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Abstract: Ceramic matrix composites have the advantages of low density, high specific strength,
high specific die, high-temperature resistance, wear resistance, chemical corrosion resistance, etc.,
which are widely used in aerospace, energy, transportation, and other fields. CMCs have become
an important choice for engine components and other high-temperature component manufacturing.
However, ceramic matrix composite is a kind of multi-phase structure, anisotropy, high hardness
material, due to the brittleness of the ceramic matrix, the weak bonding force between fiber and
matrix, and the anisotropy of composite material. Burr, delamination, tearing, chips, and other
surface damage tend to generate in the machining, resulting in surface quality and strength decline.
This paper reviewed the latest abrasive machining technology for SiC ceramic composites. The
characteristics and research directions of the main abrasive machining technology, including grinding,
laser-assisted grinding, ultrasonic-assisted grinding, and abrasive waterjet machining, are introduced
first. Then, the commonly used numerical simulation research for modeling and simulating the
machining of ceramic matrix composites is briefly summarized. Finally, the processing difficulties
and research hotspots of ceramic matrix composites are summarized.

Keywords: ceramic matrix composites; material removal mechanism; numerical simulation;
abrasive machining

1. Introduction

Ceramic matrix composites (CMCs), mainly including SiCf/SiC, SiCp/SiC, Cp/SiC,
and Cf/SiC, have the advantages of low density, high specific strength, high elastic mod-
ulus, high temperature resistance, wear resistance, and chemical resistance [1]. As the
result of fiber reinforcement, the CMC materials have improved fracture toughness and are
widely used in aerospace, energy, transportation, and other fields to resist the thermal shock
in high temperature environments. Additionally, CMCs are lightweight (about 1/3 of tradi-
tional metal materials) and have high combustion temperature, thus offering significant
advantages in terms of lightweight design, fuel efficiency, and the gas emissions of aviation
engines, and making them the preferred materials for high-temperature components of
aviation engines.

As illustrated in Figure 1a, the use of CMC in blades, guides, hoods, nozzles, and
combustion chambers in high-temperature sections of an aeroengine, increases engine
thrust by 25%, saves fuel consumption by 10%, and decreases nitrogen oxide emissions.
As shown in Figure 1b, the CMCs are used to manufacture non-structural parts such as
thermal barrier coating and thermal conductive sheets of the engine, and key structural
components, such as engine blades, guides, nozzles, and combustion chambers, to reduce
the weight of the whole engine and to improve its durability and life. In Figure 1c, in Japan’s
100 kW automotive ceramic gas turbine (CGT) project, CMCs were used to manufacture
five components, including turbine rotor, rear plate, port bushing, expansion refiner, and
internal scroll support [2]. It has demonstrated the feasibility of the application of CMCs in
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operational engines and their superiority in terms of thermal shock resistance and particle
impact resistance capabilities.
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and are then machined to the design dimension, shape accuracy, and surface condition. 
Burr, delamination, crack, collapse, tear, and other surface damage easily occur, resulting 
in a machining quality decline, which creates a challenge for CMC machining. Simultane-
ously, the material removal mechanism of CMCs is very complicated, which seriously 
limits research progress. Fiber in CMC not only enhances the mechanical properties of the 
matrix, but also changes the material removal mechanism. In the grinding process, the 
damage usually starts from the matrix. The different material properties of the matrix and 
fiber show different removal modes, and the interactions transferred through the interface 
affect each other. Therefore, exploring the material removal mechanism is an effective way 
to realize lower damage and greater efficient machining of the CMC materials.  

In this paper, the recent abrasive machining experimental study of CMC abrasive 
machining technologies, including the conventional grinding (CG), laser-assisted grind-
ing (LAG), abrasive waterjet machining (AWJM), and ultrasonic vibration-assisted grind-
ing (UVAG), were reviewed to reveal the material removal mechanism. Then, the CMC 
simulation studies, including FEM, SPH, DEM, and a hybrid of two or three methods, 

Figure 1. The application of CMCs: (a) high-temperature parts of aero-engines; (b) hot zone of the jet
engine; (c) Main CMCs components of CGT.

CMCs are very difficult to machine due to the complex woven structure, anisotropic
properties, and high hardness. CMC components are usually fabricated in a rough mold
and are then machined to the design dimension, shape accuracy, and surface condition. Burr,
delamination, crack, collapse, tear, and other surface damage easily occur, resulting in a
machining quality decline, which creates a challenge for CMC machining. Simultaneously,
the material removal mechanism of CMCs is very complicated, which seriously limits
research progress. Fiber in CMC not only enhances the mechanical properties of the matrix,
but also changes the material removal mechanism. In the grinding process, the damage
usually starts from the matrix. The different material properties of the matrix and fiber
show different removal modes, and the interactions transferred through the interface affect
each other. Therefore, exploring the material removal mechanism is an effective way to
realize lower damage and greater efficient machining of the CMC materials.

In this paper, the recent abrasive machining experimental study of CMC abrasive
machining technologies, including the conventional grinding (CG), laser-assisted grinding
(LAG), abrasive waterjet machining (AWJM), and ultrasonic vibration-assisted grinding
(UVAG), were reviewed to reveal the material removal mechanism. Then, the CMC sim-
ulation studies, including FEM, SPH, DEM, and a hybrid of two or three methods, were
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introduced. Finally, the challenging aspects and pivotal points of the abrasive machining
mechanism are summarized.

2. Experimental Study of CMC Abrasive Machining

To meet the requirements of complex shapes and dimensional tolerances, CMC mate-
rials need to be machined. To improve the machining surface integrity and manufacturing
efficiency of CMC, research was conducted, both domestically and abroad. Abrasive ma-
chining is the most suitable method for the precision machining of CMC materials [3]. This
section introduces the latest achievement in conventional grinding (CG), laser-assisted
grinding (LAG), abrasive waterjet machining (AWJ), and the ultrasonic vibration-assisted
grinding (UVAG) of CMCs.

2.1. Conventional Grinding

CG is the most common method for the precision machining of CMC [4]. The ground
surface characteristics and material removal mechanism of CMCs have been analyzed.
In the CMC grinding process, the orientation of fibers exhibits a crucial influence on the
ground surface quality [5]. Qu et al. [6] studied the effects of carbon fiber orientation and
grinding parameters on grinding force and surface quality during the grinding of Cf/SiC, as
shown in Figure 2a. The results indicated that grinding depth has significant effects on the
surface quality. Specifically, the surface quality decreases and the grinding forces increase
with increasing grinding depth. In addition, greater grinding surface quality is observed
at β = 90◦. The poorer ground surfaces are obtained at α = 0◦. Cao et al. [7] studied the
grinding process of woven CMC. The results showed that the best surface quality is in the
90◦ direction with the fiber. Hu et al. [8] concluded that the local orientation of fibers would
also affect the surface quality of processed materials. Yin et al. [9] used the single grain
scribing on SiCf/SiC with different wheel speeds to reveal the material removal mechanism
and fiber breakage behaviors. The results showed that the surface material densification
and smearing could be suppressed by increasing grinding speed. When grinding along
the fiber longitudinal direction, fibers experience plowing and would be covered by the
smearing of the matrix. Increasing wheel speed enhances the brittle fracture and breakage
of the fibers. In high-speed grinding, fibers present brittle fractures and the matrix is torn
off. When grinding transverses to the fiber longitudinal direction, increasing wheel speed
leads to the complete removal of the fibers and a few cutting-off fiber end residuals on the
groove bottom surface, which improves the surface finish. Zhang et al. [5] compared the
surface morphology and grinding mechanism of Cf/SiC composites in transverse, normal,
and longitudinal directions (in Figure 2b), and found that the fibers were most easily
removed during transverse grinding, and the ground surface quality was the best in this
direction. During normal direction grinding, fibers and matrix are mainly removed in the
form of small fragments, and the ground surface quality is worse than that in the transverse
direction. In longitudinal grinding, the composite material has the worst ground surface
quality. Liu et al. [10] proposed a three-dimensional surface profile characterization through
experiments, which can describe the surface quality of composite materials accurately.

Liu et al. [11] investigated the effect of fiber angle (FA) on grinding force, surface
morphology, and roughness through surface grinding experiments. As shown in Figure 2c,
the fracture characteristics of the grinding surface include matrix cracking, fiber fracture,
and interfacial debonding, revealing that the main removal mechanism of 2D Cf/SiC.
Fiber fracture was more severe at 30◦ and 45◦ FA than at 0◦ FA. Those differences can be
attributed to the fact that the damage is not synchronized during the grinding process
due to the different mechanical properties of the matrix and fibers. Figure 2d shows the
surface morphology of 0◦ and 90◦ fiber bundles at different grinding angles. During the
grinding process, the scraping force shows a periodic variation of 0◦and 90◦ fiber weave
structure when the scraping angle is 0◦. However, when the scribing angle is 45◦, the force
is relatively more stable and the surface quality is better.
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(b) surface morphology and material removal mechanism of Cf/SiC in transverse, normal, and
longitudinal direction by Zhang et al. [5]; (c) SEM of the ground surface in different fiber orientations;
(d) surface morphology of 0◦and 90◦ fiber bundles at different scribing directions by Liu et al. [10].

In the grinding of CMCs, grinding depth, feed speed, friction force, lubricant, and
tool parameters have important effects on surface quality and fracture characteristics.
Wang et al. [12] established a force model for the surface grinding of unidirectional Cf/SiC
composites, and concluded that the grinding force is inversely proportional to the wheel
speed and proportional to the grinding depth and feed speed. Zhang et al. [13] established
a model between grinding force and depth in fiber-reinforced composites. With the in-
crease of grinding depth, the grinding force exhibits an almost linear relationship along the
direction of the reinforced fiber, which affects the ground surface quality. Zhang et al. [5]
performed the experimental research on the grinding mechanism of woven CMC and
revealed that both the grinding force and the surface roughness increased with the feed
speed and the grinding depth, and decreased with the wheel speed. Tawakoli et al. [14]
investigated the CMC grinding forces and surface quality during conventional and inter-
mittent grinding by using the normal and fan-shaped wheel. The results found that the
conventional grinding wheel could obtain better surface roughness and the fan-shaped
grinding wheel could significantly reduce the grinding force and grinding temperature.
These results revealed that intermittent grinding could reduce scratching, the plowing
phenomenon, and specific energy, which can provide a high surface quality.

The CMC grinding damage modes can be analyzed through indentation fracture
mechanics [15]. Yang et al. [16] carried out orthogonal grinding of Cf/SiC to observe the
ground surface topography and found that the main material removal mode was brittle
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fracture, including matrix cracking, fiber break, fiber wear, and interface bonding. Pineau
et al. [17] built a machining force prediction model based on the experimental results
of the shear strength and predicted the crack occurrence of woven CMC based on the
virtual test results. Lamon et al. [18] proposed the main damage mode of two-dimensional
woven Cf/SiC based on the micromechanical method of the mechanical behavior of brittle
matrix composites.

Due to the high hardness and low thermal conductivity of Cf/SiC composites, the
grinding wheel absorbs and stores a lot of heat during dry grinding, resulting in the
reduction of grain number, sharpness, and life. In addition, due to the passivation of the
grinding wheel, the surface quality of the machined surface decreases [19]. Hu et al. [20]
studied the cutting force, surface integrity, and machining defects in the milling process of
2D Cf/SiC composites with the commercialized PCD tool. The results showed that fiber
fracture, matrix damage, and fiber-matrix debonding are the main types of material failure
modes. Xu et al. [21] studied the dry cutting temperature of Cf/SiC with a straight-edge
PCD tool. The study showed that the highest temperature reached around 732 ◦C, with a
significant increase in cutting force, which makes the surface quality poor. Qu et al. [22]
investigated the effect of minimum quantity lubrication (MQL) on the grinding performance
of unidirectional carbon fiber-reinforced ceramic matrix composites, as shown in Figure 3a,
which includes abrasive, lubricant, and material. The surface morphology was observed
using scanning electron microscopy (in Figure 3b). The main fracture patterns of carbon
fiber are smooth separation, fracture, detachment, and pulling out.
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(b) SEM photo of typical fracture of carbon fiber under MQL.

CMC grinding has shown serious tool wear, low machining efficiency, and poor ma-
chining quality. In particular, defects such as poor dimensional consistency, surface cracks,
fragmentation, delamination, fiber shedding, fiber pulling out, and chipping seriously affect
the processing quality and surface accuracy of the material [23]. Therefore, in the grinding
process, the appropriate grinding depth and cutting angle should be carefully selected.

2.2. Laser-Assisted Grinding (LAG)

Due to the high brittleness and anisotropy of the CMC, LAG acts as a feasible process
with which to improve the machinability of materials, which induces the strength loss of
materials through high temperatures. LAG uses the thermal effect of the laser to soften
the material in the area to be ground, which can reduce the cutting force and improve the
machinability of the material. Compared to traditional processing, LAG can reduce the
force, surface roughness, and production costs.

Zhang et al. [24] designed a single-factor experiment to understand the micro-structure
evolution and ablation behaviors of the microgrooves processed by a picosecond laser.
This study provided a theoretical basis and practice guidance for LAG of the SiCf/SiC
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composites. Figure 4a shows the amorphous SiO2 smoke, with extremely fine particles.
The dust attached to the treated surface caused the occurrence of pileup, leading to a
slight increase in Ra value along the machined microgrooves. When the laser parameters
(pulse energy, repetition frequency, scanning times, and scanning speed) were adjusted to
increase the microgroove depth, the SiC vapored in the subsurface layer was recrystallized
during rapid cooling, as presented in Figure 4b. Compared to the ultrahigh hardness
SiC fiber and SiC matrix, the SiO2 smoke dust or recrystallized SiC were powdery due
to the ablation, which were easy to remove and were expected to greatly improve the
surface quality. An et al. [25] analyzed the products of continuous laser ablating CMC,
and the factors affecting the depth of ablation layer were analyzed. As shown in Figure 4c,
according to the morphology and types of ablation products, the laser ablation of SiCf/SiC
can be divided into the coagulated layer (Layer 1), the re-crystalized SiC layer (Layer 2),
the heat-affected layer (Layer 3), and the non-affected layer (Layer 4). In Layer 1, gaseous
SiC and oxygen in the air undergo an active oxidation reaction at high temperatures to
form smoky amorphous SiO2 condensation deposited on the surface of the ablated layer.
Layer 2 is mainly composed of re-crystalized SiC particles with a micro-size scale. A small
amount of SiO2 soot is attached to the particles.
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laser ablating CMCs under LAG by An et al. [25].

As shown in Figure 5, Zhou et al. [26] proposed a laser-induced ablation-assisted
grinding (LIAAG), which is based on the chemical properties of materials. This method
utilizes lasers to ablate workpieces before grinding, aiming for high efficiency, minimal
damage, and reduced abrasive wear, and found that Cf/SiC composites were chemically
transformed into relatively loose and homogeneous ablation products (SiO2 and recrystal-
lized SiC) at high laser ablation temperatures. In Figure 5c, surface morphologies displayed
the microfracture and crushing of carbon fibers and SiC matrixes, and the grinding-induced
damages, such as macro fracture, fiber pulling out, and interface debonding. In Figure 5f,
the abrasive belt was primarily worn in micro-adhesion and micro-abrasion, rather than
cleavage fracture and fall-off in traditional grinding. The surface integrity was improved
greatly, and the abrasive wear was reduced significantly, which provided a vital high-
performance processing method for CMC components.

Li et al. [27] introduced the laser-assisted precision grinding technology to improve
the processing quality of 3D woven Cf/SiC composites. The laser process parameters were
adjusted to control the depth of the thermally induced damage layer and to reduce the
hard brittleness of the material. In the study, experiments were carried out to investigate
the effect of laser parameters on material damage and the effect of LAG processes. As
shown in Figure 6a, due to the material anisotropy, the depth and width of the thermal-
damage slot are 0◦ fiber > 90◦ fiber > normal fiber and 90◦ fiber > 0◦ fiber > normal fiber,
respectively. In addition, laser irradiation causes complex reactions, such as sublimation,
decomposition, and oxidation, on the surface of the material and generates SiO2 and Si
as well as recrystallized SiC, resulting in the formation of a porous SiC layer (thermal
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metamorphic layer) on the subsurface, as shown in Figure 6b. In the LAG, the normal
grinding force, the tangential grinding force, the specific grinding energy, and surface
roughness are reduced by a maximum of 35.6%, 43.6%, 43.58%, and 24.22%, respectively,
compared to the conventional grinding (CG) process. As shown in Figure 6c–e, the material
removal of 3D Cf/SiC composite material is dominated by brittle removal, which is mainly
dominated by fiber breakage, pulling out, layer breakage, matrix cracking, and interface
debonding. However, a trend toward ductile domain removal has begun to emerge.
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of Cf/SiC composites surface after grinding: (e) SEM images of grinding chips; (f) wear morphology
of diamond abrasive grains.
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of fiber surface after laser irradiation; (c) microscopic profile of 0◦ fiber area scratches; (d) microscopic
profile of 90◦ fiber area scratches; (e) microscopic profile of normal fiber area scratches.

Kong et al. [28] investigated the cutting performance of CG and LAG of SiCf/SiC
using electroplated diamond grinding heads. A three-dimensional transient heat transfer
model based on a Gaussian heat source was developed to investigate the distribution of
temperature fields on both the surface and subsurface of SiCf/SiC subjected to laser irradia-
tion. As seen in Figure 7, after laser irradiation, the surface and subsurface temperatures of
the workpiece reach > 1000 ◦C, which is sufficient for the oxidation reaction and softening
of the material. In Figure 7c,d, the effects of laser heating temperature on the workpiece
surface on the grinding forces were analyzed. The axial and feed grinding forces were more
than 40% lower under LAG than CG, due to the removal mechanism of the SiC matrix
changing from brittle to ductile and the oxidation reactions occurring in the SiCf/SiC
composites. The material removal mechanism was analyzed by observing the morphology
of machined surfaces, as shown in Figure 7e–g, which showed that ductile removal from
the SiC matrix occurs during LAG. In terms of abrasive wear, the mean height of exposed
abrasive grains from the machined surface was reduced by 1.02 µm and 12.52 µm in LAG
and CG, respectively. Under CG, the abrasive grains mainly exhibit cleavage fractures;
however, under LAG, micro-abrasion is the main wear form.
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LAG can reduce the CMC surface temperature gradient and hardness, which improves
the grinding conditions and achieves a smooth ground surface. After laser preheating, the
surface temperature of the processed material increase, and the hardness of the material
is reduced. To avoid rapid temperature reduction, it is necessary to minimize the time
difference between the laser and grinding.

It can be seen from the above research that the grinding force of the CMC is signifi-
cantly reduced under laser heating. The tool wear and machining defects are also reduced.
However, due to CMCs with high melting points and high hardness, the temperature
required for material softening, melting, and even gasification is very high—higher than
1000 ◦C. Therefore, the laser heat-affected zone is large, in which the physical and mechan-
ical properties of the CMC are changed. The material in the heat-affected zone must be
removed to obtain the required surface. Moreover, interface cracks and surface oxidation
caused by the laser thermal effect made LAG difficult to apply to the shape machining of
typical components of complex curved surfaces [29].

2.3. Abrasive Waterjet Machining (AWJM)

AWJM is a new technology that has been developed rapidly in the past 30 years. It
uses high-pressure and high-speed water jets to impact the workpiece to achieve cutting,
perforating, and surface material removal [30]. For CMCs, AWJM technology has unique
advantages. It belongs to the category of non-contact processing and avoids the problem
of tool wear. In addition, the processing temperature is low, which can greatly reduce
the thermal effects zones. The study by Hashish et al. [31] shows that the AWJM can
successfully cut CMCs. However, there are still several problems that exist, such as serious
nozzle wear, and micro and macro defects.

Hashish et al. [32] cut the SiCf/SiC with AWJM at different impact velocities, and
found that the size of the edge breakage decreased with the impact velocity decrease.
The taper decreases with the increase of abrasive hardness and injection pressure, and
increases with the cutting speed increase. In addition, there is a parallel relationship
between corrugation and taper. The influences of abrasive hardness, injection pressure,
and cutting speed on corrugation are similar to those on taper. In addition, by comparing
the influence of #80 and #120 abrasive grain on the edge breakage, it was found that the
small grain size can reduce the edge breakage defect.

Zhang et al. [33] explored the accurate control of hole shape for AWJM hole-making of
Cf/SiC based on experimental and mathematical analysis methods, as shown in Figure 8.
The results reveal that Ddifference is influenced by the standoff distance, followed by the
traverse speed. However, influence of the pressure and the abrasive flow rate is rare.
The traverse speed, pressure, and abrasive flow rate affect the Ddifference by changing the
total energy of the jet. The standoff distance mainly affects the Ddifference by changing the
effective impact area, which is fundamentally different from other process parameters. In
Figure 8b, when the jet is cutting circular trajectories, there is a deflection effect, which
causes Djet to be larger than Dtrajectory and affects hole size accuracy. The deflection effect
increases with the increase of traverse speed and standoff distance and decreases with the
increase of waterjet pressure and Dtrajectory. Therefore, when holes are cut at high traverse
speed, low pressure, and a tiny trajectory diameter, the deflection effect must be considered.
However, this study does not relate to surface damage in composite materials processing.

Ramulu et al. [34] researched the cutting force and surface micro-structure of composite
materials, and material tensile behavior, under AWJM machining and conventional milling
processing. The results showed that AWJM machining exhibits superior stability in the
machining process and yields better surface quality. The cutting force is much lower
than that of CG. Ren et al. [35] summarized the advantages and mechanism of AWJM
machining ceramics and found that surface roughness could be controlled by controlling
the relationship between the fibers’ axial direction and the AWJM direction. When the
AWJM direction is parallel to the axis of the fibers, at the top of the drilling hole, the material
processing surface is relatively flat, and the fracture surface of the fiber and the matrix is
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consistent under the action of the AWJM. Inside the borehole, prominent broken fibers
were seen, and the SiC matrix between the fibers was removed and carried away by the
AWJM. At the exit of the borehole, the fibers pull out, break, and strip from the matrix.
When the direction is perpendicular to the axial direction of the fibers, the drilling hole is
relatively flat from the top to bottom. The matrix around the fiber is not spalling, and the
fiber pulls out. However, the fiber and the matrix threshing phenomenon is reduced.
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Generally, AWJM has many advantages, such as the material not being affected by
heat during processing, which can effectively improve the quality of in-hole processing.
However, when processing deeper holes, the surface of the workpiece is prone to burr and
chipping. The entrance and exit dimensional error may be large and the processing quality
is relatively low [36].

2.4. Ultrasonic Vibration-Assisted Grinding (UVAG)

Ultrasonic processing technology employs an ultrasonic generator to convert electrical
energy into ultrasonic waves that oscillate at a specific frequency and vibrate through
an amplification tool (variable amplitude bar). The ultrasonic wave was generated in
UVAG. The suspended particles in the working fluid impact the surface of the workpiece
and remove excess material. UVAG can machine the insulation material and complicated
three-dimensional structures, regardless of material hardness. To solve the problems of
poor machining quality and serious tool wear in CMC material processing, researchers
both domestically and aboard have conducted comparative experiments between UVAG
and CG to observe and test its technological parameters.

Kang et al. [37] experimented with the UVAG of SiCf/SiC material on the end face
of the diamond grinding wheel. The experimental setup and operational principles are
shown in Figure 9, aimed at examining the removal mechanism, grinding force, surface
morphology, and surface roughness. The results show that the appropriate ultrasonic
amplitude can effectively reduce the grinding force, induce the fracture of SiC fibers, and
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improve the surface finish. However, when the amplitude is too large, the surface impact
is large, and the surface quality declines. Ding et al. [38] studied the surface/subsurface
breakage formation mechanism and machining quality of C/SiC composite conducted
by UVAG and CG tests. The results showed that main breakage types of different angle
fibers in ground surface were lamellar brittle fracture. Compared to CG, these breakages
were reduced by UVAG which can reduce grinding force. Moreover, the ground surface
roughness obtained by UVAG was lower than CG and the maximum reduction was 12%.
Zhang et al. [39] investigated the material removal and breakage mechanism in UVAG
of two-dimensional woven carbon-fiber-reinforced silicon carbide matrix composites (2D-
Cf/SiC). The results show that the predominant material removal mode in UVAG is brittle
fracture. The forms of material breakage are matrix cracking, fiber fracture, fiber pull-
out, interfacial debonding, and interfacial fracture. Compared with CG, the normal force,
tangential force, and surface roughness in UVAG decreased by approximately 20%, 18%,
and 9%, respectively. Bertsche et al. [40] studied the material removal rate, cutting force,
tool wear, and surface roughness of rotary ultrasonic machining of CMC. Compared to
conventional cutting processes, UVAG effectively reduced cutting force and tool wear, and
significantly improved surface roughness. Huang et al. [41] compared six commonly used
tools for micro-hole drilling of SiCf/SiC CMC assisted by ultrasonic vibration: carbide
drill, PCD drill, electroplated diamond abrasive tool, grinding drill, coated grinding drill,
and PDC tool. As shown in Figure 10, the influence of different kinds of tools on cutting
forces, machining accuracy, and tool wear was investigated. The results showed that the
machining accuracy of the PDC tool is best, followed by the electroplated diamond abrasive
tool. The machining accuracy of the grinding drill and coated grinding drill is poor with
a bit of difference; PDC and coated grinding drill have less tool wear, while the grinding
drill has slightly more severe tool wear. However, the tool wear of the electroplated
diamond abrasive tool is severe. Wang et al. [42] conducted rotary ultrasonic machining of
Cf/SiC composites to analyze the micro-structural characteristics of the hole surfaces under
various fiber directions, ultrasonic amplitudes, and spindle speeds. The results show that
the fiber direction and spindle speed have significant effects on the surface morphology
of the material. The introduction of ultrasonic vibration improves the surface quality of
Cf/SiC composites, and higher ultrasonic amplitude and lower spindle speed are helpful
for improving the surface quality of the hole.
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Under the same conditions, UVAG can reduce the cutting force and cutting temper-
ature, which can effectively reduce the chip, burr, crack, fiber stripping, and processing
damage of CMCs, and improve the processing precision and quality. Therefore, UVAG
technology has been widely used in the precision machining of CMCs. And it is mainly
suitable for the processing of small holes or micro-structures. However, as the interaction
between tool and material in UVAG becomes more complex, the realization of the judgment
and control of material removal mode is difficult. Moreover, the aggravated wear of the tool
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induced by high-frequency micro-vibration and the very low efficiency of large-diameter
ceramic holes processing are the main drawbacks of UVAG [23,43].

2.5. Summary for Experiment Study

In summary, as shown in Table 1, compared to CG, non-CG technologies have obvious
advantages. However, there are also certain limitations. For example, LAG requires strict
control of technical parameters such as optimal power; UVAG is limited by ultrasonic
critical speed, and the processing efficiency is low. AWJM in the processing of deep holes
appear as a large dimensional error and surface burr, and the chip phenomenon.

Table 1. Comparison of different CMC grinding technologies.

Method CG LAG UVAG AWJM

Advantage
Wide application range,
simple process, and high
processing efficiency.

Reduce material hardness
and improve
processing performance.

Good processing
quality, small
surface loss.

Super-hard abrasive
high-speed impact
workpiece surface to achieve
removal processing, no
thermal effect.

Shortcoming

Rely on diamond tools,
which are expensive and
prone to serious wear;
and It is difficult to
process parts with
complex shapes and high
dimensional accuracy.

The heat-affected zone
material must be removed to
obtain the desired surface;
High temperature will
reduce the cutting
performance of the tool, in
particular lead to
diamond graphitization.

The processing
efficiency is low
and the processing
range is limited.

Large impact force, easy to
break the edge and damage
the surface of the workpiece.

Compared with the single special processing technology, the composite processing
technology can show more excellent results. At present, several composite machining
technologies have been developed, such as WJM and laser composite machining technol-
ogy [44], ultrasonic and EDM composite machining technology [45], laser and ellipsoid
ultrasonic vibration composite machining technology [46], ultrasonic vibration and elec-
trolytic linear dressing (ELID) grinding composite machining technology [47], and other
new composite machining technologies. These technologies have their advantages. There is
still a lack of a process method that can simultaneously take into account the surface quality,
efficiency, and cost of CMC processing. Therefore, the theoretical research of the new
multi-energy field composite machining method with high efficiency and quality and its
applications are still the research hotspots in the field of aerospace high-tech manufacturing.

3. Simulation Study of CMC Abrasive Machining

The microscopic results of CMC materials’ processing can be obtained directly through
experimental testing, such as the machinability, tool wear, forces, and surface quality. And
with the aid of microscopes, subsurface damages induced by machining can also be revealed.
Therefore, extensive experimental works on CMC machining have been conducted in the
past decades to investigate and understand the process of machining composites. However,
experimental investigations cannot explore the instant occurrence of material removal, tool-
matrix-fiber phase interaction, and damage during grinding. This has significantly limited
the depth of understanding and the level of process design. In addition, micro-structural
examinations and experimental investigations are expensive and time-consuming. The
advances in numerical analysis enabled comprehensive studies of composite grinding
through the mechanic’s model. The numerical techniques used to study the CMC grinding
process mainly include the finite element method (FEM), smoothed particle hydrodynamics
(SPH), molecular dynamics (MD) analysis, and discrete element method (DEM) analysis.
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3.1. Finite Element Method (FEM)

The finite element method (FEM) studies the real physical systems’ (geometry and
load states) interaction through numerical analysis. The dynamic explicit algorithm is used
in FEM due to the extreme deformation and complicated interactions among the matrix,
fiber, interface, and tools in CMC machining. Grinding is performed continuously by tiny,
abrasive cutting edges. Experimental observation and analysis of the grinding process is
very difficult due to the large number of grains, irregular geometry, high grinding speed,
and small and inconsistent grinding depth. The use of FEM can save a lot of time when
determining experimental processing parameters. The FEM can obtain the ground surface
morphology, force, temperature distribution, chip formation, and coupling relationship
of parameters.

Zhang et al. [48] studied the mechanical properties of Cf/SiC composites and the
influence of interface phase on mechanical properties by using a cohesion model and
the Oliver–Pharr method. The interface strength and thickness influence on the load-
displacement curve during nanoindentation was analyzed. It was found that, due to the
presence of the interface, the in-situ mechanical properties of carbon fiber materials were
changed. The hardness and elastic modulus of carbon fiber materials near the interface
were increased. The maximum load, material hardness, and elastic modulus were positively
correlated with the interface strength and interface thickness. The simulation provides a
theoretical basis and research method for the study of grinding parameters and material
removal mechanisms of Cf/SiC composites.

Liao et al. [49] simulated the single grain scribing process, as shown in Figure 11. The
chip formation and temperature field distribution of negative rake angle were simulated by
FEM. The results show that the chip formation can be explained by cutting theory when the
negative front angle is −15◦~−40◦. However, it is more appropriate to apply the hardness
indentation principle proposed by Shaw [50] to describe the large negative rake angle. The
shear angle decreases and the shear strain increases with the increase of the negative rake
angle. Meanwhile, in large negative rake angle grinding, the highest temperature appears
at the contact point between the abrasive tip and the workpiece, which is higher than the
small negative rake angle grinding temperature. With the increase of the negative rake
angle of abrasive particles, the energy consumed in chip formation increases. Wu et al. [51],
through FEM, concluded that, under wet grinding conditions, grinding fluid can reduce
the wheel sliding force (tangential force), which can reduce the grinding zone temperature.
Long et al. [52] simulated and analyzed the temperature field in the process of high-speed
grinding of engineering ceramics by using the FEM. The result showed that there was a
high-temperature gradient in the shallow surface, which would generate a large thermal
tensile stress and lead to machining defects such as thermal cracks.

Fang et al. [53] established a multi-interface stress transfer simulation of CMC mate-
rials by FEM, through a unit-cell model. The shear stress and optimized interface stress
propagation were studied. As shown in Figure 12, at the middle position plane of the inter-
face phase, the shear stress rapidly increases to the maximum value near the forced spot.
Then, a decrease along the fiber direction occurs and tends to zero about 2Rf away from
the forced spot. The above trends of shear stress are the same under different interfacial
thicknesses, with the increasing thickness of the interface phase. The maximum value of
shear stress gradually decreases. The position reaching the maximum value is gradually
far away from the forced spot. In the radial direction of fiber, the shear stress exhibits a
rapid increase near the interface between the fiber and the interface phase, reaching its
maximum value at the interface. For the PyC interface phase, the shear stress decreases
along the radial direction. After crossing the interfacial phase and the interface, the shear
stress continues to decrease in the matrix along the radial direction. Liu et al. [54] estab-
lished a scratching simulation model of SiCf/SiC based on the JH-2 model in ABAQUS (in
Figure 13). The magnitude of the scratching force under different scratching speeds, depths,
and different diamond types was analyzed, as well as the influence of fiber orientation.
Li et al. [55] established a two-dimensional simulation model of a single diamond grain
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scribing Cf/SiC in ABAQUS, and the influence of wheel speed and grinding depth on
grinding force and workpiece surface morphology was analyzed. Ellahi et al. [56] ana-
lyzed the cutting performance of Cf/SiC with a PCD tool by the FEM. In Figure 14, the
fracture modes in parallel and vertical to the fiber direction and the corresponding force
distribution near the cutting edge were analyzed. At cutting angle θ = 0◦, with respect to
the fiber direction, and the machining direction parallel to the fiber direction, the material is
removed mainly due to the debonding of fiber and matrix. Initially, the matrix fracture and
crushing of carbon fibers occur near the cutting edge, and cracks propagate along the fiber
direction. In the uncut chip area, the bonding of fibers and matrix becomes weak as the
fiber axial strength is far stronger than the bonding strength of fibers and matrix. Stresses
mostly occur at the tooltip and propagate along the fiber direction. At a 90◦ fiber angle, the
rake face of the tool is perpendicular to the fiber direction and carbon fibers are subjected
to tensile stresses. Initially, cracks occur ahead of the tooltip and move in the feed direction.
The shear strength of fibers is lower than axial tensile strength. Therefore, when fibers are
subjected to the tensile stress, fibers begin to elongate and eventually break as the force
surpasses the fibers’ shear strength. The friction between the cutting tool and workpiece is
maximum at that point and the material has been removed mainly due to the shearing of
fiber bundles. Stresses are mostly distributed at the rake face of the cutting tool and the
maximum stress is concentrated around the tool edge. This research provides an efficient
way to analyze the cutting performance of Cf/SiC composite.
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Figure 11. The morphology and temperature distribution of the workpiece shearing zone during
abrasive grinding.
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However, all the above studies only established two-dimensional simulation models.
CMC materials have a complex structure composed of matrix, fiber, and interface layer.
The deformations are complicated during processing. The effect of weaving structure on
material properties is very important. Huang et al. [57] established a 3D woven Cf/SiC
composite model and conducted a comparative study on single-grain scratching simulation
with and without ultrasonic assistance. This research provides a reference for the estab-
lishment of geometric and constitutive models for carbon fiber, SiC ceramic matrix, and
interface layer.

3.2. Smoothed Particle Hydrodynamics (SPH)

SPH is a meshless Lagrange method developed in 1977 [58]. It uses a group of particles
to describe a continuous fluid (or solid). Each particle carries various physical quantities,
including mass and velocity. By solving the dynamic equation of particles and tracking the
trajectory of each particle, the mechanical behavior of the system can be obtained.

Unlike FEM, SPH can present precision and stable solutions to problems involving
deformable boundaries, especially for large deformation and crack propagation, by ap-
proximating the governing equations of particles. SPH is more favorable for a cutting
simulation owing to the particle-based algorithm, eliminating the element’s deformation
between particles [59].
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Liu et al. [60] built a three-dimensional single abrasive grain scratch model to analyze
the SiC grinding mechanism, including the material removal process, speed effect, ground
surface roughness, and scratching force by using SPH (in Figure 15a). The simulation
results showed that the material removal process went through the pure ductile mode,
brittle assisted ductile mode, and brittle mode with the increase of the cutting depth. The
critical cutting depth of ductile–brittle transition was approximately 0.35 µm based on the
variations in ground surface crack conditions, surface roughness, and maximum scratching
force. And increasing the scratching speed promoted the transformation of deep and
narrow longitudinal cracks into shallow and wide transverse cracks on the surface, which
improved the surface quality. Duan et al. [61] constructed a three-dimensional FEM and
SPH model of a single diamond scratching. As shown in Figure 15b, the 3D boundary was
solved by coupling multiple SPH particles into an iron-solid cell consisting of multiple
nodes. And in Figure 15c, Liang et al. [62] simulated the single grain scribing process
with SiC ceramics by using SPH-coupled FEM. These studies provide effective methods
with which to study grinding processes and ground surface quality for SiC and other
brittle material.
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Zheng et al. [63] developed an accurate and efficient modeling platform for simulating
mechanical properties of particle-reinforced matrix composites. As shown in Figure 16, a
master–slave method is adopted within SPH formulation for imposing the essential bound-
ary conditions and other linear displacement constraints. It was proven that the optimized
master–slave (MS) method can provide better accuracy for the displacement constraints.
The optimization with modified boundary interpolation technique (i.e., MS2) is computa-
tionally as efficient as the PF method. This study provided a better choice for implementing
essential boundary conditions and other displacement constraints to overcome the potential
problems encountered by the penalty function (PF) method. Takabi et al. [64] instructed a
method to build the SPH model of both ductile and brittle materials with damage criteria
representing crack initiation and post-failure behavior for machining analysis. The effects
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of damage definition on the chip morphology and cutting forces demonstrate that an ap-
propriate damage criterion must be taken into account for SPH cutting simulations, despite
the natural separation of particles, and regardless of the ductility of the material. Although
SPH is feasible in machining simulations, however, it underestimates forces, instabilities,
and numerical issues with boundary particles, which can lead to inaccurate prediction.
Shi et al. [65] simulated the grinding fracture process of the fiber and matrix of Cf/SiC
composites through the JH-2 model established by SPH. The microcracks initiation and
propagation were analyzed and it was found that the radial crack was deflected due to the
existence of carbon fibers. Zhou et al. [66] explored the grinding removal mechanism of
2.5D Cf/SiC composites in different grinding directions based on experiments and SPH
simulations, and found that the main removal mechanism is brittle fracture. The main
damage modes are matrix cracking, interface debonding, fibers fracture, and fibers pulling
out. And because of the existence of fibers, when the crack propagates towards the interface
between fiber and matrix, the crack deflects. Grinding 2.5D C/SiC composites, the fibers
fracture and fibers pulling out are obvious when the fibers’ direction is perpendicular to
the feeding direction and the ground surface, and the ground surface roughness is the
smallest in this direction. But in the other two directions, fiber fracture is the main factor,
accompanied by a small amount of fibers pulling out.
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Despite its natural superiority in addressing the large deformation problems, SPH has
low computational efficiency due to the kernel approximation compared to the conven-
tional FEM.

3.3. Molecular Dynamics (MD)

In the 1990s, a large number of researchers began to study SiC ductile grinding.
Due to the high experimental cost and long processing time in the ductile domain, many
researchers began to consider the use of simulation methods, such as MD simulation, to
explain the ductile removal mechanism of brittle materials.

MD analysis is a powerful tool for studying complex microscopic systems. This
technique can obtain the motion trajectories of microscopic particles. MD analysis, as a
theoretical research method, is very vital in studying nanoscale grinding process and has
been successfully used to study the microscopic mechanism of tool wear, surface quality,
and subsurface damage.

Based on the Tersoff [67] potential function, Li et al. [68] studied the effect of amor-
phous carbon interfacial layer thickness on the fracture mechanical behavior of SiCNF/SiC
composites through MD calculations, and found that increasing the thickness of the interfa-
cial layer would reduce the stress concentration coefficient of the fibers, increase the fracture
energy, and transform the brittle fracture mode of the cracked penetrating fibers into the
fiber pulling out failure mode, which can enhance the effect of reinforcing toughness, as
shown in Figure 17.
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direction.  

At present, the MD simulation is mainly applied to the cutting depth at the submicro 
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for studying the movement of less than 10−9 s. So, the cutting speed used in the scratch 
experiment is only a few hundred microns per second, which cannot meet the speed re-
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Figure 17. The effect of amorphous carbon interfacial layer thickness on the fracture mechanical
behavior of SiCNF/SiC composites through MD calculations studied by Li et al. [68]: (a) Atomic
configuration of SiCNF/SiC nanocomposite with predefect in matrix; (b) atomic configuration of
fracture surface in SiCNF/SiC nanocomposite with C coating in different thickness; (c) the average
stress concentration factor of SiCNF vs. the thickness of C coating; (d) the tensile strength and fracture
energy of SiCNF/SiC nanocomposite as a function of the thickness of C coating.

Miao et al. [69] investigated the tensile mechanical properties of vertically aligned
CNTs/SiC nanocomposites (VSNs) through an in-situ transmission electron microscopy
(TEM) tensile test and MD simulation. As shown in Figure 18a, molecular models of
VSNs used the Teroff empirical bond-order potential to describe interactions of SiC and
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interface between carbon nanotubes (CNTs) and the SiC matrix. And the interatomic forces
in CNTs were described by the adaptive intermolecular reactive empirical bond order
potential. During the tensile process, the periodic boundary condition was implemented
in all directions and an NVT ensemble with a Nose–Hoover thermostat was employed to
maintain a constant temperature of 300 K. Figure 18b,c shows the molecular models and
results of tensile, pulling out, and peel-off of CNTs. The tensile mechanical performances
of VSNs along the ∥ direction are higher than those along the ⊥ direction. Meanwhile, the
fracture modes of VSNs are different along these two directions. The CNTs can bridge at
the crack surfaces and further bear the stress transfer along ∥ direction. However, the weak
interaction between CNTs and SiC matrix plays a key role in the tensile failure along the
⊥ direction.
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At present, the MD simulation is mainly applied to the cutting depth at the submicro
and nano levels. And due to the maximum computing power being only a few cubic mi-
crons, the simulation scale is greatly limited. Meanwhile, the MD simulation is suitable for
studying the movement of less than 10−9 s. So, the cutting speed used in the scratch experi-
ment is only a few hundred microns per second, which cannot meet the speed requirements
(several hundred meters per second) of the simulation experiment. In addition, in the MD
simulation, the material must have a high deformation rate to ensure the accuracy of the
calculation time, which is rarely used in the non-equilibrium state simulation of polymer
processing models.

In summary, at the micro-scale, MD simulation methods are widely used in polymer
structure design and composite material design. However, in the non-equilibrium state
simulation for polymer processing, the calculation accuracy and force field model need to
be improved.

3.4. Discrete Element Method (DEM)

During the machining process of the CMC, the interaction between wheel and work-
piece gives rise to defects such as machining surface roughness and surface/sub-surface
cracks. Experimental measurements or theoretical analysis of machining processes are
difficult. The simulations like FEM and SPH are computationally expensive. Therefore,
to deeply understand the grinding mechanism of the CMC, DEM is used to study the
generation and propagation of micro-cracks during machining.

DEM was originally developed by Cundall and Stracke [70] in 1979 for the analysis of
rock mechanics problems, and has been implemented in many other fields, such as DEM
simulating particles of rocks, clayey soils, and ceramics.

Jiang et al. [71] simulated the grinding process of ceramics to understand the grinding
mechanism, through building a two-dimensional particle flow program as a simulation
platform. The process parameters used in the DEM model of the horizontal spindle plunge
grinding process are shown in Figure 19a. The relationship among the grinding force
and ground surface crack number with the grinding time is shown in Figure 19b, and
the number of cracks and the average grinding force increase steadily with the increase
of grinding time, and the grinding force of Fx increases faster than that of Fy due to the
grinding chips filling the clearance of the grinding wheel. In addition, when the grinding
force changes dramatically, the crack increases rapidly, resulting in the fracture of the
ceramic parts. As shown by the red dot in Figure 19c, the grinding wheel moving forward,
the crack growth, and the damage appear on the machining surface. Some micro-cracks can
be found along the grinding track. The microcracks extend along the contact surface of the
particles and form macroscopic cracks on the machined surface, resulting in the removal of
the front-end material. It can be seen that the microcracks do not form obvious macroscopic
intermediate cracks. The grains disintegrate into dispersed particles. In the grinding zone,
most of the grains are crushed into particles, which are then quickly thrown away from
the surface of the workpiece by the tangential force. Qiang et al. [72] established the DEM
model of silicon carbide ceramics and the ultra-precision cutting model of the single point
diamond. A dynamic simulation was carried out. The influence of the residual stress
distribution on the direction of the workpiece depth under different cutting conditions,
such as tool rake angle, cutting speed, and cutting depth, were analyzed. This study proved
that a residual stress analysis is feasible with the DEM.

Li et al. [73], respectively, used DEM and the bonded particle model to establish and
calibrate the discrete element models of the SiC ceramic matrix and carbon fiber. The
displacement softening contact model was used to characterize the bilinear constitutive
relationship of interlayer and fiber/matrix interface element damage. The production
and expansion of the matrix crack and the dis-adhesion of the interface can be visually
demonstrated. This study proved that the displacement-softened contact model can be
used to study the elastoplastic of the interface of composite materials, which is feasible for
studying Cf/SiC composites with DEM.
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DEM speed is fast and the storage space required is small, which is especially suitable
for solving large displacement and nonlinear problems. In the DEM application of com-
posite machining, the main issue lies in the fact that the mathematical formulation of this
method requires a particular refinement. However, compared with the FEM, DEM is more
advantageous in simulating the chipping of brittle matrix materials. On the contrary, stress
and strain distribution estimations are normally less accurate.

3.5. Summary of Simulation Study

To sum up, all those numerical methods have been used to model machining processes.
Typically, the FEM is used to simulate the micro-scale machining. The MD is used for the
simulations of nanoscale machining processes. The length scale of the model dimensions
in the DEM, which can be macroscale or micro-scale, depends on particle sizes and com-
putational capacity. As discussed above, the DEM and MD simulations usually need to
handle the interactions between massive numbers of particles and, hence, the computa-
tional cost can be extremely high when the total number of particles increases to a certain
level. To maintain an efficient calculation, the total particle number should be appropriately
selected. The model dimension should reasonably reflect the physical problem considered.
A comparison between the FEM, SPH, DEM, and MD is shown in Table 2.

In addition, multiscale modeling combining atomistic simulation with continuum
simulation to capture material deformation at different length scales has also been studied.
The hybrid FEM-MD method is one of these methodologies. As shown in Figure 20,
Wang et al. [74] proposed a multiscale method combining MD and FEM simulation to
describe the separation behavior of the SiC/PyC interface and predict the stress–strain
response in SiCf/SiC composites; it provides a way to constitute relation prediction.
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Table 2. A comparison between the FEM, SPH, DEM, and MD.

Method FEM SPH DEM MD

Basic theory Continuum mechanics

Meshless Lagrange
method, Kernel Function
and Describing a
continuous fluid (or solid)
with a swarm of
interacting particles

Newton’s law of motion
and the relationship
between force and
relative displacement
between
neighbor particles

Newton’s law of
motion and the
potential function

Timestep ~µs ~µs ~µs ~fs

Length scale Macroscale to mesoscale Macroscale to mesoscale Macroscale to mesoscale Nanoscale

Common usage Continuum materials
and composites

Continuum materials
and composites

Granular and
discontinuous
materials, composites

Nanomaterials

Limitation

Cannot well represent
the discreteness, fracture,
and damage processes
in materials

It requires a relative high
computation and a lot of
time to calibrate
the parameter

Requires a relatively high
computation and a lot of
time to calibrate
the parameter

Requires a huge
amount of
computation and
limits to
nanometric sizes
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4. Conclusions

In this paper, the research on CMC grinding technology is reviewed. Firstly, the
research status of CG and non-CG technology is introduced, and their advantages and
disadvantages are compared. Summarized in Table 1, those technologies have their own
advantages, but there is still a lack of a process method that can simultaneously take into
account the quality, efficiency, and cost of CMCs processing. Therefore, the theoretical
research and application of the new multi-energy field composite machining method with
high efficiency and high quality are still a research hotspot in the field of aerospace high-
tech artificial manufacturing. Then, this paper briefly introduces four kinds of simulation
methods from basic theory, research status, and application scope. The different character-
istics, such as computing power and model scale, give the four simulation methods their
own application scope and shortcomings. Similar to machining technology, it is a trend to
apply the multi-scale simulation method to the study of CMCs machining.

In addition to the studies on techniques and simulation methods, the particularity
structure and physical properties of CMCs materials also deserve our attention The removal
mechanism of CMC materials is complex and changeable due to their structural character-
istics. Different physical properties, reinforcement, matrix materials, and the two-phase
interface have diverse machinability, which change the removal mechanism. The matrix
and reinforcing fibers are not necessarily removed synchronously during the grinding
process. On the other hand, the anisotropy and filamentous toughening phase structure
would cause random interface debonding and cracking events during a machining process.
In addition, in the case of the particularity structure, the variation of fiber orientations
relative to cutting directions, random waviness of individual fibers, and uneven fiber
dispersion in the matrix bring about significant variations of material removal mechanisms
during machining. Meanwhile, in terms of tool wear and machining rate, the high abra-
sion of the reinforcements to a cutting tool leads to excessive tool wear, which, in turn,
brings about unsteady machining and significant subsurface damage such as delamination,
reinforcement fracture, and burr formation, as well as varying surface integrity.

Therefore, the reinforced fibers not only improve the mechanical properties of the
CMC materials, but also change the removal mechanism. Using new technology to improve
processing quality, understanding the influence of fibers’ orientation and distribution on
the material removal mechanism and removal mode, and establishing an appropriate me-
chanical processing model are important research directions for the future. The difficulties
this research must face and the directions it may go in are given in Table 3.

Table 3. Research difficulties and direction for grinding technology for SiC CMC materials.

Main Difficulty General Problem Research Directions

Diverse machinability
The great difference in physical properties between
SiC matrix and C fiber, and the matrix and reinforcing
fiber are not necessarily removed synchronously.

The effect of reinforcing fibers on the removal
mechanism and mode of the material.

The anisotropy and
filamentous toughening
phase structure

The reinforcement-matrix interphase material with
random interface debonding and cracking events
during a machining process.

The mechanical model of the two-phase
interface and the transformation of the removal
mode at the bonded surfaces during grinding.

Fiber orientation

The variation of fiber orientations relative to cutting
directions, random waviness of individual fibers, and
uneven fiber dispersion in the matrix bring about
significant variations of material removal mechanisms.

Grinding mechanism and surface quality on
different fiber orientations.

Tool wear The high abrasion of the reinforcements to a cutting
tool leads to excessive tool wear.

Application of non-CG and research on new
grinding mechanism; research on grinding
quality under different grinding tools.
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