection relies on fitting processes based on label data and cannot learn contour 
features, which significantly impacts grasp success. This provides an explanation for the 
observed gap between model prediction accuracy and actual grasp accuracy. 

Table 4. Performance comparison between different models.  

Author Year Representation Algorithm 
Accuracy (%) 

Speed (ms) 
Model Experiment 

Elias De Coninck [36] 2020 rectangle — 99 90  
Mingshuai Dong [22] 2021 rectangle MASK-GD 96.5 — 9.43 

Eduardo Godinho Ribeiro [37] 2021 rectangle single-stage regression 90.9 85.7 8.51 
François Lévesque [38] 2018 rectangle — — 84 — 

Weiwei Shang [39] 2020 rectangle CNN + MDN — 95 — 
David Liu [40] 2023 rectangle Digital Twin (DT)-CycleGAN 90 85 — 

Hamidreza Kasaei [41] 2023 rectangle DL 92.6 90 — 
Ours 2023 rectangle C-ResNet 98.5 — 8.78 

4.2. Application Validation 
The aim of the present study is to deploy the grasping strategy prediction model to 

the robot control system to achieve the object grasping task. This deployment involves 
communication between the computer and the robot, and various issues such as coordi-
nate and pixel point conversion. To provide empirical evidence for the theoretical results 

Figure 14. Data visualization results: the first row is the success of prediction, and the second row is
the failure of prediction.

Table 4 provides a detailed breakdown of the prediction performance of various
models, facilitating comparison between the proposed model and previous research. The
results reveal that some existing research achieves high algorithmic accuracy but lacks
application verification or does not translate well to actual grasp accuracy. For instance,
the full convolution network [35] of Elias De Coninck et al. achieves impressive theoret-
ical prediction accuracy but experiences a significant drop in success rate during actual
object grasping due to the study’s use of synchronous motion between the camera and
manipulator, which increases the difficulty of image processing. On the other hand, the
emergence of semantic segmentation algorithms has enabled researchers to integrate them
into grasp strategy generation. In 2021, Mingshuai Dong et al. [22] propose a two-step
grasp strategy prediction model that utilizes a residual networks as the backbone. This
model first segments the object to be grasped from the image and subsequently predicts
the grasp strategy accurately based on the segmentation results. Although this approach is
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generalizable, it is yet to be verified through real-world applications. In the field of machine
vision, object detection and semantic segmentation are the two primary research areas.
However, object detection relies on fitting processes based on label data and cannot learn
contour features, which significantly impacts grasp success. This provides an explanation
for the observed gap between model prediction accuracy and actual grasp accuracy.

Table 4. Performance comparison between different models.

Author Year Representation Algorithm
Accuracy (%)

Speed (ms)
Model Experiment

Elias De Coninck [35] 2020 rectangle — 99 90
Mingshuai Dong [22] 2021 rectangle MASK-GD 96.5 — 9.43

Eduardo Godinho
Ribeiro [36] 2021 rectangle single-stage

regression 90.9 85.7 8.51

François Lévesque [37] 2018 rectangle — — 84 —
Weiwei Shang [38] 2020 rectangle CNN + MDN — 95 —

David Liu [39] 2023 rectangle Digital Twin
(DT)-CycleGAN 90 85 —

Hamidreza Kasaei [40] 2023 rectangle DL 92.6 90 —
Ours 2023 rectangle C-ResNet 98.5 — 8.78

4.2. Application Validation

The aim of the present study is to deploy the grasping strategy prediction model to
the robot control system to achieve the object grasping task. This deployment involves
communication between the computer and the robot, and various issues such as coordinate
and pixel point conversion. To provide empirical evidence for the theoretical results of
this paper and promote the development of the robot grasping field, this section examines
multi-object grasping using the open source robot operate system (ROS) for robot control.
For this purpose, the Baxter robot produced by Rethink Robotics is employed as the
verification platform. The Baxter robot’s joints integrate elastic brakes and have springs
between the motor/transmission device and the actuator. This configuration enables real-
time monitoring of external forces and enables it to work alongside humans in a practical
environment. Table 5 presents the specific parameters of the Baxter robot used in this study.

Table 5. Baxter robot parameters.

Joint Maximum Speed
(Radian/s) Bending Stiffness Peak Moment

S0 2.0 843 Nm/rad 50 Nm
S1 2.0 843 Nm/rad 50 Nm
E0 2.0 843 Nm/rad 50 Nm
E1 2.0 843 Nm/rad 50 Nm
W0 4.0 250 Nm/rad 15 Nm
W1 4.0 250 Nm/rad 15 Nm
W2 4.0 250 Nm/rad 15 Nm

Total weight (kg) 135.2 Maximum power (W) 720

Maximum grasp force (N) 35 Maximum load
(including gripper) (kg) 2.2

Position accuracy (mm) ±5 mm DOF 7 × 2

Operate system ROS

Robots are extensively used in industrial settings, but there are few instances of
collaborative work between humans and robots. This is because mainstream manipulators
lack cooperative capabilities, and human–machine collaborations pose a potential danger
to human safety. Figure 15 illustrates the overall structure of the Baxter robot, which
features two 7-DOF mechanical arms on the left and right. The Baxter robot facilitates
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the deployment of models and robot motion control in this study by supporting the open-
source SDK based on Linux. The robot also comes equipped with two two-finger grippers
with varying widths, which greatly aid in object grasping.
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Figure 16 illustrates the detailed process of the actual grasping procedure. Figure 16
illustrates the detailed process of the actual grasping procedure. The main phases are
divided into the following parts. (1) Deployment of the trained grasp strategy model to the
ROS platform. Firstly, a workspace is created and compiled, followed by the installation of
the camera driver. Next, the model is placed in a specified path, and finally, the deployment
is completed by configuring the model runtime environment and adding execution permis-
sions. (2) The camera obtains images of the object for grasping. The images are stored in
a designated directory, and the model reads these images got by the camera, performing
processing and prediction on them. (3) The model predicts the optimal grasp strategy and
executes it. Based on the images acquired by the camera, the model generates multiple
grasp strategies and ranks them according to a scoring system, ultimately selecting the best
strategy as the final grasp strategy. (4) The localization of the object is achieved through
ROS. Firstly, the positions of the camera, object, and robotic arm are determined using
hand–eye calibration and camera calibration, establishing the correspondence between 2D
and 3D coordinates. Then, utilizing the OpenCV module within ROS, the coordinates of
the central pixel point are determined. (5) The robotic arm performs the grasping action.
This paper utilizes the Baxter robot, which is supported by a Linux-based open-source
control system. Hence, the motion control of the robotic arm is implemented using the
MoveIt module within ROS. Finally, the robot receives the grasp command, enabling the
robot arm to approach the object and complete the grasping operation.
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4.3. Result Analysis

In this investigation, 15 distinct objects were chosen for the purpose of conducting
grasp experiments. These objects include both regular and irregular items that are com-
monly encountered in daily life. To verify the generalization ability of the model, grasp
experiments were conducted on various types of objects. Figure 17 illustrates instances of
successful grasping, where the upper row presents the narrow edge gripper, and the lower
row represents the wide edge gripper. It should be noted that the two-finger gripper has
unique characteristics, such that blindly increasing the contact area is not a viable strategy
for improving the success rate when the object shape is irregular. This is because it would
not only fail to increase the success rate, but it would also compromise the stability of
grasping. Therefore, when the object shape is complex, this study employs the narrow edge
gripper to perform accurate grasping, which Improves the success rate. Each object was
grasped 10 times, resulting in an overall success rate of 90%. The success rate for common
objects was 93%, whereas for uncommon objects, it was 84%. On the other hand, this paper
analyzes the success rates of the dexterous hands in grasping objects of different softness,
hardness, and sizes. Firstly, due to the significant deformations observed in soft objects
compared to almost negligible deformations in hard objects, the grasping success rate for
hard objects (95%) is noticeably higher than that for soft objects (87%). Drawing from
human grasping experiences, it is widely known that smaller objects are generally more
challenging to grasp than larger ones. This observation aligns with the results obtained
in this study, where the grasping success rate for large objects was 94%, while for small
objects, it was 85%.
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Figure 17. Schematic image of successful grasping: the upper row shows the narrow gripper; the
lower row shows the wide gripper. (a) Example of successful grasp of narrow griper; (b) Example of
successful grasp of wide gripper.

Table 6 presents a detailed and objective comparison of the performance of different
algorithms in actual grasping. The results indicate a significant difference in performance
among the algorithms, primarily attributable to the hardware capabilities of the manipula-
tor. For instance, the four-finger gripper used by Zhao Zengzhi et al. [41] shows a markedly
higher success rate compared to other types of grippers. This is due to its multi-joint
design, which offers excellent encapsulation but slower grasping speed. Regarding overall
accuracy, the proposed model’s performance is not optimal. This is because other models
generally predict and verify the grasping of common objects with established shape rules.
However, the proposed model is tested not only on typical life objects but also on irregularly
shaped objects, leading to a reduced grasp success rate. Observing the model’s success rate
separately on common objects shows that it achieves a leading success rate. However, on
uncommon objects, the success rate is significantly lower due to the difficulty of grasping
such objects.

Table 6. Comparison of grasp experiment results.

Method Common Object
Accuracy (%)

Uncommon Object
Accuracy (%) Overall Accuracy (%) Number of Fingers

Model-based object
grasp [37] - - 84.1 (673/800) Rectangle (Two)

Mixed density grasp
prediction network [41] - - 95 (57/60) Rectangle (Four)

Demo-based object
grasp [42] - - 91.34 Rectangle (Two)

Autonomous grasp [36] - - 85.7 Rectangle (Two)
David Liu [39] - - 85 Rectangle (Two)

Hamidreza Kasaei [40] - - 90 Rectangle (Two)

Ours_rectangle_no_sponge 89 (89/100) 78 (39/50) 85.3 Rectangle (Two)
Ours_rectangle_with_sponge 93 (93/100) 84 (42/50) 90 Rectangle (Two)

5. Conclusions

Accurately grasping objects is a crucial precondition for the wide-scale deployment
of robots, and therefore represents a prominent research direction for scientists around
the world. This paper proposes a semantic segmentation model that leverages CNNs
and residual networks to investigate the fundamental problem of object grasping, namely,
grasp strategy. The theoretical analysis conducted in this study provides a foundation
for enhancing CNN and residual networks, constructing mixed models with different
structures, and evaluating their performance.

The experimental results indicate that the size and number of convolution kernels, as
well as the number and connection position of nonlinear transformations in the residual
networks, significantly affect the model’s performance. Specifically, small convolution
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kernels, deep networks, and skip connections integrated into the activation function, are
conducive to improving the model’s stability. Moreover, changing the optimization function
from SGD to Adam led to a significant improvement in model performance.

The proposed model achieved 98.5% prediction accuracy in the test set and a 90%
grasp success rate on the robot. These results demonstrate the effectiveness of the proposed
approach in addressing the problem of object grasping. The optimal architecture achieved
excellent performance in both the training and testing sets, indicating its potential for
practical application in real-world scenarios.

This research expands the field of robot grasping and broadens its application by
providing a novel approach for addressing the problem of grasp strategy. The proposed
model leverages the strengths of both CNNs and residual networks, which are widely used
in computer vision and deep learning applications. The model’s accuracy and stability have
been enhanced through theoretical analysis and practical experimentation, demonstrating
its potential for widespread application.

In conclusion, this paper proposes a semantic segmentation model that leverages
CNNs and residual networks for object grasping strategy prediction. The model has been
evaluated on a real robot platform, demonstrating excellent performance in both accuracy
and stability. This research provides a valuable contribution to the field of robot grasping
and promotes the development of collaborative work between humans and robots. In
future work, this model could be further enhanced and applied in real-world scenarios to
address the challenges of object grasping.
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