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Abstract: This article explores the challenges of continuum and magnetic soft robotics for medical
applications, extending from model development to an interdisciplinary perspective. First, we es-
tablished a unified model framework based on algebra and geometry. The research progress and
challenges in principle models, data-driven, and hybrid modeling were then analyzed in depth.
Simultaneously, a numerical analysis framework for the principle model was constructed. Further-
more, we expanded the model framework to encompass interdisciplinary research and conducted
a comprehensive analysis, including an in-depth case study. Current challenges and the need to
address meta-problems were identified through discussion. Overall, this review provides a novel per-
spective on understanding the challenges and complexities of continuum and magnetic soft robotics
in medical applications, paving the way for interdisciplinary researchers to assimilate knowledge in
this domain rapidly.
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1. Introduction

In ancient times, the carriage was mainly dedicated to the nobles, and the wheels were
manufactured from rigid materials. They lacked comfort and were expected to be available
for ordinary families. However, after the invention of flexible rubber materials and internal
combustion engines, new transportation, such as cars and bicycles, quickly entered the
homes of ordinary people. Similarly, although most rigid robots are currently limited to
factory applications, these rigid robots have large structures and potential safety hazards.
With the development of new materials and driving technology, soft robots applications are
like changes in traditional transportation [1–5]. In recent years, the study of soft robotics has
garnered widespread attention, primarily focusing on applications in medical fields [6,7],
underwater robotics [8–12], manipulation and grasping [13,14], space exploration [15], and
operations in confined spaces [16–19]. Given the diverse range of soft robots, this paper
primarily concentrates on applying continuum robots (the robot structure has a flexible
continuum backbone (Figure 1(1-0a)) or an equivalent continuum backbone) and magnetic
soft robots (robots embedding magnetic media in soft materials (Figure 1(1-0b))) in medical
settings (Figure 1(1-1)).

Since the concept of continuum robots was first proposed in the Amadeus deep-sea
research project [20,21], significant progress has been made in this field [22–25]. This paper
focuses on tendon-driven (Figure 1(1-2a)) [26,27], multi-rod-driven (Figure 1(1-2b)) [28–30],
and concentric tube actuation (Figure 1(1-2c)) [31–33] applied in medical continuum config-
urations, as well as composite continuum configurations [34–38] or magnetic soft robots
(Figure 1(1-2d,e)) formed by these basic components. In the medical field, continuum robots,
due to their compliant configurations, have attracted widespread attention in endoscopic
and catheter-based interventional surgeries. Researchers from different disciplines have
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proposed various solutions based on their expertise. From a technical perspective, this
includes structure [39] and manufacturing [40], modeling [41,42], sensing [43–45], trajectory
tracking [46,47], control strategies [48–50], state estimation [51], stability analysis [52], and
applications [53,54]. From the viewpoint of the discipline, this encompasses mechanical
engineering [55], computer science [56], materials [57–60], chemistry [61], biology [62],
and medicine [63]. Although the gap between academia and applied fields is constantly
widening, extensive research across interdisciplinary has laid a solid foundation for the
rapid application of continuum robots.

Magnetic soft robots [64–66], as an emerging subfield within the science of soft robots,
have garnered attention for their remarkable controllability and flexibility of movement
driven by magnetic fields [67,68]. It is particularly suitable for microcatheter interventional
treatments (Figure 1(1-3a–e)) [69,70] or those constrained by extreme environments [71]. In
the medical field, these robots have revolutionized the sector with their exquisite control
capabilities, enabling in situ monitoring [72], precise drug delivery [73,74], and targeted
navigation [75], thereby significantly enhancing the accuracy and effectiveness of treat-
ments [76]. However, their applications extend far beyond this. Owing to their structural
programmability [77–79], magnetic soft robots also exhibit vast potential in fields like
logistics automation [80] and environmental monitoring [81,82]. With designs that prevent
the need for complex electrical connections and the ability to operate in tight or hard-to-
reach spaces, these robots offer a unique and effective solution for specific, challenging
application scenarios.

Continuum and magnetic soft robots, although both categorized within the realm of
soft robots, display unique differences and complementary features in their design philoso-
phies, application domains, and technical realizations. From a design standpoint, contin-
uum robots emphasize structural continuity and flexibility, adapting to various complex
and constrained environments [39]. In contrast, magnetic soft robots rely on magnetic fields
for control, particularly suited for remote or contactless operation scenarios [83]. In the
application sphere, continuum robots, due to their exceptional flexibility and adaptability,
find widespread use in medical, disaster relief, and deep-sea exploration fields. Magnetic
soft robots, conversely, excel in precise control aspects like catheter intervention [84] and
targeted drug delivery [85]. Technologically, continuum robots primarily depend on intri-
cate mechanical structures and power systems, such as tendon or rod actuation, posing
significant manufacturing challenges at sub-millimeter scales. On the other hand, magnetic
soft robots function through external magnetic fields and magnetic materials, offering
solutions that can reach sub-millimeter and even micro to nano levels [25]. Despite their
distinct differences, both share commonalities and potential for cross-application, including
pursuing higher degrees of freedom, more complex motion patterns, and shared challenges
in sensing and control algorithms.

Continuum and magnetic soft robots represent two significant branches within medical
robotics, each distinguished by their unique actuation methods and potential applications.
Despite the extensive literature available for each type of robot within their respective
research domains, there is a notable absence of a comprehensive review that compares and
synthesizes them within a unified framework. This paper addresses this gap by exploring
the interrelationship and potential complementarity between continuum and magnetic
soft robots from a modeling perspective. We aim to facilitate interdisciplinary research
methodologies and pioneer new avenues of study through a comprehensive analysis of
these two robotic systems. We hope this integrated analysis will provide fresh insights and
inspirations for technological innovation and practical applications in medical robotics.

This review mainly explores the interdisciplinary applications of continuum and mag-
netic soft robots from the perspective of models. In this article’s second and third parts,
we focus on technical analysis and build a unified theoretical framework for continuum
and magnetic soft robot models layer by layer from the perspectives of topology and group
theory (i.e., algebra and geometry). This involves not only the models themselves, but also
their strong connection to multiple disciplines. The fourth part turns to interdisciplinary
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analysis, exploring the critical role of models in interdisciplinary intersections, showing the
complexity and importance of solving interdisciplinary problems, and how these models
can be extended from specific problems to broader subject areas. The fifth part uses the case
analysis method to deeply examine the strategies and methods of Professor Zhao’s team in
multi-disciplinary comprehensive research, emphasizing the core value of inter-discipline
in promoting scientific and technological progress and expanding application fields. Finally,
in the discussion and conclusion sections, we will summarize and reflect on the impor-
tance and future potential of continuum and magnetic soft robotics in interdisciplinary
environments to comprehensively present our research results and perspectives.

Figure 1. Continuum robots (CR) and magnetic soft robots (MSR) for human medical applications.
(1-0) The basic configuration of continuum and magnetic soft robots is to initially understand the
principles of motion; (a) the introduction is the basic configuration of the motion deformation of the
continuum robot; (b) the introduction is the basic configuration of the motion deformation of the
magnetic soft robot. (1-1) The sites of action of continuum and magnetic soft robots for applications in
human surgery. (1-2) The innovative applications of these robotic technologies in medicine, heralding
new possibilities in treatment and diagnosis (comprising (a) [86], (b) [87], (c) [35], (d) [25], and (e) [88],
which are reprinted images), further concentrating on several prominent robotic models in the
medical sector. The structural type of these robots is the focus of our discussion. (1-3) The application
of continuum and magnetic soft robots in major human organ surgeries (a) in cardiovascular disease
surgery; (b) in cerebrovascular disease; (c) in capillary disease; (d) in pulmonary and tracheal disease;
(e) in aortic and venous vascular disease.
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2. Continuum Robots

We elucidate the modeling methodologies of continuum and magnetic soft robots
through illustrative diagrams and mathematical expressions. This includes exploring
principles, data, and hybrid modeling techniques and simplifying the complexity of inter-
disciplinary integration.

2.1. Principle Modeling

Modeling continuum robots is a multifaceted and multi-dimensional challenge. From
the perspective of handling the unit structural form, continuum robot modeling can be
primarily categorized into several approaches: Cosserat rod theory [89–92] for micropolar
bodies, piecewise constant curvature (PCC) models [23], arc segment models [93], geo-
metrically finite element methods [94], and modal methods [95,96]. Micropolar and finite
element approaches are more suited for describing complex nonlinear deformations in
continuum robots. At the same time, PCC and arc segment models are better tailored for
rapid calculation and control in engineering applications of continuum robots.

Although the Cosserat rod approach, PCC, arc segment models, and modal methods
differ in their names and forms of representation, they essentially serve as distinct sim-
plification methods for addressing the same problem. Viewed from the perspectives of
group theory and topology [97–99], these methods all aim to describe the position and
orientation of continuum robots at specific points. Consequently, the kinematic description
of continuum robots is fundamentally consistent with that of rigid robots. The particular
expressions are as follows:

C = {g : X ∈ [0, 1] 7→ g(X) ∈ SE(3)} (1)

In the context of continuum robot modeling, g ∈ SE(3) encompasses both the position
p(X, t) and orientation R(X, t). Precisely depicting the robot’s orientation, including its
position and direction, is undoubtedly a central aspect of modeling. Various orientation
representation methods, such as rotation matrices, Euler angles, unit quaternions, screw
theory [100], and Plücker coordinates, each possess their distinct advantages, limitations,
and applicability [101]. The actual choice depends on multiple factors, including the
complexity of the application environment and available computational resources. These
representation methods can be interconverted through mathematical transformations in
certain intricate application scenarios, offering enhanced flexibility. A common method of
orientation conversion is presented below:

R = exp(θK̂) = I + sin(θ)K̂ + (1 − cos(θ))(K̂)2 (2)

Although rotation matrices are excellent for their intuitiveness, they can be compu-
tationally and storage-intensive, which may become a limiting factor in applications of
continuum robots requiring real-time control and dynamic simulation. In contrast, Euler
angles are easy to understand and implement, but can introduce unnecessary restrictions
and complexities in describing complex orientation changes due to the gimbal lock issue.
Unit quaternions and screw theory [102,103], within the mathematical framework of Lie
groups and Lie algebras, offer more precise and efficient methods for describing the com-
plex motions and configurations of continuum and magnetic soft robots. Lie groups and
Lie algebras facilitate a lossless mapping from nonlinear to linear, providing profound and
refined mathematical insights into this problem.

From an interdisciplinary perspective, selecting an appropriate method for orientation
representation involves a decision-making process that spans multiple dimensions and
levels. This decision affects the accuracy and complexity of the model and significantly
influences the design of subsequent control algorithms and the optimization of the overall
system. Therefore, when making this decision, it is imperative to consider various technical
and application factors comprehensively. This interdisciplinary and multi-faceted approach
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not only aids in advancing fundamental research in continuum robots, but also provides
solid theoretical support for their application in various practical scenarios.

In the discussion above, we have detailed the rigid description of robot kinematics.
However, given the significant compliance and adaptability of continuum robots, con-
structing their nonlinear dynamic equations necessitates particular attention to accurately
handling the constitutive relations of compliance. In this context, Poincaré’s new dynamics
equations provide a critical theoretical framework [104]. Following the criterion of conti-
nuity for partial derivatives, ∂t∂X = ∂X∂t, we can derive the compatibility equations for
continuum robots:

∂Xη = −adξη+ ∂tξ (3)

We have adξη = [ξ, η] = ξη − ηξ. Observing equations from a temporal or spatial
perspective reveals that the velocity field variable η can be expressed as the strain field
variable ξ, independent of time t. Building upon Equation (3), it is essential to establish the
relationship between strain ξ and the generalized coordinates q. Solid mechanics [105] pro-
vides the theoretical underpinning for this relationship. The relationship of the generalized
coordinates q can be represented as follows:

q = Φ(X)ξ (4)

where Φ(X) is the basis function. To capture the dynamic behavior of continuum robots
in complex environments and under the influence of various forces, the kinematic model
of continuum robots can be described using the Euler–Lagrange equation or Hamiltonian
equation, based on the generalized coordinates q. This kinematic model can be repre-
sented as:

M(q)q̈ + C(q, q̇)q̇ + G(q) = τR (5)

In this context, M(q) represents the mass matrix, C(q, q̇) denotes the Coriolis term,
G(q) signifies the gravitational term, and τR is the input torque. Equation (5) establishes a
more general dynamic equation for continuum robots. To delve deeper into the analysis
and synthesis of continuum robots, it is imperative to transform their dynamic model
Equation (5) into a first-order Hamiltonian form. This transformation is beneficial for
comprehending the fundamental characteristics of the system, but also serves as a powerful
mathematical tool for further control and optimization endeavors.

Ẋ = f (X) (6)

In the realm of multibody dynamics modeling, the process is often complex. Specifi-
cally, for tendon-driven, multi-rod-driven, and magnetic drive continuum and magnetic
soft robots, it becomes necessary to incorporate the descriptions of tendons, rods, or mag-
netic fields, and establish their relationships with the generalized coordinates. Furthermore,
additional elements may need to be considered to develop a more comprehensive dy-
namical model. For instance, tendons [106], multi-rod [107] and magnetic [108] elements.
Sometimes, introducing Lagrangian multipliers, as suggested in [109], is required to ac-
curately describe these interactions in the model. An interdisciplinary and multifaceted
approach is often necessary for more complex scenarios, considering various factors such
as environmental constraints, as detailed in [110]. It is important to note that even with a
comprehensive model, there are inherent assumptions and limitations. For instance, some
models might assume material homogeneity or overlook nonlinear factors like friction and
air resistance. Therefore, understanding the assumptions and limitations of these models is
crucial when applying them in practical scenarios.

2.2. Data Modeling

Traditional rigid robots have been primarily utilized in factory settings, focusing
on executing single, predefined tasks. Precise mathematical models are often one of
the best options for these applications. However, as the tasks and environments for
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robotic applications become more complex, researchers have attempted to develop more
intricate models. Yet, this approach significantly increases computational costs. In practical
applications, compromises often need to be made, followed by optimization through
control algorithms, which may not fully leverage the potential of modeling techniques. The
challenge of modeling and controlling compliant continuum robots designed to operate
in complex environments is substantial. Initially, the focus was primarily on developing
models based on various assumptions.

With the ascent of deep learning [111–113] and artificial intelligence [114], data-
driven models have garnered widespread attention across multiple domains, including
robotics [115–117]. These models are increasingly being integrated into robotic modeling
processes. Soft robots have notably adopted these advanced technologies, achieving signifi-
cant breakthroughs [56,118,119]. This trend has also captivated researchers in continuum
robots, a field grappling with nonlinear modeling challenges, spurring extensive research
into data-driven modeling methodologies for continuum robots [48,120,121]. Data-driven
modeling relies heavily on collecting and preprocessing high-quality data and selecting fea-
tures and models carefully. In the context of continuum robotics, data acquisition predomi-
nantly depends on sensor data [122,123] (such as position, shape, flexibility, and bending),
control signals, external databases or systems [124] (like SOFA [125], Sorosim [126], and
SimSOFT [127]), nonlinear experimental data [128], simulation data [129–131], particular
environmental factors, and expert input.

In data-driven modeling, particularly in the application to continuum robots, subse-
quent steps and corresponding challenges arise once data collection is completed. These
steps include data preprocessing [132,133], feature engineering [134,135], model selec-
tion [136,137], model training [138], model validation [139] and, ultimately, model deploy-
ment [140]. For instance, challenges such as addressing missing and outlier values often
arise during the data preprocessing stage, which is typically complex and prone to errors.
Feature selection and engineering require an in-depth analysis of the raw data to identify
the most relevant features. Meanwhile, during the model selection and training phases,
we encounter the intricate task of choosing the most suitable model for the problem and
fine-tuning its parameters.

Research and practice have adopted various effective strategies to address complex
issues. During the data preprocessing stage, statistical methods and professional cleaning
tools are employed [141]. Machine learning assesses feature importance and conducts corre-
lation and causality analyses for feature selection. Model selection and training heavily rely
on cross-validation and grid search techniques. Regularization or ensemble methods are uti-
lized during the model validation phase to prevent overfitting. Finally, model deployment
involves A/B testing to verify real-world utility and performance monitoring to ensure
stability. Data-driven modeling, especially in applying continuum robots, confronts various
challenges. These include, but are not limited to, data quality, high dimensionality and spar-
sity, imbalanced datasets, and the optimization of model hyperparameters. Furthermore,
computational resource limitations and model interpretability must also be considered.
Specific techniques and approaches must be employed to ensure the effectiveness and
reliability of the models.

Various machine-learning models have been successfully employed in various appli-
cation scenarios of continuum robots. These models include neural networks [142–144],
reinforcement learning [145], support vector machines [146], and a myriad of combined
strategies [147]. They have demonstrated exceptional performance in trajectory prediction,
action recognition, and fault detection. Moreover, statistical models like Bayesian networks
and Gaussian processes have also played a role in estimating the state and parameters
of robots.

However, it is noteworthy that in the application of continuum robots, the interpretabil-
ity of models [148–150] holds importance. This is especially evident in critical application
scenarios such as medical surgery, where understanding the logic behind model predictions
enhances user trust in the model and is also a critical factor in ensuring operational safety.
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Yet, deep learning models are often perceived as ’black boxes’ with complex internal logic
to decipher. This challenge extends beyond technical aspects, encompassing ethical, social,
and legal dimensions, suggesting that a comprehensive solution may involve a broader
range of disciplines.

An interdisciplinary perspective, particularly from fields such as computer science,
ethics in artificial intelligence, and psychology, offers new directions and methodologies for
addressing the issue of model interpretability [151–153]. Integrating concepts like attention
mechanisms [154] and local interpretable models can uncover the rationale behind model
decisions [155]. This not only enhances the credibility of models in applications such as
continuum robots, but also takes into account the ethical and social responsibilities of the
models. In applying continuum robots, data-driven modeling is pivotal in solving technical
challenges and opens new avenues for interdisciplinary research and collaboration. This
contributes not only to the expansion of application horizons, but also provides new
perspectives and tools at both theoretical and practical levels for addressing complex
problems in the real world.

2.3. Hybrid Modeling

Principle modeling typically focuses on deriving fundamental equations of robot
kinematics from basic physical principles. Still, such models often necessitate simplifi-
cations or assumptions in dealing with complex factors, such as friction and nonlinear
responses. Conversely, data-driven modeling relies on extensive information collected
from experimental data or real-world operations, fitting or interpreting these data through
machine learning or statistical methods. Yet, it may lack a profound understanding of the
underlying physical processes. Hybrid modeling [156,157] aims to synthesize the strengths
of both approaches, thereby achieving a more comprehensive and accurate representation
of intelligent system behavior.

Hybrid modeling represents a multi-scientific amalgamated modeling strategy [158],
integrating diverse modeling methodologies and data sources [159,160]. This includes, but
is not limited to, physically based models, data-driven models, statistical models, heuristic
algorithms, and expert knowledge. The strategy aims to achieve comprehensive and precise
description and control of complex, uncertain, and nonlinear systems by amalgamating
various sources of information. The framework is applicable in the narrow sense of com-
bining physical and data models and in a broader context of blending interdisciplinary
modeling approaches [161]. Hybrid modeling in continuum robots primarily focuses on
incorporating data-driven elements into physical models, particularly in the aspect of
control algorithms [162]. Although the efficacy of this hybrid method has been notably
enhanced with the continuous advancement of principle models and data science technolo-
gies [163], the significant compliant nonlinearity characteristics of continuum robots and
the complexity of their operating environments necessitate and urge the expansion of the
application scope and perspective of hybrid modeling.

Hybrid modeling has been extensively researched across various disciplines [157,164–167].
For the first time, we explore the hybrid modeling of continuum robots from both vertical and
horizontal perspectives. A key element in the vertical approach is determining how to allocate
weights to theoretical and data models appropriately, a process often dynamic and dependent
on the environment. In scenarios with insufficient experimental data or low data quality,
theoretical modeling is usually given greater weight, leveraging existing physical knowledge
and mathematical theories for more reliable predictions. Conversely, when data are abundant
and reliable, data models may receive higher weighting to capture complex environments’
impacts or nonlinear factors’ impacts more accurately. Additionally, in the framework of hybrid
modeling, the horizontal integration strategy is also crucial, involving the combination of
different types or sources of models on the same level [168–171]. For example, a continuum
robot may possess multiple degrees of motion and sensory modules, each capable of being
modeled theoretically and through data independently. Horizontal integration then addresses
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how to amalgamate these independent or partially overlapping models into a unified, more
comprehensive model.

The hybrid modeling approach may increase the complexity and computational cost
of the model while also complicating the model validation process. Ensuring that the-
oretical and data models are based on consistent assumptions and datasets to maintain
data consistency presents a challenge [165,172]. Dynamically adjusting model weights can
enhance adaptability, but may also impact model performance. Additionally, in an interdis-
ciplinary environment, model interpretability should not be overlooked [173]. Resolving
potential disciplinary contradictions or conflicts is a complex yet necessary task. Hybrid
modeling provides a possible theoretical framework for continuum robots and extends to a
more interdisciplinary domain. Within the broader context of interdisciplinary research,
hybrid modeling could emerge as a diversified framework, accommodating knowledge
and methodologies from various fields ranging from physics and material science to com-
puter science, robotics, and statistics. This not only accelerates the flow of information and
exchange of knowledge between disciplines, but also enriches the interdimensionality and
accuracy of the models. More importantly, such interdisciplinary collaboration implies a
multi-faceted examination of model assumptions and limitations, enhancing the model’s
reliability and adaptability.

3. Magnetic Soft Robots

While continuum robots focus on millimeter-scale or more oversized dimensions,
magnetic soft robots can extend to the nanoscale. However, ignoring the quantum effects
of microscopic physical phenomena becomes challenging at the nanoscale. Therefore, the
influences of different forms of magnetic fields and quantum effects are equally important
to consider.

3.1. Uniform Magnetic Field

The uniform magnetic field is essential for its stable control environment in magnetic
soft robots. This stability simplifies experimental design and ensures predictability and
repeatability in wide-ranging applications, highlighting the need for advanced model-
ing to leverage its unique benefits effectively. For the magnetic soft robots described in
Equation (5), the primary source of actuation has shifted from mechanical drive to the
torque exerted by magnetic moments. This transition simplifies the model and opens new
possibilities for precise control. Specifically, based on the existing continuum robot dynam-
ics models, we can construct a more comprehensive and unified theoretical framework
for magnetic soft robots in uniform magnetic fields by introducing magnetic moments
as the main source of actuation [108,174,175]. For instance, the interaction between the
magnetic moment m and a uniform magnetic field B can be described by the following
mathematical expression involving magnetic field strength, current density, and other
physical parameters:

τmag = f (m, B) = m × B (7)

The magnetic moment term in Equation (7) needs to be incorporated into Equation (5)
to successfully construct the dynamic model of filamentous magnetic soft robots. This model
increases the complexity and comprehensiveness of the original dynamics model, and opens
new possibilities for precise control and optimization. Further information on the construction
of filamentous magnetic soft robots can be found in the related literature [176–179].

3.2. Non-Uniform Magnetic Field

Despite the preference for uniform magnetic fields due to their simplicity in mod-
eling and predictability in operational contexts, such as in the case of filamentous mag-
netic soft robots [25], non-uniform magnetic fields have demonstrated undeniable ad-
vantages in specific specialized medical applications. Specifically, non-uniform mag-
netic fields offer enhanced capabilities for localized and adaptive manipulation, making
them particularly suitable for interventions in complex and deep-seated tissue structures,
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such as aortic treatment (Figure 1-3a) [180], cancer therapy [181–183], neuro intervention
(Figure 1-3b) [184], intravascular surgery (Figure 1-3c) [185,186], and endoscopic proce-
dures (Figure 1-3d) [187], etc. [188]. These unique advantages underscore the critical im-
portance of non-uniform magnetic field modeling in medical scenarios requiring high
precision and flexibility in deploying soft magnetic robots.

In a uniform magnetic field, since the net magnetic force is zero, our discussion
primarily focuses on the influence of the magnetic torque. However, when transitioning to
a non-uniform magnetic field, the situation becomes more complex. In such environments,
microrobots are influenced not only by magnetic torque but also by magnetic forces. This
can be expressed by the following equation, which demonstrates that:

Fmag = ∇(m · B) (8)

Although the hybrid Equation (8) increases the complexity of the model, it also ex-
pands our capability to control magnetic soft robots in various application scenarios pre-
cisely. Furthermore, fluid resistance becomes an indispensable dynamic factor in scenarios
involving fluid mediums, such as operations within blood vessels or body cavities, espe-
cially in applications involving the manipulation of microrobots in fluid mediums. The
following equation can represent this resistance:

Ffluid = −6πηr(v − u) (9)

With a viscosity of η, u is the fluid velocity and v is the velocity of the robot in the
fluid, and r is the approximate radius of the robot. Considering fluid resistance makes the
multiphysics model more aligned with real-world applications and provides rich content
for subsequent in-depth analysis and understanding. The net external force generated
by the magnetic field and fluid resistance is reflected in the acceleration d2x

dt2 of the robot’s

center of mass. The latter describes the robot’s angular acceleration d2θ
dt2 around its center

of mass, which is determined by the total external torque τ applied. These two equations
provide us with a complete and in-depth perspective for understanding and analyzing the
dynamic behavior of robots in complex multiphysics fields. Therefore, the motion equation
and rotational dynamics of the robot are, respectively, given by:

m
d2x
dt2 = Fmag + Ffluid I

d2θ

dt2 = τ (10)

It should be noted that fluid resistance, the mass matrix, and the Coriolis terms remain
constant in both models. However, we often face more complex magnetic field environ-
ments in practical applications. These environments may not only be non-uniform, but
may also involve the combined effects of multiple magnetic fields. More importantly, in
actual surgical applications, it is necessary to consider problems faced by interdisciplinary,
such as biofilms [189] and infections related to catheters [190,191]. Although the litera-
ture [192] proposes a strategy for preventing biological infections, it still confronts multiple
challenges [193]. Therefore, realizing the application of magnetic soft robots in the medical
field requires interdisciplinary collaboration and integration.

3.3. Quantum Effects

At the micro and nano scales, modeling magnetic soft robots particularly requires
further consideration of aspects such as quantum effects and molecular dynamics, as these
factors may play a significant role at this scale [194]. For instance, quantum effects could
influence the electromagnetic properties of materials [195,196]. Therefore, it is necessary
to select a quantum mechanical model to describe these phenomena in addition to the
dynamic description provided by Equation (10). This could include models like Density
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Functional Theory [197,198] (DFT) or Hartree–Fock [199,200], among others. This model is
typically defined by a Hamiltonian HQ:

HQ = T + VQ(rQ) (11)

where T represents the kinetic energy term and VQ(rQ) is the quantum potential energy. The
system’s ground state or several low-excited states are found by solving the Schrödinger
equation or other quantum equations corresponding to the Hamiltonian HQ. Subsequently,
the quantum correction force FQ is calculated, which is typically the gradient of the quan-
tum potential energy VQ concerning the coordinates rQ:

FQ = −∇VQ(rQ) (12)

This approach of introducing quantum effects through quantum correction forces
offers the advantages of simplicity and broad applicability. Still, it also has the drawbacks
of limited accuracy and the potential for increased computational burden. Finally, it
is worth noting that in addition to quantum correction forces, path integral molecular
dynamics (PIMD) can be used for a careful consideration of quantum effects [201,202].
PIMD represents a more exhaustive yet complex method, typically employed in systems
where precise consideration of quantum effects is necessary.

The complex response characteristics of magnetic soft robots in nonlinear magnetic
fields increase the difficulty of data modeling, rendering traditional linear models inade-
quate. Nonlinear models or deep learning algorithms are necessary to capture these relation-
ships [203]. Modeling of magnetic soft robots must address time dependency, potentially
utilizing networks with memory capabilities such as RNNs or LSTMs. Three-dimensional
operations and complex magnetic fields pose challenges for data collection, necessitating
specialized sensors or computer vision techniques. Data modeling [204–206] and hybrid
modeling offers multiple options for magnetic soft robots, in contrast to the mature tech-
nologies of continuum robots. Researchers should draw on continuum robot strategies, em-
phasizing the integration of precise models, advanced algorithms, and sensing technologies
while focusing on interdisciplinary biocompatibility studies in biological environments.

Data modeling for magnetic soft robots poses more significant challenges than tra-
ditional continuum robots, necessitating the management of more complex issues such
as data sparsity imbalance and ensuring model interpretability and safety. Models must
accurately capture nonlinear magnetic responses and maintain reliability in dynamic envi-
ronments. This requires integrating data science and physics knowledge, advanced deep
learning, and physical models to ensure accuracy in their three-dimensional operations
and complex magnetic field responses. Therefore, interdisciplinary hybridization and
combining theoretical and practical data are crucial in developing magnetic soft robots.

3.4. Numerical Framework

Following a detailed exploration of the interdisciplinary modeling framework for
continuum robots and magnetic soft robots, numerical simulation emerges as a critical step
in realizing these models. Discretization is often necessary to enhance the programmability
of the robot models [207]. To meet the complex demands of interdisciplinary research,
we have meticulously developed a novel classification strategy based on a theoretical
perspective of basis functions. This categorization divides numerical methods into three
major types (Figure 2): basis function methods, zero basis function methods, and hybrid
zero basis methods. Within basis function methods, we further distinguish between global
basis functions (such as spectral methods), local basis functions (like finite element meth-
ods), and hybrid methods (e.g., spectral-element methods). Zero basis function methods
primarily encompass a range of specific algorithms, including Boltzmann lattice and Monte
Carlo methods. Meanwhile, hybrid zero basis methods include innovative approaches to
multiscale or interdisciplinary issues, particularly suited for complex problems such as
fluid–structure interaction.
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Although a plethora of literature has provided non-specialist readers with theoretical
overviews of continuum mechanics [41,124,208–210] and magnetic soft robotics [211], offer-
ing novices in the field a broad perspective, interdisciplinary researchers still face challenges
in selecting appropriate numerical methods and implementing them for numerical solu-
tions. In this context, commercial simulation platforms such as Abaqus [212] and COMSOL
Multiphysics [213], with their user-friendly interfaces and extensive case libraries, have
emerged as powerful tools in interdisciplinary research, significantly lowering the barriers
to entry. However, while these platforms have streamlined the numerical simulation pro-
cess, a thorough understanding of the underlying mathematical principles remains crucial
for expanding the frontiers of interdisciplinary integrated research. By deepening their
knowledge of the mathematical framework, researchers can address complex problems
more innovatively and foster the amalgamation of interdisciplinary expertise.

Figure 2. Numerical methods perspective. Numerical methods are pivotal in transforming theoretical
models into executable computational paradigms. This process is paramount in interdisciplinary
domains such as robotics, which involves converting abstract theoretical concepts into practical
computational procedures. From the perspective of basis functions, we categorize numerical methods
into three primary classifications: basis function methods, zero basis function methods, and hybrid
zero basis methods. This categorization not only aids in identifying and comprehending the char-
acteristics and applicable contexts of various numerical techniques but also highlights their central
role in interdisciplinary, integrated analysis. For instance, in robotics, these methods facilitate more
precise simulation and analysis of robotic dynamics, sensory systems, and environmental interactions.
By delving into the role of these numerical methods, including developing disciplines, we enhance
our understanding of these techniques and establish a more robust and efficient computational
foundation for robotics and a broader spectrum of scientific disciplines.
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4. Interdisciplinary Analysis
4.1. Integration Analysis

Mathematical models are pivotal across multiple disciplines, including biomedical
engineering, material science, chemistry, computer science, and pharmacology. In biomedi-
cal engineering, for instance, magnetic soft robotics models are instrumental in predicting
interactions with complex biological tissues, offering precise simulations of cellular growth
dynamics crucial for tissue engineering [214,215]. Within material science, these models aid
in forecasting the performance of novel magnetic materials, particularly under extreme con-
ditions [216]. In chemistry, models accurately delineate drug molecules’ propagation and
reaction kinetics in complex systems, providing vital information for drug design [217,218].
In computer science, optimized algorithms utilize mathematical models to enhance the
maritime capabilities of robots in unknown environments [219]. Lastly, in pharmacology,
mathematical models are crucial for the design of personalized medication treatment plans,
guiding dosage selection, and the development of treatment strategies [220].

Despite the extensive applicability of mathematical models across various disciplines,
they exhibit notable limitations [221,222]. In biological applications, models often fail to
capture the full complexity of biological systems, such as nonlinear interactions among
multiple cells [223]. In material science, models may not adequately account for defects
and impurities in materials during the manufacturing process [224]. Models of chemical
reactions have limitations in predicting multiple reaction pathways, especially under
variable experimental conditions [225,226]. In computer science, navigational algorithms
may not be sufficiently adaptable to the variable and uncertain factors encountered in
real-world environments [219]. In pharmacology, models also demonstrate limitations in
considering individual genetic differences in drug responses [227]. Therefore, while these
models provide valuable theoretical frameworks, they require continual refinement and
validation by integrating experimental data and interdisciplinary knowledge.

In addressing the limitations of models, different disciplinary fields have developed
their unique resolution strategies. Biologists utilize systems biology and high-resolution
imaging techniques to incorporate detailed cellular and molecular level data into mod-
els, capturing the dynamics of complex biological systems [228,229]. Material scientists
refine models by integrating multiscale simulations and high-throughput experimental
data [230], detailing models to reflect micro defects and macroscopic properties during
material fabrication [231]. Experts in the field of chemistry employ quantum chemical
computations [232,233] and chemical kinetics simulations [234] for more precise predic-
tions of reaction pathways and model calibration through experimental data. In electronics
engineering and computer science, machine learning and data-driven approaches are used
to enhance the adaptability of algorithms to cope with uncertainties in complex environ-
ments [71]. Meanwhile, pharmaceutical research is turning towards personalized medicine,
integrating genomic information [235,236] and patient-specific biomarkers [237] to tailor
models for accurate prediction of drug efficacy. The common goal of these strategies is to
enhance the generalizability of models, ensuring that theoretical predictions better serve
practical applications while promoting deeper interdisciplinary collaboration.

Faced with the limitations of models in specialized disciplines and the complexities of
real-world application environments, in-depth research within a single discipline, despite
its technical sophistication, often struggles to meet the challenges of practical applications
fully [238–241]. The complexity of real-world applications demands models that are
theoretically precise and possess interdisciplinary adaptability and applicability. In such
contexts, interdisciplinary, integrated research becomes necessary for solving complex
problems. More comprehensive models can be developed by integrating expertise in
biology, material science, chemistry, computer science, and pharmacology. These models
maintain their effectiveness and flexibility in the face of the variability and uncertainties
of real-world applications. Interdisciplinary collaboration contributes to the empirical
validation and improvement of models and the advancement of innovative technologies,
ensuring the smooth translation of research findings into practical applications. Therefore,
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building an interdisciplinary collaborative platform to facilitate knowledge sharing and
technology has become necessary in scientific research and technological innovation [242].

In interdisciplinary research, combining specialized technology with mathematical
models is vital to enhancing precision and efficiency. In biology, high-throughput sequenc-
ing offers a wealth of genetic data, bolstering the accuracy of gene expression predic-
tions [243]. Material science employs nanotechnology, such as atomic force microscopy,
to refine models for accurately reflecting microscopic physical properties [244,245]. In
chemistry, real-time monitoring techniques like mass spectrometry [246] provide direct
data for kinetic models, optimizing reaction predictions. Deep learning algorithms in
computer science process large datasets to reveal data patterns, guiding model adjust-
ments [247]. Meanwhile, in pharmacology, combining clinical data with pharmacokinetic
models supports the formulation of personalized treatment plans [248]. This melding of
technology and models deepens disciplinary understanding and plays a significant role in
technological advancement and application translation.

4.2. Case Analysis

To further study the interdisciplinary integration of continuum and magnetic soft
robots, this article selects the research of Professor Zhao’s team as a case study. Moreover,
numerous distinguished groups, such as those cited in [4,249–256], have demonstrated
exceptional interdisciplinary integration capabilities in the research of continuum and
magnetic soft robots, contributing to significant advancements within the field.

Initially confronting the emerging field of magnetic soft robots, Professor Zhao made
pioneering contributions in the early stages, laying an essential foundation for the devel-
opment of the field. In exploring novel soft materials, their work focused on hydrogels
(Figure 3a) [257–263] and dielectric materials [264], addressing numerous challenges in
theoretical modeling [265–267] and functionalization [268]. By combining these advanced
materials with innovative manufacturing technologies (Figure 3b) [258,269,270], Professor
Zhao and his team’s research outcomes have established a solid foundation for both the
theoretical development of magnetic soft robotics and the manufacturing techniques of
advanced materials. Their subsequent breakthroughs in magnetic soft robotics provide a
robust accumulation of scientific and technological advancements.

Since 2018, the research team, building on their extensive experience in foundational
theories [267,271], soft materials [272,273], and advanced manufacturing technologies [269],
embarked on a systematic study of magnetic soft robotics. Utilizing the combination
of 3D printing technology and magnetic media, they achieved innovations not only in
the fabrication of magnetic soft robots (Figure 3c) [66], but also made significant contri-
butions to the foundational theory and methodologies in magnetomechanics, providing
new theoretical frameworks and computational methods for magnetoelastic mechanics
(Figure 3d) [88,176,274,275]. Subsequently, the team effectively integrated material science,
mechanical engineering, and computer science knowledge to develop magnetic soft robots
with innovative features (Figure 3e) [25]. Following these initial achievements, Professor
Zhao’s team also explored the application of magnetic soft robots in the biomedical field,
particularly in neurovascular interventional treatments (Figure 3f) [69], demonstrating their
broad applicability in interdisciplinary applications. This series of research efforts reflects
the team’s in-depth exploration and practice in integrating interdisciplinary applications.
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Figure 3. Research cases. In this interdisciplinary research case, the team initially focused on the
enhancement of hydrogel properties. (a) Aiming to improve its physical characteristics, such as tensile
strength. Subsequently, utilizing advanced manufacturing technologies, the team adeptly transformed
the improved hydrogels into complex structures [257]. (b) This not only validated the practical utility
of the material, but also propelled the development of manufacturing techniques. Further attempts
were made to 3D print programmable ferromagnetic domains in soft materials [258]. (c) Yielding
substantial academic achievements as illustrated. Following this, the team delved into the study of
magnetorheological theory in flexible materials [66]. (d) Providing crucial scientific underpinnings for the
design of magnetorheological soft robots. Building on these theoretical and material advancements, the
team constructed and tested a prototype of the magnetorheological soft robot [176]. (e) Demonstrating
an effective integration of theory and practice. Additionally, they extended the application of the
magnetorheological soft robot to clinical experiments in the medical field [25]. (f) Exploring its potential
in medical applications. In a lateral expansion of their research, the team also developed hydrogel fibers
with high fatigue strength [69]. (g) A technology that holds broad prospects in optogenetics [276].
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In his extensive research across multiple disciplines, Professor Zhao, taking the study
of magnetic soft robots as an example, has integrated forefront technologies and knowl-
edge from material science, mechanical engineering, physical chemistry, and biomedicine,
showcasing the depth and breadth of his research. In terms of interdisciplinary integra-
tion, his team has advanced innovations in the use of 3D printing technology, not only
in the development of hydrogel fibers (Figure 3g) [276] and conductive polymers [277],
but also in pioneering explorations in the field of bioelectronics, such as the development
of 3D printable high-performance conductive polymers for all-hydrogel bioelectronic in-
terfaces [262,278]. Furthermore, Professor Zhao’s interdisciplinary research extends to
the development of biological adhesives [279], significant for the sutureless repair of gas-
trointestinal defects [280]. His team has also achieved innovations in medical robotics, for
instance, developing soft neural prosthetics [281] that offer electromyography control and
tactile feedback, significantly enhancing the naturalness and user experience of prosthetic
technology. In biomedical imaging, Professor Zhao’s team’s bioadhesive ultrasonic technol-
ogy offers new solutions for long-term continuous imaging of various organs [282], holding
significant potential for disease monitoring and surgical navigation.

5. Discussion

This article explores the challenges continuum, and magnetic soft robots face in
medical applications, analyzing them from the perspective of model construction to inter-
disciplinary, integrated applications. We combine the knowledge of topology and group
theory to build a unified model framework covering everything from continuum robots to
magnetic soft robots. This framework promotes interdisciplinary learning and communica-
tion and provides a basis for in-depth discussion of different robot design and application
disciplines’ issues, impacts, and limitations. Furthermore, through case analysis, this article
reveals the importance of moving from basic theory (including model construction) to
interdisciplinary comprehensive application in addressing the challenges of continuum
and magnetic soft robots in the medical field.

Current developments in continuum and magnetic soft robotics exhibit two notable
trends. On the one hand, many researchers are actively leveraging the latest outcomes of
cutting-edge technologies [283], focusing on finding solutions within their specific disci-
plines [79,213,284,285]. However, this approach often overlooks critical interdisciplinary
factors. For instance, in studies concerning the use of robots in blood environments, many
have not adequately considered how environmental factors affect the functionality and
safety of the robots. On the other hand, while some studies attempt to blend knowl-
edge from multiple disciplines, including magnetomechanics, advanced manufacturing
technologies [286–288], material science, and chemistry, there are still unresolved issues
regarding essential materials. These include the biocompatibility of neodymium-iron-
boron in applications [25] and clinical efficacy issues like biofilm infections in hydrogel thin
films. Although these issues have garnered the attention of biomedical researchers [192],
challenges remain regarding such technologies’ mechanisms and effective control.

Faced with these challenges, it is essential to recognize that while single-discipline
research may be efficient in certain situations, interdisciplinary collaboration becomes
particularly crucial in practical applications. Such cooperation facilitates the exchange
and integration of knowledge across different fields and effectively addresses issues that
might be overlooked from a single-disciplinary perspective. For instance, in the selection
of materials, by combining expertise from material science, biomedicine, and mechanics,
we can more comprehensively assess the suitability and safety of materials. Simultane-
ously, interdisciplinary teams can collaboratively explore new design solutions, such as
developing novel composite materials, to meet the demands of robotic technology in
complex environments.

However, despite the foundation of continuum and magnetic soft robotic design
being rooted in advanced materials [278,289,290] and technologies [291,292], significant
challenges arise in practical applications, particularly during sensitive operations such
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as intricate surgical procedures. These challenges are primarily manifested in the areas
of structural design and control application. For instance, magnetic soft robots provide
critical insights into the miniaturization of continuum robots, yet both remain in the nascent
stages of academic research, facing heightened demands in real-world applications. The
prolonged review process for medical devices intended for human intervention undeniably
poses an obstacle, yet it does not constitute the crux of the issue.

The central issue lies in the fact that current research efforts are predominantly confined
to individual disciplines or limited interdisciplinary studies. In modeling, researchers
might focus on enhancing the accuracy of models, leading to complexities that render them
unsuitable for real-time control. Therefore, it often becomes necessary to simplify these
models and compensate for control precision through sensor feedback. Simultaneously, in
sensor research, despite a focus on precision and stability, the biocompatibility of sensors in
the complex, unstructured human body environment is often overlooked. Even studies that
consider biocompatibility fail to fully address issues like biofilm infections during catheter-
based interventions. Additionally, considerations around privacy, technological iteration,
commercialization, and legal challenges must be taken into account [293,294]. Hence, to
transition continuum and magnetic soft robots from academic research to technological
application, deep, interdisciplinary collaboration becomes crucial. This inherently demands
that each research phase provide effective ’interfaces’ (or meta-questions), facilitating in-
depth synergy and knowledge exchange among various disciplines, thereby enabling a
more comprehensive and efficient scientific inquiry.

6. Conclusions

This review provides a comprehensive review of the challenges of continuum and
magnetic soft robotics in medical applications, particularly emphasizing the importance of
interdisciplinary approaches in developing this field. Through a comprehensive analysis,
we demonstrate the critical role of algebra and geometry in building a unified model
framework. At the same time, data modeling and hybrid modeling are discussed, and their
implications for precise control and practical applications are pointed out. Furthermore,
this review reveals the potential for comprehensive interdisciplinary research to improve
the utility and effectiveness of medical robots. Therefore, further strengthening interdisci-
plinary research and cooperation will be key to promoting technological innovation in this
field and solving practical application challenges.
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