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Abstract: This paper presents a new theoretical proposal for a surface plasmon resonance (SPR)
terahertz metamaterial absorber with five narrow absorption peaks. The overall structure comprises
a sandwich stack consisting of a gold bottom layer, a silica medium, and a single-layer patterned
graphene array on top. COMSOL simulation represents that the five absorption peaks under TE po-
larization are at f I = 1.99 THz (95.82%), f II = 6.00 THz (98.47%), f III = 7.37 THz (98.72%), f IV = 8.47 THz
(99.87%), and f V = 9.38 THz (97.20%), respectively, which is almost consistent with the absorption
performance under TM polarization. In contrast to noble metal absorbers, its absorption rates and
resonance frequencies can be dynamically regulated by controlling the Fermi level and relaxation time
of graphene. In addition, the device can maintain high absorptivity at 0~50◦ in TE polarization and
0~40◦ in TM polarization. The maximum refractive index sensitivity can reach SV = 1.75 THz/RIU,
and the maximum figure of merit (FOM) can reach FOMV = 12.774 RIU−1. In conclusion, our design
has the properties of dynamic tunability, polarization independence, wide-incident-angle absorp-
tion, and fine refractive index sensitivity. We believe that the device has potential applications in
photodetectors, active optoelectronic devices, sensors, and other related fields.

Keywords: terahertz; graphene; penta-band absorption; dynamic tunability; wide-angle absorption;
high figure of merit

1. Introduction

Terahertz (THz) waves constitute a distinctive subset within the electromagnetic spec-
trum, spanning a frequency range of 0.1~10 THz (1 THz = 1012 Hz). This exceptional
frequency band holds paramount significance across diverse domains, encompassing op-
tical sensing [1], communication technology [2], biodetection [3], and optical stealth [4].
Its appeal emanates from its notable attributes, including low energy consumption [5],
profound penetrability [6], and other commendable characteristics [7–9]. In practical appli-
cations, the meticulous regulation of terahertz wave parameters stands as an imperative
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pursuit. Among these parameters, the amplitude modulation of terahertz waves utiliz-
ing surface plasmon resonance (SPR) metamaterial absorbers constitutes an inherently
captivating research realm [10–12]. In various fields such as biochemical identification,
environmental toxin detection, and safety assessment, the resonant frequencies of most
biological molecules fall within the THz range, making THz absorbers more sensitive. They
can provide detailed information about the structure and dynamic behavior of biological
molecules, such as proteins, DNA, and cell membranes. In contrast, the frequency range
of visible-light absorbers and infrared absorbers cannot achieve the sensitivity of the THz
range. Moreover, THz absorbers operate at lower frequencies, which can prevent back-
ground and substrate absorption [13]. Furthermore, THz waves exhibit strong penetration
capabilities, allowing them to penetrate many non-metallic and non-aqueous biological
samples, such as cells and tissues. This enables non-destructive biological detection in
the THz range, without the need for special sample treatment or the addition of labeling
substances, avoiding detrimental effects on biological samples. Visible-light absorbers and
infrared absorbers, due to their shorter wavelengths, have poorer penetration capabilities
and typically require sample processing or the use of microscopy equipment for detection.
Additionally, THz radiation has no significant damaging effects on biological systems, as
it has low radiation energy and high biological safety. In contrast, visible-light absorbers
and infrared absorbers may cause thermal damage or chemical reactions in biological
systems under high-energy radiation. In summary, THz absorbers have a higher sensitivity,
a wider range of applications, and greater potential compared to visible-light and infrared
absorbers [14–16].

However, conventional configurations of metamaterial absorbers are beset by inher-
ent constraints. Once established, adaptability becomes a challenge. For example, some
notable references on the subject include metal absorbers [17,18], anisotropic plasmonic
metasurfaces [19], and lithography-free metasurface absorbers [20]. Fixed absorptivity
and resonance frequencies, accompanied by polarization dependencies and susceptibility
to incident angles, collectively confine their pragmatic versatility. Hence, there is a com-
pelling quest for a metamaterial absorber design capable of realizing tunable absorption
performance, polarization independence, resistance to variations in incident angles, and
exceptional sensing capabilities. In the pursuit of these goals, researchers have harnessed an
array of diverse metamaterials, encompassing noble metals [21], graphene [22], vanadium
dioxide [23], and Dirac semimetals [24]. Notably, graphene has risen to prominence as a
standout candidate, owing to its unparalleled electrical conductivity and carrier mobil-
ity [25]. This material engenders swift spectral responses spanning the entire terahertz
spectrum [26]. Employing geometric patterning, it incites robust localized surface plasmon
resonance (LSPR) [27], enabling the achievement of multiple super-absorption bands and
heightened absorption rates. Further enhancing its potential, the dynamic manipulation of
graphene’s Fermi energy level through applied voltage facilitates real-time adjustments to
the device’s absorption frequency and absorbance characteristics [28,29]. This distinctive
capability empowers graphene-based SPR metamaterial absorbers to achieve impeccable ab-
sorption at chosen resonant frequencies. This confluence of exceptional attributes positions
graphene-based SPR metamaterial absorbers as highly promising contenders for catalyzing
pioneering advancements in the manipulation and absorption of terahertz waves.

As for the field of narrowband graphene-based SPR metamaterial absorbers, numerous
designs have been reported. For instance, in 2019, Yan et al., explored the impact of Fermi
level variation on resonance frequency in a tunable single-mode absorber, achieving an
absorption rate of up to 99.99% at a Fermi level of 0 eV [30]. In 2022, Zhu et al., devised an
absorber exhibiting both single-band and dual-band absorption characteristics: a 99.30%
absorption rate was achieved at 16.0 THz; a 94.56% dual-band absorption rate was observed
at 11.4 THz; and a 99.11% absorption rate occurred at 26.2 THz [31]. In 2023, Lai et al.,
reported a tripe-band SPR metamaterial absorber based on open-ended prohibited sign
type mono-layer graphene, achieving three absorption peaks at 4.04 THz, 6.76 THz, and
9.40 THz [32]. Nonetheless, the majority of research has primarily concentrated on one to
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three absorption peaks in graphene SPR metamaterial absorbers. There remains a scarcity
of research reports concerning four or more absorption bands.

In this study, a novel THz graphene-based SPR metamaterial absorber is introduced.
Numerical simulations reveal the emergence of penta-band absorption peaks under TE
polarization at the frequencies f I = 1.99 THz (95.82%), f II = 6.00 THz (98.47%), f III = 7.37 THz
(98.72%), f IV = 8.47 THz (99.87%), and f V = 9.38 THz (97.20%). This absorption closely
aligns with that observed under TM polarization. Subsequently, a detailed analysis of the
absorptivity mechanism is carried out, employing transmission line theory and the equiva-
lent impedance matching theory, supplemented by the visualization of surface electric field
distribution diagrams. Moreover, the dynamic tunability of the absorber is showcased by
manipulating the Fermi level and relaxation time of the graphene metasurface. Addition-
ally, the influence of geometric parameters within the graphene pattern on absorptivity is
studied. The findings underscore the robustness of the graphene’s geometry, particularly
concerning its capacity to sustain resonance frequencies. Furthermore, the absorber’s
absorptivity is evaluated across a range of incident angles. The results suggest that the
device effectively sustains significant absorption efficiency for both TE polarization in the
range of 0◦ to 50◦ and TM polarization spanning from 0◦ to 40◦. Finally, the absorber’s
potential for refractive index sensing within environmental contexts is demonstrated.
The results suggest that the maximum sensitivity and FOM are SV = 1.75 THz/RIU and
FOMV = 12.774 RIU−1.

2. Structure and Design

The specific structure of the device is depicted in Figure 1, showcasing the detailed
geometric parameters of our design. All parameters are outlined in Table 1. In this study,
the graphene pattern comprises a Celtic cross and a ring divided into four sections. Gold
(Au) serves as a reflector to impede the transmission of terahertz waves. Consequently, the
thickness tm = 1 µm is significantly greater than the skin depth. The device is deposited
onto a silicon (Si) substrate.
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Figure 1. (a) A comprehensive view of the device; (b) a 3D representation of the unit structure; (c) a
top-down perspective of the graphene unit pattern, comprising a Celtic cross and a ring divided into
four sections.

Table 1. Geometric parameters of the device.

Name P td tm wx wy dx dy R A r1 r2

Value (µm) 9 4.2 1 2.2 2.26 8.7 8.75 3.02 0.43 3.27 r1·A
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When an electromagnetic wave impacts the device, the graphene surface becomes
excited, giving rise to the generation of surface plasmon waves (SPWs). If the frequency,
wave vector, and propagation direction of the electromagnetic wave align with those of
the SPW, the energy carried by photons is transferred to the free electrons of the SPW [33].
This phenomenon leads to surface plasmon resonance (SPR) [34]. Consequently, the device
effectively captures the energy of the electromagnetic wave. The absorption characteristics
of the device are characterized in the following manner [35]:

A = 1− R− T (1)

R = |S11|2 (2)

T = |S21|2 (3)

Here, R denotes reflectance, and T signifies transmittance. These quantities can
also be represented using the S parameters, specifically the reflectance rate S11 and the
transmittance rate S21. In order to achieve T = |S21|2 = 0, the thickness of the Au layer
must surpass its skin depth to inhibit the transmission of incident light. The skin depth
of Au is defined as the distance at which the amplitude of the electromagnetic wave has
attenuated to 1/e (approximately 37%) of its value at the surface [36]:

e−αδ = 1/e⇒ δ =
1
α
=

√
2

ωµσ
=

1√
π f µσ

(4)

In this study, for gold (Au), the values used are µ = µ0 = 4π × 10−7 N/A2 and
σ = 4.56 × 107 S/m. Consequently, the maximum skin depth within the frequency range of
f (1~10 THz) is calculated to be 7.4531 × 10−2 µm, which is much smaller than tm (1 µm).

In this context, transmission line theory and equivalent impedance matching theory
are employed to analyze the objective of achieving R = |S11|2 = 0. According to the
equivalent impedance matching theory, the equivalent impedance of the device is described
as follows [37]:

Zeff =

√√√√ (1 + S11)
2 − S2

21

(1− S11)
2 − S2

21

=
1 + S11

1− S11
(S21 = 0) (5)

Therefore, perfect absorption is achieved when S11 = 0, Zeff = 1, that is, when
Re(Zeff) = 1 and Im(Zeff) = 0. In fact, S11 and R can be expressed according to Equation (5)
as follows:

S11 =
Zeff − 1
Zeff + 1

=
Zeff · Z0 − Z0

Zeff · Z0 + Z0
=

Zin − Z0

Zin + Z0
(6)

R =

(
Zin − Z0

Zin + Z0

)2
(7)

Here, Zin = Zeff·Z0 signifies the input impedance of the graphene layer, where Z0
represents the intrinsic impedance of free space. When Zin equals Z0, indicating that the
input impedance of the absorber matches the intrinsic impedance of free space, perfect
absorption can be attained [38]. Equation (7) can be elucidated utilizing transmission
line theory.
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An equivalent circuit model can be established for the device [39], as shown in Figure 2.
The absorber is equivalent to an RLC series circuit. Since the gold layer only functions to
reflect the electromagnetic wave during absorption, it can be treated as a short circuit [40].
The impedance of the silicon dioxide layer and its input impedance are expressed as
follows [41]: 

Z1 = jZd tan(kdtd)
Zd =

√
µ0/ε0εd

kd = 2π f
√

ε0εdµ0

(8)
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The impedance of the graphene layer is given by

Zg = Rg + jXg = Rg + j(2π f Lg −
1

2π f Cg
) (9)

When SPR occurs at a certain incident electromagnetic wave frequency, the entire
circuit is in a resonant state, exhibiting resistive behavior. Therefore,

Xg = 0⇒ Zg = Rg (10)

At this point, the input impedance of it is as follows:

Zin =
Z1 · Zg

Z1 + Zg
(11)

The input impedance of the circuit is Γ = Zin−Z0
Zin+Z0

= S11

Z0 =
√

µ0
ε0
(Z0 = 120π ≈ 377Ω)

(12)

Hence, A = 1 − R can be described as follows: only when Zin = Z0, A reaches its
maximum value.

A = 1− R = 1− |S11|2 = 1− Γ2 = 1−
(

Zin − Z0

Zin + Z0

)2
=

4
Zin
Z0

+ Z0
Zin

+ 2
(13)

In conclusion, achieving perfect absorption through the alignment of the absorber’s
input impedance with the intrinsic impedance of free space necessitates a meticulous choice
of several key factors. These factors include the incident frequency (f ), the dielectric layer’s
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material (εd) and thickness (td), as well as the impedance of graphene (Zg). In terms of the
dielectric layer, silica was selected due to its exceptional hardness and resistance to abrasion,
which render it particularly well suited to the demanding operational conditions. The
determination of the appropriate thickness for this layer will be explored in the subsequent
section. The impedance of graphene is intricately tied to its relative permittivity, which is
expressed as follows [42]:

εg = 1 + j
σg(ω)

ε0ωtg
(14)

where tg represents the thickness of the graphene layer. In this study, a value of tg = 1 nm
was selected for ease of calculation purposes.

The total surface conductivity of graphene is defined as follows [43]:

σg(ω) = σinter(ω) + σintra(ω) (15)

where σinter(ω) denotes the interband conductivity of graphene, and σintra(ω) represents
the intraband conductivity. These can be expressed using the classical Kubo formula [44]:

σinter(ω) =
ie2

4π}2 ln
[

2|EF| − }(ω + iτ−1)

2|EF|+ }(ω + iτ−1)

]
(16)

σintra(ω) =
ie2kBT

π}2(ω + iτ−1)

{
EF

kBT
+ 2 ln

[
exp(− EF

kBT
) + 1

]}
(17)

where
e represents the elementary charge,
} is the reduced Planck constant,
EF signifies the Fermi energy level of graphene,
ω stands for the angular frequency of the incident electromagnetic wave,
τ is the relaxation time of graphene,
kB denotes the Boltzmann constant,
T represents the ambient temperature in Kelvin.
According to the Pauli exclusion principle, within the terahertz range, where EF

is much greater than }ω, graphene’s surface conductivity is primarily determined by
intraband effects. As a result, the contribution of the interband conductivity σinter(ω) can be
disregarded, leading to the simplification of σg(ω) using the Drude model [45] as follows:

σg(ω) = σintra(ω) =
ie2|EF|

π}2(ω + iτ−1)
(18)

Based on the discussions presented above, it is evident that σg(ω) can be modulated
by manipulating the frequency of incident light (ω or f = 2πω), the Fermi level (EF), and
the relaxation time (τ) of graphene. These dynamics are visually depicted in Figure 3,
showcasing how graphene’s surface conductivity changes with respect to the incident
frequency and EF at τ = 2.0 ps, as well as concerning the incident frequency and τ at
EF = 0.8 eV. This provides a theoretical foundation for subsequent simulation results.
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3. Simulation Process

This section will explain the building of the proposed simulation model of a graphene
terahertz absorber in COMSOL Multiphysics 5.6 software.

Following the construction of the model using the parameters listed in Table 1, an ana-
lyte, such as air, was added above the model. The thickness of the analyte is recommended
to be greater than 30 µm. Next, the corresponding material parameters for each geometric
part were added. The silicon substrate was not created during the simulation.

In the x–y plane, periodic boundary conditions were implemented, while perfect
match layers were established in the z-direction to absorb the excess scattered waves. The
transition boundary condition was applied to the graphene layer. The incident electromag-
netic wave frequency was set between 1 and 10 THz. The excitation port was set above the
analyte to simulate the incident electromagnetic wave, and the port was set below the gold
layer to extract the S parameters. The “Type of port” was selected as “Periodic”.

For meshing, the sequence type was configured as “User-controlled mesh”. A new
“Free triangular” mesh was created for the graphene layer, with the specified “Size” param-
eters. The “Maximum element size” was set to 0.2 µm, and the “Minimum element size”
was set to 0.1 µm. The remaining meshing settings were left as default.

4. Simulation Results and Discussion

Distinct tests were conducted to evaluate the absorption performance of the absorber
under both TE and TM polarizations, as depicted in Figure 4a. Five absorption peaks,
designated as Modes I–V, are clearly discernible. Notably, apart from Mode V wherein a
slight variance in absorption rate and resonance frequency is observed, the other modes
remain essentially unaffected. This underscores the polarization independence of the
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absorber’s absorption characteristics. Unless otherwise stipulated, all discussions in this
study are grounded in TE polarization.
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The corresponding equivalent impedance matching diagrams for each mode were
mapped as shown in Figure 5. It can be observed that, at these resonance frequencies,
Re(Z) is close to 1 and Im(Z) is close to 0, especially for Mode IV (Figure 5d) with an
absorption rate of 99.87%, Re(Z) = 0.9958, and Im(Z) = −0.0769, indicating a remarkably
close approximation to perfect absorption. These experimental results align very closely
with the theoretical derivations discussed earlier.
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As illustrated in Figure 6, the total absorption rate diagram of the device arises from
the coupling of two subpatterns. It is evident that significant SPR occurs at five different
resonant frequencies: f I = 1.99 THz, f II = 6.00 THz, f III = 7.37 THz, f IV = 8.47 THz, and
f V = 9.38 THz. The corresponding absorption rates for these modes were 95.82%, 98.47%,
98.72%, 99.87%, and 97.20%, respectively.
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Figure 6. The absorption rate diagram of the device includes the overall absorption rate diagram of
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To ascertain the precise positions at which LSPR occurs on the graphene patterns for
each mode, electric field monitors were strategically positioned on the x–y plane. The
resultant findings are visually depicted in Figure 7.
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In Mode I, localized surface plasmon resonance (LSPR) was predominantly concen-
trated in the proximity of the ring and the Celtic cross, extending along the cross’s edges in
the y-direction. This behavior can be attributed to the coupling with neighboring periodic
graphene patterns. Furthermore, regions along the ring’s edges exhibited a relatively
weaker LSPR intensity. In Mode II, robust resonance was localized near the Celtic cross’s
edges in the x-direction and the adjacent region of the ring. In contrast, other positions
displayed subdued responses. Moreover, a relatively weaker surface plasmon resonance
was discernible along the inner edge of the ring.
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In Mode III, significant LSPR contributions were evident near the circular segment
of the Celtic cross, particularly in proximity to the ring. Additionally, pronounced LSPR
effects were observed along the Celtic cross’s edges in the y-direction. For Mode IV, LSPR
was conspicuous across several positions of the pattern, primarily along both sides of the
ring’s edges and the edges of the Celtic cross, coupled with adjacent periodic patterns.

In Mode V, LSPR predominantly emerged within the gaps between the Celtic cross
and the ring. These gaps encompass the spaces between the circle and the ring, between
the Celtic cross and the ring, and between the Celtic cross and the adjacent periodic cross.

Owing to the inherent symmetry of the graphene pattern, the regions in which LSPR
is excited maintain symmetry as well [46]. This characteristic enhances the absorber’s
capability to sustain absorption performance across a broader range of incident angles.
Throughout this paper, unless explicitly stated, all discussions are predicated on the scenario
of normal electromagnetic wave incidence, where the incident angle (θ) is set at 0 degrees.
Notably, in this study, it became apparent that the gaps between the subpatterns and
their edges played a pivotal role in the occurrence of surface plasmon resonance [47,48].
Therefore, it is imperative to manipulate the geometric parameters of these regions to
explore how variations impact the absorber’s absorption performance.

Numerical analyses were performed on the geometric parameters of the graphene
pattern (excluding r2, as it scales with r1). Hence, this study focused solely on variations in
the overall size of the ring. And the results are depicted in Figure 8. Overall, the alteration
of various geometric parameters did not significantly shift the resonant frequencies of
the five modes. This indicates that the geometric parameters of the graphene pattern
exhibit robustness in affecting resonance frequencies. However, changing the geometric
parameters can lead to relatively significant variations in the absorption rate. In summary,
in this study, the gaps between subpatterns emerged as crucial in generating SPR and
achieving high absorption rates. One of the techniques for designing multiband narrow-
band metamaterial absorbers involves the thoughtful design of geometric patterns on the
metasurface, creating multiple coupling regions. If the frequencies at which SPR occurs
are continuous, maintaining elevated absorption rates across a range of frequencies, it
becomes possible to devise a wideband SPR metamaterial absorber [49,50]. The geometric
parameters of a graphene metasurface play a significant role in influencing the absorption
of light based on the incident angle or polarization state. For instance, a graphene surface
with high symmetry can maintain a consistently high absorption rate across a wide range of
incident angles. Adjusting the geometric parameters allows for narrowing the absorption
angle range or shifting the resonance frequency. Additionally, a graphene metasurface
with a chiral pattern can selectively absorb light waves of a specific polarization state,
and modifying the geometric parameters can alter its polarization selectivity. Modifying
the geometric parameters directly influences the surface conductivity of graphene, conse-
quently altering the impedance of the absorber. Inadequate geometric design can lead to
suboptimal impedance matching, resulting in unsatisfactory absorption performance. On
the other hand, well-designed geometric parameters not only enhance the robustness of the
graphene pattern but also enable effective impedance matching within a specific resonance
frequency range. Additionally, they ensure broad-angle absorption capabilities.

Furthermore, the impact of the thickness of the silica layer on absorption performances
was tested, as depicted in Figure 9. At lower frequencies, reducing the thickness of the
silica layer enhanced the absorption rate. Conversely, at higher frequencies, it is advisable
to avoid an excessively thick silicon dioxide layer. This rule can be found in reference [51].
The graphene layer and the gold layer form an asymmetric Fabry–Perot cavity. Quoting
the formula, the total reflection coefficient of the device can be expressed as follows:

r = r12 + rm = r12 +
t12t21r23e(−2iφ)

1−r21r23e(−2iφ)

φ = k0nd cos θ′
(19)
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where d presents the thickness of the dielectric layer (td in this paper). When light is incident
on the absorber, the graphene surface generates LSPR, and the light waves undergo multiple
reflections within the Fabry–Perot cavity. By carefully selecting the appropriate material
and thickness for the dielectric layer, the interference of the reflected light from different
orders can be effectively suppressed. This leads to the occurrence of Fabry–Perot resonance,
where the Fabry–Perot resonance and the LSPR on the graphene surface are strongly
coupled. As a result, the electromagnetic waves are efficiently absorbed. After multiple
experiments, it was determined that the average highest absorption rate for the five modes
was achieved when td = 4.2 µm.
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Next, the dynamic tunability of the device was demonstrated by varying the Fermi
level (EF) and relaxation time (τ) of graphene. The effect of varying the Fermi level (EF)
under a relaxation time (τ) of 2.0 ps on the absorption performance of the absorber was ini-
tially examined. As shown in Figure 10, it is evident that with increasing EF, the resonance
frequencies of the five modes all experienced a blue shift. This shift occurs because the
wavevector of surface plasmon polaritons (SPPs) satisfies the following relationship [52]:

kspp ∝ } f 2
r /(2α0EFc) (20)

where α0 is fine structure constant and fr is resonance frequency. Hence, there exists a
relationship between the Fermi level and resonance frequency:

fr ∝ E1/2
F (21)
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Therefore, the resonance frequency will increase with an increase in EF, and the
modulation bandwidth at higher frequencies will also be larger. There is a relationship
between the Fermi level and the applied voltage [53],

EF = VF

√
πε0εrVg

e0td
(22)

where
VF is the Fermi velocity, with a typical value of approximately 106 m/s,
ε0 and εr are the vacuum permittivity and relative permittivity, respectively,
Vg is the applied external voltage,
e0 is the elementary charge,
td is the thickness of the dielectric (SiO2) layer.
It is apparent that, by maintaining a constant thickness of the dielectric layer, the

magnitude of EF can be controlled through the manipulation of the applied external voltage
(Vg). In practical applications, once the device is fabricated, its absorption performance
remains fixed. By applying a gate voltage, the capacity to dynamically adjust the Fermi level
of graphene is gained, thereby influencing its conductivity. This dynamic capability allows
the device to dynamically fine-tune both the absorption rate and resonance frequency,
thereby ensuring optimal performance.

Subsequently, the changes in absorber performance were examined in relation to the
relaxation time (τ) at a fixed Fermi level (EF) of 0.8 eV. The outcomes of this investigation
are depicted in Figure 11. As τ increased from 1.6 ps to 2.4 ps, the resonance frequencies
of each mode remained constant, with only the absorption rate being modulated. This
observation is consistent with the connection between the relaxation time of graphene and
the Fermi level, as illustrated by the following relationship [54]:

τ = EFv/(eV2
F ) (23)

where v represents the carrier mobility of graphene. With τ increasing from 1.6 ps to 2.4 ps,
the resonant frequencies of each mode remained unaffected, while only the absorption rate
underwent modulation. Since EF remains constant, alterations in τ induce variations in the
concentration of graphene carriers, subsequently influencing the intensity of plasmonic
oscillations [55,56]. This cascade effect ultimately leads to changes in the absorption rate.
In conclusion, the manipulation of graphene’s Fermi level and relaxation time allows for
effective control over the absorption rate and resonance frequency of graphene-based SPR
metamaterial absorbers. In comparison to noble metal SPR metamaterial absorbers, our
device exhibits the potential for broader practical applications.

According to the Fresnel equations, the transverse electric and transverse magnetic
reflectances of the metamaterial absorber are, respectively, expressed as follows [57,58]:

RTE =

∣∣∣∣ cos θ−µ−1
r

√
n2−sin2 θ

cos θ+µ−1
r

√
n2−sin2 θ

∣∣∣∣2
RTM =

∣∣∣∣ εr cos θ−
√

n2−sin2 θ

εr cos θ+
√

n2−sin2 θ

∣∣∣∣2 (24)

n =
√

εrµr (25)

where θ represents the incident angle of the electromagnetic wave, and n denotes the
effective refractive index of the metamaterial absorber. Taking TE polarization as an
example, when the electromagnetic wave is normally incident, that is, θ = 0◦, the expression
for RTE in Equation (23) can be written as follows:

RTE =

∣∣∣∣√µr −
√

εr√
µr +

√
εr

∣∣∣∣2 =

∣∣∣∣Z− Z0

Z + Z0

∣∣∣∣2 (26)
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of the absorber under the condition of EF = 0.8 eV.

This finding correlates with Equation (7). Moreover, Equation (23) emphasizes that
the effect of graphene’s impedance is not solely limited to polarization modes; the incident
angle of the electromagnetic wave also holds significant influence. Consequently, it is essen-
tial to conduct a thorough investigation into how the incident angle affects the absorption
performance of the absorber. To address this, an incident angle ranging from 0◦ to 50◦

for TE polarization and from 0◦ to 40◦ for TM polarization was set up. The simulation
outcomes are graphically presented in Figure 12.
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Under TE polarization, as the incident angle varied from 0 to 50 degrees, slight shifts in
resonant frequencies were observed for each mode, while the absorption rates consistently
remained above 85%. Similarly, in the case of TM polarization, in which the incident angle
spanned from 0 to 40 degrees, each mode displayed minor resonant frequency shifts, while
the absorption rates consistently stayed above 82%. This observation underscores the
device’s capability to maintain substantial absorption rates even at larger incident angles.
This phenomenon can be attributed to two key factors. Firstly, the device’s dimensions are
smaller than the vacuum wavelength of the incident light, allowing it to effectively interact
with a wide range of angles [59,60]. Additionally, the inherent symmetry of the graphene
patterns plays a crucial role. Within a specific range of incident angles, the symmetry of the
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graphene patterns remains intact, ensuring robust SPR at the corresponding positions as
illustrated in Figure 7.

In summation, our design exhibited remarkable insensitivity to incident angles, en-
compassing a range from 0 to 50 degrees in the TE mode and 0 to 40 degrees in the TM
mode. For practical applications, the incorporation of concave structures positioned above
the absorber’s surface could be explored [61,62]. This strategic approach could facilitate the
coupling of incident light with the graphene metasurface at specific angles, thus ensuring a
consistently high absorption rate.

A pivotal performance aspect of the metamaterial SPR absorber is its capability for
refractive index (RI) sensing. An analyte refractive index (n) range of 1.00 to 1.08 was
selected, and the resulting shifts in the resonant frequencies and absorption rates were
explored. The outcomes are visualized in Figure 13. Notably, as the refractive index
increased, all five modes exhibited a pronounced red-shift in their resonant frequencies,
with their absorption rates consistently maintained above 94.9%.
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Figure 13. The variation in resonant frequencies (a) and absorption rates (b) of each mode as the
ambient refractive index changes from 1.00 to 1.08.

The ranges of variation for these shifts were ∆f I: 1.96~1.99 THz, ∆f II: 5.9~6 THz,
∆f III: 7.25~7.37 THz, ∆f IV: 8.34~8.47 THz, and ∆f V: 9.23~9.37 THz, respectively. The
sensitivity S is defined as follows [63]:

S =
∆ f
∆n

(27)

where ∆n was 0.08 in this research. Hence, the corresponding S for each mode were
SI = 0.375 THz/RIU, SII = 1.25 THz/RIU, SIII = 1.5 THz/RIU, SIV = 1.625 THz/RIU, and
SV = 1.75 THz/RIU, respectively. The average sensitivity was Savg = 1.3 THz/RIU, where
RIU refers to the refractive index unit. According to the obtained results, the device was
highly responsive to changes in the refractive index of the analyte, making it suitable for
deployment as a refractive index sensor (RI sensor).

The figure of merit (FOM) is another crucial factor for assessing the sensing perfor-
mance of the absorber. It is defined as follows [64,65]:

FOM =
S

FHWM
(28)

where FHWM represents the full width at half maximum of the absorption peak. As
indicated by Equation (27), Table 2 presents the average FHWM and FOM values for the
device. Meanwhile, Table 3 and Figure 14 provides insight into the minimum FHWM for
each mode along with its corresponding maximum FOM.
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Table 2. FHWMavg and FOMavg for each mode as RI varies within the range of 1.00 to 1.08.

Mode I II III IV V

FHWMavg (GHz) 153.8 170 172.4 160.4 140.4

FOMavg (RIU−1) 2.438 7.353 8.703 10.134 12.469

Table 3. FHWMmin and FOMmax for each mode as RI varies within the range of 1.00 to 1.08.

Mode I II III IV V

FHWMmin (GHz) 151 170 169 157 137

FOMmax (RIU−1) 2.483 7.353 8.876 10.350 12.774
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From the results, it can be inferred that the absorber achieved a minimum FHWM of
137 GHz and a maximum FOM of 12.774 RIU−1. This underscores the absorber’s strong
sensing capabilities and resonance frequency selectivity. Lastly, in order to provide a
comprehensive assessment of the absorber’s performance, a comparative analysis between
the device and other metamaterial SPR absorbers was conducted. The results are presented
in Table 4.

Table 4. Comparison with previous studies.

References [43] [66] [32] [67] [68] This Work

Number of absorption peaks 1 1 3 3 5 5

Tunability Yes No Yes Yes Yes Yes

Smax (THz/RIU) 1.57 2.1 2.00 1.867 0.066 1.75

FOMmax (RIU−1) 24.5 7.03 9.58 2.14 N/A 12.774

It is clear that our design, when compared with previous studies, exhibits a higher
number of absorption peaks and a substantial improvement in refractive index sensing per-
formance (FOM). This strongly indicates the device’s considerable potential for application
in fields like biochemistry and sensing.
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5. Conclusions

In summation, this study presents a new SPR terahertz absorber based on a single-
layer, patterned graphene metasurface. Through rigorous theoretical exploration and
meticulous numerical simulations, the penta-band absorption, dynamic tunability, geo-
metric robustness, polarization independence, wide-angle absorption, and great sensing
capacity of the absorber were elucidated. Compared with other works, the device features
a simple structure that not only widens the number of absorption peaks but also ensures a
high absorption rate and great refractive index sensing performance. Our work promotes
diversity in the design of graphene-based metamaterial absorbers, offering fresh design in-
spiration. Consequently, we believe this novel SPR metamaterial absorber holds promising
potential for applications in active optoelectronic devices, modulators, optical stealth, RI
sensors, and other related fields.
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