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Abstract: Zeta potential (ζ potential) is a significant parameter to characterize the electric property
of the electric double layer (EDL), which is important at the solid–liquid interface. Non-uniform
ζ potential could be developed on a chemically uniform solid–liquid interface due to external flow.
However, its influence on the flow has never been concerned. In this investigation, we numerically
studied the influence of non-uniform 2D ζ potential on the flow at the solid–liquid interface. It
is found, that even without any external electric field and only considering the influence of 2D ζ

potential distribution, swirling flow can be generated near EDL, according to the rotational electric
volume force. The streamwise vortices, which are important in the turbulent boundary layer, are
theoretically predicted in this laminar flow model when considering the 2D distribution of ζ potential,
implying the necessity of considering the origin of streamwise vortices of the turbulent boundary
layer from the perspective of electrokinetic flow. In addition, the ζ potential distribution can promote
the wall shear stress. Therefore, more attention must be paid to shear-sensitivity circumstances, like
biomedical, medical devices, and in vivo. We hope that the current investigation can help us to better
understand the effect of charge distribution on interfacial flow and provide theoretical guidance for
the development of related applications in the future.

Keywords: ζ potential; electric volume force; microfluidics; solid–liquid interface; streamwise vortex;
shear stress

1. Introduction

Electric double layer (EDL) is a kind of physical structure that exists generally in the
two-phase interface or even three-phase interface (including solid, liquid, and gas). Taking
the solid–liquid interface as an example, when the electrolyte solution flows through the
channel, charges will be redistributed on the channel wall. Under the influence of the
surface charge, ions in the solution with the opposite charge of the surface charge, i.e.,
counter-ions, will gather on the surface of the solid, causing the corresponding positive or
negative charges to be reordered. Two thin layers with different electric properties can be
formed on the interface, including a Stern layer and diffuse layer, constituting the important
and common interface electric structure—EDL.

Due to the widespread existence of interfacial phenomena [1–5], EDL and its dynamics
play important roles in many fields, such as microfluidic technology [6–8], electrochemical
analysis [9], energy systems [10,11], and biomedical applications (e.g., pharmaceutical anal-
ysis [12] and cell detection [13]). Relying on the electric properties of EDL, the electrokinetic
(EK) flow (like electroosmotic flow) under the action of electric field have been broadly
applied, to control flow [14], deliver drugs [15], enhance mixing in micro-/nanofluidic
devices [16,17], etc. EDL also occupies a central position in solving many global problems
(e.g., water desalination [18], sewage treatment [19], etc.).
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The Gouy–Chapman–Stern–Grahame (GCSG) model is a widely accepted EDL model,
which holds that EDL is composed of a Stern layer and a diffuse layer [20–23]. The ions
in the Stern layer are considered to be adsorbed and fixed on the solid surface, while the
ions in the diffuse layer but near the Stern layer cannot move freely due to the strong
electrostatic force locally. As the distance from the Stern layer is beyond a certain level, the
electrostatic force is not enough to restrain the thermal motion of the ions, and the ions
diffuse randomly in the solution, which also shows that the diffuse layer as a dynamic
structure can slide on the charged surface. The position where the ions are ready to move
is called the shear plane. The ζ potential is the potential at the shear plane [23].

The ζ potential is a key parameter to characterize the electric structure in EDL. It plays an
important role in interface science (e.g., interfacial reaction [24,25], self-assembly [26,27], etc.)
and electrokinetic flow dynamics [28–30]. However, limited by electrochemical analysis tech-
niques [31–34] on ζ potential, the hypothesis of chemically uniform interfaces with unique
ζ potential was usually considered in past research. Our understanding of local ζ potential and
its influence on diverse disciplines is nearly blank.

In recent years, with the in-depth study of nanoscale interface phenomena and the
development of new materials with complex surfaces and superstructures, researchers
have gradually begun to pay attention to the influence of non-uniform surface charge on
the electrical properties of the interface and explore the factors affecting the surface charge
distribution and the corresponding potential.

On one hand, relevant research shows that chemically homogeneous slab channel
walls exhibit non-uniform ζ potential under the action of an outflow field. For example,
Lis et al. [35] using vibrational sum frequency generation (v-SFG) spectroscopy prelimi-
narily reveal that surface potentials vary with external flows temporally. Subsequently,
Werkhoven et al. [36] showed theoretically that a pressure-driven flow can induce a strong
heterogeneous surface charge and ζ potential on a chemically homogeneous channel wall.
Ober et al. [37] show that liquid flow along the surface of CaF2 creates a reversible space
charge gradient by v-SFG spectroscopy as well. In a current investigation, relying on a novel
fluorescence photobleaching electrochemistry analyzer (FLEA), Meng et al. [38] reported a
two-dimensional ζ potential induced by external flow at the solid–liquid interface.

On the other hand, non-uniform ζ potential can lead to unpredicted outcomes in diverse
fields. Paratore et al. [39] demonstrated that the flow that surrounds a surface with non-
uniform surface charge density (ζ potential as well) can induce complex flow patterns without
a physical constraint. Yang et al. [40] revealed that gold superlattices with nanoscale variations
in ζ potential distribution can significantly augment electrochemical reactions, underscoring the
profound impact of ζ potential heterogeneity on electrochemical processes.

In the investigation, according to the previous experimental and theoretical reports, we
hope to show how the non-uniform ζ potential distribution influences the electric volume
force and its influence on the flow, through the numerical simulation method.

2. Theory

The momentum transport process of EK flow can be described by the Navier–Stokes
equation with the electric volume force term, which is expressed as:

ρ f

[
∂
→
u

∂t
+
(→

u ·∇
)→

u

]
= −∇P + µ∇2→u +

→
Fe (1)

where ρ f is the fluid density, P is the pressure on the fluid, µ is the dynamic viscosity.
→
u = u1 x̂1 + u2 x̂2 + u3 x̂3 is the velocity vector, with u1, u2 and u3 being the velocity
components in x1, x2, and x3 directions, respectively, and x̂1, x̂2 and x̂3 the corresponding
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unit vectors in Cartesian coordinates (see Figure 1).
→
Fe is the electric volume force (EVF),

which can be expressed as [41–43].

→
Fe = ρe

→
E − 1

2

(→
E ·

→
E
)
∇ε +

1
2
∇
[

ρ
→
E ·

→
E

(
∂ε

∂ρ f

)
T

]
(2)

where ρe is electric charge density,
→
E is the vector of electric field strength. In homogeneous

dielectric media with incompressible approximation, the variation of ε is ignored, thus
→
Fe = ρe

→
E , with ρe and

→
E being:

ρe = −ε∇2 φ (3)
→
E = −∇φ (4)

where φ is the electric potential in the EDL, ε = ε0εr is electric permittivity with ε0 being
the vacuum permittivity, and εr is the relative permittivity of fluid. When the ζ = ζ(x1, x2)
potential changes slowly, the potential distribution in the EDL can be approximately
described by Poisson–Boltzmann theory as:

φ(x1, x2, x3) =
4kBT

ezi
tanh−1

[
tanh

(
eziζ

4kBT

)
exp

(
− x3

λ

)]
(5)

where kB is the Boltzmann constant, T is temperature, e is the elementary charge, and zi

is the relative valence state of ions in electrolytes. λ =
√

εkBT/2NAe2∑i ciz2
i is the Debye

length, which is a characteristic length of the EDL. NA is Avogadro constant, and ci is the
concentration of ions in electrolytes.
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Figure 1. The computational domain, coordinate system, and the boundary conditions of the physical
model in the numerical simulation.

Under steady state, divide both sides of Equation (1) by ρ f , and then calculate the curl
on both sides with incompressible fluid relation. Thus, we have:(→

u ·∇
)→

ω −
(→

ω·∇
)→

u = ν∇2→ω +
→
T (6)

where
→
ω = ∇× →

u is the vorticity, ν = µ/ρ f is the kinematic viscosity coefficient, and
→
T = 1

ρ f
∇×

→
Fe = T1 x̂1 + T2 x̂2 + T3 x̂3 is the driving term of vorticity equation. According to

Maxwell’s equations and assuming the magnetic field is steady, by substituting Equations

(3) and (4) into
→
T , we find

→
T =

1
ρ f

∇ρe ×
→
E =

ε

ρ f
∇2(∇φ)×∇φ (7)
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For convenience, let ζi = ∂ζ/∂xi, ζij = ∂2ζ/∂xi∂xj, ζijk = ∂3ζ/∂xi∂xj∂xk (with i, j, k
are either 1 or 2), from Equation (5), it is obtained

∇φ =
BNζ1

M
x̂1 +

BNζ2

M
x̂2 +

ψAB
λM

x̂3 (8)

∇2 φ = ∇·(∇φ) = BNζ11
M − 2ABNζ2

1
ψM +

2AB3 N2ζ2
1

ψM2 + BNζ22
M − 2ABNζ2

2
ψM

+
2AB3 N2ζ2

2
ψM2 + 2ψA3B3

λ2 M2 − ψAB
λ2 M

(9)

and

∇2(∇φ) = ∇·
(
∇2 φ)

=

{
BNζ111

M +
2BN2ζ3

1
ψ2 M +

4A2BNζ3
1

ψ2 M − 6ABNζ11ζ1
ψM + 6AB3 N2ζ11ζ1

ψM2

− B3 N3ζ3
1

M2 − 12A2B3 N2ζ3
1

ψ2 M2 + 4ABNζ2ζ12
ψM +

4A2BNζ1ζ2
2

ψ2 M + 2AB3 N2ζ1ζ22
ψM2

+ 4AB3 N2ζ2ζ12
ψM2 + BNζ1

λ2 M − 12A2B3 N2ζ1ζ2
2

ψ2 M2 +
8A2B5 N3ζ1ζ2

2
ψ2 M3

− 8A2B3 Nζ1
λ2 M2 + 8A4B5 Nζ1

λ2 M3

}
x̂1

+

{
BNζ222

M +
2BN2ζ3

2
ψ2 M +

4A2BNζ3
2

ψ2 M − 6ABNζ22ζ2
ψM + 6AB3 N2ζ22ζ2

ψM2

− B3 N3ζ3
2

M2 − 12A2B3 N2ζ3
2

ψ2 M2 +
8A2B5 N3ζ3

2
ψ2 M3 +

2BN2ζ2ζ2
1

ψ2 M − 2B3 N3ζ2ζ2
1

ψ2 M2

− 2ABNζ2ζ11
ψM − 4ABNζ1ζ12

ψM +
4A2BNζ2ζ2

1
ψ2 M + 2AB3 N2ζ2ζ11

ψM2

+ 4AB3 N2ζ1ζ12
ψM2 + BNζ2

λ2 M − 12A2B3 N2ζ2ζ2
1

ψ2 M2 +
8A2B5 N3ζ2ζ2

1
ψ2 M3

− 8A2B3 Nζ2
λ2 M2 + 8A4B5 Nζ2

λ2 M3

}
x̂2

+

{
2A2B3 Nζ11

λM2 − BNζ11
λM − 6AB3 N2ζ2

1
ψλM2 − 4A3B3 Nζ2

1
ψλM2 +

8A3B5 N2ζ2
1

ψλM3

+
2ABNζ2

1
ψλM + 2A2B3 Nζ22

λM2 − BNζ22
λM − 6AB3 N2ζ2

2
ψλM2 − 4A3B3 Nζ2

2
ψλM2

+
8A3B5 N2ζ2

2
ψλM3 +

2ABNζ2
2

ψλM + ψAB
λ3 M − 8ψA3B3

λ3 M2 + 8ψA5B5

λ3 M3

}
x̂3

(10)

where A(x1, x2) = tanh[ζ(x1, x2)/ψ], B(x3) = exp(−x3/λ), M = A2B2 − 1, N = A2 − 1,
and ψ = 4kBT/ezi is thermal potential. Furthermore, after substituting Equations (8)–(10)

into
→
Fe and

→
T , we have

→
Fe = ε∇2 φ∇φ =

(
εB2

M2 Nζ11 −
2ANζ2

1
ψ +

2AB2 N2ζ2
1

ψM + Nζ22 −
2ANζ2

2
ψ +

2AB2 N2ζ2
2

ψM

+ 2ψA3B2

λ2 M − ψA
λ2

)(
Nζ1 x̂1 + Nζ2 x̂2 +

ψA
λ x̂3

) (11)

and

→
T = ε

ρ f
∇2(∇φ) × ∇φ

= ε
ρ f

B2 N
λM2

{(
A2 + B2 N2

M − 2A2B2 N
M

)
ζ2
(
ζ2

1 + ζ2
2
)

+
[
(N + 4A2B2 N

M − 6A2)ζ2ζ22 + (N − 2A2)ζ2ζ11

+4A2
(

B2 N
M − 1

)
ζ1ζ12

]
+ψA(ζ112+ζ222)}x̂1

− ε
ρ f

B2 N
λM2

{
4A
ψ

(
A2 + B2 N2

M − 2A2B2 N
M

)
ζ1
(
ζ2

2 + ζ2
1
)

+
[
(N + 4A2B2 N

M − 6A2)ζ1ζ11 + (N − 2A2)ζ1ζ22

+4A2
(

B2 N
M − 1

)
ζ2ζ12

]
+ψA(ζ122+ζ111)}x̂2

+ ε
ρ f

B2 N2

M2

{
4A
ψ

(
B2 N

M − 1
)[

ζ12
(
ζ2

2 − ζ2
1
)
+ ζ1ζ2(ζ11 − ζ22)

]
+[ζ2(ζ111 + ζ122)− ζ1(ζ112 + ζ222)]}x̂3

(12)
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It can be seen when ζ is non-uniform in 2D, ζi, ζij, and ζijk can be non-zero. All the three
components in Equation (12) can be nonzero, and thus, the driving term of vorticity is:

→
T ̸= 0 (13)

Therefore, based on Equation (6), the electric volume force
→
Fe with curl can drive the

fluid to produce a swirling flow. It is worth noting that, since there is no external electric
field applied, we only consider the Coulomb force in Equation (1). The influence of other
electric volume forces, e.g., according to electrothermal or dielectric effect, are believed to
be absent in this investigation.

3. Numerical Simulation

Based on the theory above, we can make a reasonable prediction that in the steady-
state flow field, such as pressure-driven flow, there may be a non-uniform two-dimensional
ζ potential distribution at the solid–liquid interface, which will induce the generation
of local electrostatic charge and EVF, resulting in a swirling flow near the interface. To
validate this conjecture, we established a mathematical model of non-uniform ζ poten-
tial distribution and proceeded with a numerical simulation by Comsol Multiphysics on
Equations (1)–(5). The influence of non-uniform ζ potential distribution at the solid–liquid
interface on the flow is investigated under steady-state approximation with the value of
relative tolerance is 1 × 10−6.

3.1. Pressure-Driven Laminar Flow

In this simulation model, the material is liquid water, with electric conductivity and
pH values are σ = 100 µS/cm and pH = 9, respectively. The thickness of the EDL on
the bottom of the microchannel, i.e., Debye length, is estimated to be 11 nm. The specific
physical parameters are shown in Table 1.

Table 1. Properties of the material.

Material
ρf

(kg/m3)
µ

(×10−5 Pa·s) εr

Liquid water 997 89.57 80

The basic flow is a pressure-driven steady flow with incompressible conditions. The
bulk flow Reynolds number Re = Ud/ν < 1, indicating the basic flow is a typical laminar
flow. Here, d = A/2(w + h) is the hydraulic diameter of the flow, U = Q/A is the bulk
flow velocity, Q is flow rate, and A is the cross-sectional area of the computational regime.

In the laminar flow interface, the two sides of the rectangular model that are perpendicular
to the x1 direction are set to the inlet and outlet, respectively. At the entrance, the fully developed
flow condition has been applied, with the average velocity Uav = 6.78× 10−5 m/s. At the exit,
the boundary condition is suppressing backflow (which adjusts the outlet pressure to reduce
the amount of fluid entering the domain through the exit), with static pressure P0 = 0 Pa.
According to the symmetry of the geometric model and the rationality of the physical model, a
no slip boundary condition has been imposed on the other four walls (including the upper wall,

bottom wall, and two side walls), where the fluid velocity is zero. Electric volume force
→
Fe has

been applied to the entire domain of the model (see Equation (5), similar to potential φ, and
→
Fe

is dominant in the EDL at the bottom of microchannel), as shown in Figure 1.

3.2. Electrostatics Module

In this investigation, there is no external electric field applied, and the electric volume

force
→
Fe is entirely generated by the 2D distribution of ζ potential. To study the effect of

the electrical volume force
→
Fe due to the non-uniform ζ potential on the flow field, the
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electrostatic interface has been added into the simulation model. Furthermore, since the
electric field is steady, the effect of the magnetic field is negligible.

The charge is conserved throughout the domain, and the electroosmotic potential φ cal-
culated by Equation (5) was applied in the entire physical model. To further reduce the
computational cost, we calculate the electric volume force by defining custom variables and
analytic functions according to Equations (2)–(5).

As mentioned above, in order to investigate the effect of non-uniform ζ potential
distribution on interfacial flow, a mathematical model of ζ potential distribution (as plotted
in Figure 2) was established to characterize the ζ potential distribution in the solid–liquid
interface at the bottom of the microchannel only (as shown in Figure 1) based on the recent
report of Meng et al. [38], as

ζ(x1, x2) =
[
kx1 + A*cos(2πk2x2) + 1

]
ζ0 (14)

where ζ0 is the classical ζ potential value at the interface of water-fused silica [44]. The slope
k represents how quickly the ζ potential increases in the streamwise direction (with ζ < 0).
The dimensionless amplitude A∗ represents the variation of ζ potential along the spanwise
direction. The wavenumber k2 determines the possible periodicity of ζ potential in the
spanwise direction.

Micromachines 2024, 15, x FOR PEER REVIEW 6 of 20 
 

 

The basic flow is a pressure-driven steady flow with incompressible conditions. The 
bulk flow Reynolds number 𝑅 = 𝑈𝑑 𝜈⁄ < 1, indicating the basic flow is a typical laminar 
flow. Here, 𝑑 = 𝐴 2(𝑤 + ℎ)⁄  is the hydraulic diameter of the flow, 𝑈 = 𝑄 𝐴⁄  is the bulk 
flow velocity, 𝑄 is flow rate, and 𝐴 is the cross-sectional area of the computational re-
gime. 

In the laminar flow interface, the two sides of the rectangular model that are perpen-
dicular to the 𝑥  direction are set to the inlet and outlet, respectively. At the entrance, the 
fully developed flow condition has been applied, with the average velocity 𝑈 =6.78 × 10  m/s. At the exit, the boundary condition is suppressing backflow (which ad-
justs the outlet pressure to reduce the amount of fluid entering the domain through the 
exit), with static pressure 𝑃 = 0 Pa. According to the symmetry of the geometric model 
and the rationality of the physical model, a no slip boundary condition has been imposed 
on the other four walls (including the upper wall, bottom wall, and two side walls), where 
the fluid velocity is zero. Electric volume force 𝐹  has been applied to the entire domain 
of the model (see Equation (5), similar to potential 𝜑, and 𝐹  is dominant in the EDL at 
the bottom of microchannel), as shown in Figure 1. 

3.2. Electrostatics Module 
In this investigation, there is no external electric field applied, and the electric volume 

force 𝐹  is entirely generated by the 2D distribution of ζ potential. To study the effect of 
the electrical volume force 𝐹  due to the non-uniform ζ potential on the flow field, the 
electrostatic interface has been added into the simulation model. Furthermore, since the 
electric field is steady, the effect of the magnetic field is negligible. 

The charge is conserved throughout the domain, and the electroosmotic potential 𝜑 
calculated by Equation (5) was applied in the entire physical model. To further reduce the 
computational cost, we calculate the electric volume force by defining custom variables 
and analytic functions according to Equations (2)–(5). 

As mentioned above, in order to investigate the effect of non-uniform ζ potential dis-
tribution on interfacial flow, a mathematical model of ζ potential distribution (as plotted 
in Figure 2) was established to characterize the ζ potential distribution in the solid–liquid 
interface at the bottom of the microchannel only (as shown in Figure 1) based on the recent 
report of Meng et al. [38], as 𝜁(𝑥 , 𝑥 ) = 𝑘𝑥 + 𝐴∗ cos(2𝜋𝑘 𝑥 ) + 1 𝜁  (14)

where 𝜁  is the classical ζ potential value at the interface of water-fused silica [44]. The 
slope 𝑘 represents how quickly the ζ potential increases in the streamwise direction (with 𝜁 < 0). The dimensionless amplitude 𝐴∗ represents the variation of ζ potential along the 
spanwise direction. The wavenumber 𝑘  determines the possible periodicity of ζ poten-
tial in the spanwise direction. 

 
Figure 2. The non-uniform 2D ζ potential distribution with 𝑘 = 222 1/m, 𝐴∗ = 0.1, 𝜁 = −36 mV 
and 𝑘 = 1 𝜋⁄ . 

Figure 2. The non-uniform 2D ζ potential distribution with k = 222 1/m, A∗ = 0.1, ζ0 = −36 mV
and k2 = 1/π.

By substituting Equation (14) into Equation (5), electroosmotic potential φ could be

calculated. In turn, the electric charge density ρe, electric field strength
→
E , EVF, and

→
T could

be calculated accordingly by Equations (3), (4), (11) and (12).
Finally, it is worth noting that due to the choice of steady-state study method, initial values

of velocity, pressure, and potential are not considered when the boundary conditions are set.

3.3. Modeling and Meshing

The computational regime is a cuboid with dimensions in the order of micrometers. In
the x1-x2 plane, the geometric model is built around the origin O(0, 0). In the investigation,
the potential φ (see Equation (5)) decreases exponentially with x3 and is dominant only in
the EDL at the solid–liquid interface. To capture the influence on flow dynamics, grid cells
with nanoscale resolution are required. However, to be able to capture the evolution of flow,
a large computational domain is required. To compromise these two requirements, the
computation regime is L = 5 µm long, w = 4 µm wide, and h = 1 µm high. Thus, we can
capture the influence of micrometer variation of ζ potential on the flow. In the modeling
process, the geometric model is divided into three regions in the x3 direction, including a
large bulk region (hb = 0.9 µm) in the center of the channel and two symmetrical thin-layer
regions (ht = 50 nm) near the bottom and upper wall.

In the meshing process, mapping operation is used in the x1-x2 plane, and sweeping
operation is carried out upward from the bottom to the upper wall in the x3 direction and
downward from the ceiling to the under wall in the opposite of the x3 direction, respectively,
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in the two thin-layer regions. The grid can be denser in the target area by the arrangement
of geometric sequence. Detailed grid distribution of each region is shown in Figure 3.
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Figure 3. The meshing of solution domain: (a) the thin-layer region (the schematic is scaled up to
10 times in the x3 direction) and (b) the large bulk region.

During the sweeping operation in the x3 direction, the grid in the thin-layer region is
divided down to the nanometer scale to ensure resolution. The minimum and maximum
grid sizes are 1.33 nm and 2.66 nm, respectively. While in the bulk region, the grid is
much coarser with a fixed size of 180 nm. In the x1-x2 plane, both bulk region and thin-
layer region have the same minimum grid size and the same maximum grid size. In the
x1 direction, the minimum and maximum grid sizes are 6.68 nm and 20 nm, respectively.
In the x2 direction, the minimum and maximum grid sizes are 4.42 nm and 13.26 nm,
respectively. Hexahedral grid elements are used for all regions in the model. Detailed
parameters for complete grid statistics of the model are shown in Table 2.

Table 2. Detailed information of the grid in the model.

Parameter Value

Number of grid elements 7,106,000
Number of grid vertices 7,275,576

Minimum grid element quality 1.0
Average grid element quality 1.0

Grid element volume ratio 3.427 × 10−5

Grid volume 20 µm3

Minimum grid size in x1 direction 6.68 nm
Maximum grid size in x1 direction 20 nm
Minimum grid size in x2 direction 4.42 nm
Maximum grid size in x2 direction 13.26 nm
Minimum grid size in x3 direction 1.33 nm
Maximum grid size in x3 direction 180 nm
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3.4. Grid Independence Analysis

To ensure computational validity and stability, we conducted a grid independence
analysis by systematically varying the grid size in all dimensions while keeping other
parameters such as boundary conditions and solvers unchanged. The relative errors (δ) of
the simulated velocity field between the models of different grid quantities (N) are plotted
in Figure 4. It can be seen that δ decreases asymptotically towards zero, with the increase in
grid quantity. The minimum value is 0.24%. The results show that when the grid quantity
is equal to or beyond N = 7, 106, 000, δ is within 1%, indicating a negligible dependency
of computational results on grid density [45]. Consequently, to strike a balance between
computational efficiency and precision, we adopted a grid resolution of N = 7, 106, 000 for
subsequent analyses in this study.
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4. Results
4.1. Pressure-Driven Basic Flow

In the previous investigations on interfacial flow, the influence of interfacial charge
distribution and ζ potential distribution was not taken into account. The basic flow
(e.g., common Poiseuille flow) is driven only by pressure.

In this case, the velocity field distribution of the basic flow is shown in Figure 5a,
where x1

* = x1/l, x2
* = x2/l, x3

* = x3/λ with characteristic length l = h/2 = 0.5 µm and
Debye length λ = 11 nm. We applied a small volume rate (Q = 0.001 µL/h), where the
basic flow velocity is 1.2 × 10−4 m/s at 0.5 µm from the wall, to simulate a relatively large
wall strain rate (240 s−1). Slice and quiver diagrams are used to show the distribution of the
intensity (where the magnitude of intensity is represented by the color) and direction of the
fluid velocity

→
u in the x1-x3 planes at different streamwise positions. The direction of the

fluid velocity after normalization at each position is represented by the vector arrow. Due
to the absence of the external force, the velocity of the basic flow shows an approximately
parabolic distribution in the spanwise direction near the wall, as can be found in Figure 5b
with x1

* = 4.
In contrast, as shown in Figure 5c, since the EDL is extremely thin, the streamwise

component of velocity, i.e., u1, shows a linear variation with the dimensionless vertical
position x3

*. This is an approximation of the parabolic velocity distribution of Poiseuille
flow in the thin EDL.
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Figure 5. Velocity distributions. (a) 3D distribution of fluid velocity
→
u of basic flow. The magni-

tudes of
→
u , i.e.,

∣∣∣→u ∣∣∣, is demonstrated by color. The direction of
→
u , evaluated by

→
u /
∣∣∣→u ∣∣∣, is demon-

strated by the arrows with unit length. (b) Plot of the streamwise velocity component of basic flow,
u1, versus x2

* at different x3
* with x1

∗ = 4. (c) Plot of streamwise velocity component, u1,
versus x3

* at different A∗, where x1
∗ = 4 and x2

∗ = 0 with k = 222 1/m, ζ0 = −36 mV and k2 = 1/π.

4.2. Uniform ζ Distribution

When considering the presence of uniformly distributed ζ potential (i.e., ζ = ζ0) at the
solid–liquid interface, based on Equation (5), it can be seen that there is an electroosmotic
potential distribution in Figure 6a. It shows a uniform distribution in the x1-x2 plane and ex-

ponential decay in the vertical direction. Accordingly,
→
Fe are all in the negative x3 direction

with decreasing magnitudes from bottom to top, as shown in Figure 6b.
→
T is exactly zero

everywhere. In other words, the uniform distribution of the ζ potential induces irrotational
→
Fe. Under the influence of

→
Fe, the velocity distribution of the flow field is shown in Figure 6c.

Compared with Figure 5a, it is obvious that the direction of the velocity
→
u has not changed,

which still dominated by the x1-directional component u1. Furthermore, the parabolic
velocity distribution in the x2 and x3 directions are still present.
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→
u .

From the perspective of vortex dynamics, the source term
→
T in Equation (6) does not

exist in either the basic flow or the flow field considering uniform ζ potential. Therefore, it
does not disturb the basic flow, nor drive the fluid to produce vorticity, and cannot cause
the vorticity to deform (stretch, tilt, twist, etc.).

4.3. One-Dimensional ζ Distribution

In this subsection, we consider if an 1D distribution of ζ potential with a certain slope
in the x direction is formed due to nonuniform interface charge redistribution by the basic
flow. Let A* = 0 in Equation (14), we have:

ζ(x1) = (kx1 + 1)ζ0 (15)

Taking k = 222 1/m and ζ0 = −36 mV as an example, the 1D distribution of ζ poten-

tial see Figure 7a, and the distributions of φ and
→
Fe induced by this ζ potential are shown in

Figures 7b and 7c, respectively. Based on the increase in |ζ| in the x1 direction, the strength of
→
Fe also shows an increasing trend from upstream to downstream. Compared with Figure 6b,

although the x3 component of
→
Fe is still dominant, the x1 component of the

→
Fe is not zero anymore.

This subsequently means that the x2 component of
→
T, i.e., T2 ≠ 0, as shown in Figure 7c.
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T , and (e) fluid velocity
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u under this 1D ζ

potential distribution.
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Although the flow with 1D ζ potential distribution can induce the electric volume
force with Fe1 ̸= 0 and Fe3 ̸= 0, in this case, we still have the streamwise and vertical

components of
→
T , i.e., T1 = T3 = 0, which could be seen more intuitively in Figure 7d.

According to Equation (6), ω1 = ω3 = 0. There is no vorticity generated in streamwise
and vertical directions through the electrical volume force, except for T2 and ω2. As a
result, the velocity distribution of the flow field in Figure 7e shows a clear difference from
Figures 5a and 6c. The dominancy of u1 is no longer always true; in contrast, u3 becomes
dominant when 0 < x3

∗ < 1. Compared with the basic flow, both u1 (Figure 5c) and
∣∣∣→u ∣∣∣

have exhibited significant increment. The parabolic distribution in the x2 direction of basic
flow (see Figure 5b) is no longer present when considering 1D ζ potential distribution.

4.4. Two-Dimensional ζ Distribution

In this subsection, the influence of the 2D distribution of ζ potential on flow is investigated.
In Equation (14), we take k = 222 1/m, A* = 0.1, ζ0 = −36 mV, and k2 = 1/π as an example.
The ζ potential exhibits a 2D distribution on a solid–fluid surface, as plotted in Figure 2.

Based on Equations (2)–(5), a 3D electroosmotic potential φ distribution is generated
in the EDL at the bottom of the microchannel (as shown in Figure 8a), which in turn
generates local electric charge and induces a non-uniform electric volume force. As shown

in Figure 8b,
→
Fe exhibits strong x3-directional component. The directions of

→
Fe are mainly

pointing to the bottom wall of the microchannel. The strength of
→
Fe generally shows a

decaying trend along x3, reaching a maximum at one Debye length above the bottom wall.

The strength of
→
Fe also exhibits variations along the streamwise direction and the spanwise

direction. It increases gradually downstream and decreases from the center of the flow
field, forming an approximate symmetry distribution along the spanwise direction.

Different from the
→
Fe induced by 0D (Figure 6b) and 1D (Figure 7c) distributions of

ζ potential, in the model of 2D ζ potential,
→
Fe can be rotational in 3D. All three components

of
→
T can be non-zero, as shown in Figure 8c,d.

∣∣∣∣→T ∣∣∣∣ increases in the streamwise direction,

which is consistent with that of
∣∣∣∣→Fe

∣∣∣∣. In the spanwise,
∣∣∣∣→T ∣∣∣∣ shows an approximate symmetry

with respect to the center of the channel, but in opposite directions (see Figure 8d). Two
maxima can be observed at x2

∗ = −1.5 and 1.5.

The fluid velocity distribution under the driven of rotational
→
Fe is shown in Figure 9a. The

vertical velocity component u3 was observed near the bottom within one Debye length (i.e.,
0 < x3

∗ < 1). While u1 component begins to dominate at x3
∗ ≥ 1. This phenomenon suggests

that even though most of the electric volume force is offset by pressure gradient, such a large
volume force will still have a significant impact on the velocity field. At the height of x3

∗ ≈ 2.5
and higher,

∣∣∣→u ∣∣∣ is concentrated in the center of the microchannel in the spanwise to reach the
maximum, which shows significant difference from those in Figures 5a, 6c and 7e.

In order to further explore the influence of 2D ζ potential on the interfacial flow, the
velocity distribution in the x1-x2 plane that one Debye length from the bottom (x3

∗ = 1) is
shown in Figure 9b by a surface diagram. It can be seen that the velocity

∣∣∣→u ∣∣∣ of the flow,

considering the effect of
→
Fe caused by 2D ζ potential distribution, is about 3 folds higher

than the basic flow. It exhibits an obvious increasing trend from upstream to downstream
in the streamwise direction. In this plane, u3, rather than u1, is dominant among the three
components of the flow velocity, indicating that the electric volume force (after being mostly
balanced by the pressure term of Equation (1)) can cause the development of flow at the
bottom wall. This implies, when considering the EK flow driven by 2D ζ potential, the
momentum transport near the interface can be significantly promoted.
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The non-zero
→
T further generates

→
ω in the flow field, as shown in Figure 9c. Partic-

ularly, the streamwise component of vorticity is non-zero, i.e., ω1 ̸= 0, and is gradually
strengthened from upstream to downstream. In the upstream region,

→
ω mainly aligns

along the x2 direction with approximately uniform distribution on the same x3. While in
the downstream, this distribution is broken.

→
ω becomes bending towards the streamwise

direction, indicating the possible generation of streamwise vortices.
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ζ0 = −36 mV and k2 = 1/π. (a) 3D distribution of fluid velocity

→
u . (b) 2D velocity distribution of

flow considering and without considering ζ potential distribution at x3
∗ = 1. (c) 3D distribution of

the curl of fluid velocity
→
ω, denoted by

∣∣∣→ω∗∣∣∣, with
→
ω
∗
=

→
ω/
∣∣∣→ωre f

∣∣∣. Here,
∣∣∣→ωre f

∣∣∣ is the maximum
∣∣∣→ω∣∣∣

of basic flow.

Streamwise vortices commonly exist in flow boundary layers, e.g., the well-known
coherent vortex structures in the turbulent boundary layer. However, the origin of such
vortices remains unclear. We hope to give an insight into this problem through the vision
of electrokinetic mechanism, and provide a new approach to control the generation and
evolution of vortices in boundary layers.

5. Discussion

In this section, the influence of the parameters (such as slope k, dimensionless am-
plitude A*, initial zeta potential ζ0, and wavenumber k2) on the flow are systematically
investigated by numerical simulations.

5.1. Influence of k

In this subsection, the influence of slope k on the flow is investigated at A* = 0.1,
ζ0 = −36 mV, and k2 = 1/π. In Figure 10a, it is obvious that u1 shows a linear increment
with x3

∗, which is an approximation of the parabolic distribution caused by fluid viscosity
in a thin layer. When the slope k gradually increases, a stronger variation of ζ potential



Micromachines 2024, 15, 419 15 of 20

along the streamwise direction is induced. The streamwise component of electric volume
force gradually increases as well (see Figure 10b), accompanied by the increasing u1 and
velocity gradient ∂u1/∂x3. Thus, the wall shear stress is:

τ = µ
∂u1

∂x3
(16)

which considering 2D ζ potential distribution can be significantly stronger than that of
basic flow, as can be seen more clearly in Figure 10c.
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Figure 10. Influence of k on the flow, where x1
∗ = 4 and x2

∗ = 0, A* = 0.1, ζ0 = −36 mV, and
k2 = 1/π. (a) Plot of streamwise velocity component, u1, versus dimensional height x3

* at different k.
(b) Plot of streamwise electric volume force component Fe1 versus slope k at the height of x3

∗ = 1.
(c) Plot of wall shear stress, τ, versus dimensional height x3

∗ at different k.
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5.2. Influence of A∗

The influence of A* is investigated at k = 222 1/m, ζ0 = −36 mV and k2 = 1/π,
as shown in Figure 5c. The comparison between the basic flow and the flow under 1D ζ
potential (i.e., A* = 0) shows that the fluid velocity can be enhanced even if T1 = T3 = 0.
When spanwise variation of ζ is taken into account, both u1 and velocity gradient ∂u1/∂x3
are strengthened at larger A*, indicating stronger wall shear stress as well.

5.3. Influence of ζ0

ζ0 is the ζ potential in quiescent fluid. It is a constant in a chemically uniform interface,
determined by material properties and irrelevant to the flow conditions. Similar as k and
A*, as ζ0 is decreased from −10 mV [28], −36 mV [44], −45.8 mV [22], to −100 mV [20],
u1 (Figure 11) and its gradient ∂u1/∂x3 increase apparently.
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5.4. Influence of k2

At last, we discuss the influence of spanwise distributions of ζ potential on the flow,
under k = 222 1/m, A* = 0.1, and ζ0 = −36 mV. Larger k2 indicates a wavier distribution
of ζ potential in the x2 direction, which induces a stronger gradient of ζ potential and more

peak value positions of
→
Fe as well. At k2 = 2/π as an example, the electric volume force

→
Fe

and the corresponding fluid velocity
→
u both exhibit wavy distribution along the spanwise

direction, as shown in Figure 12a,b. Even if the peak values of
∣∣∣∣→Fe

∣∣∣∣ at k2 = 2/π are equal to

that of k2 = 1/π shown in Figure 8b, the peak value of
∣∣∣→u ∣∣∣ becomes decreased a little bit

relative to Figure 9a. The increasing k2 also decreases the streamwise velocity u1 and its
gradient ∂u1/∂x3 (Figure 12c). Therefore, a smaller τ of flow can be concluded.

All in all, it can be seen, when taking the influence of 2D ζ potential into account, the
wall shear stress can be significantly enhanced. For example, at k = 222 1/m, A∗ = 0.1,
ζ0 = −36 mV, and k2 = 1/π, the maximum τ can be up to 1.074 Pa, which is about 2.5 folds
larger than the basic flow. A stronger wall shear stress indicates a stronger interaction
between wall and flow. This could be important in many shear-sensitive circumstances,
especially on biological materials. One example is that the flow shear stress on cells and
tissues may be larger than previously expected. Studying the different control parameters
of 2D potential distribution can help us better understand the effect of charge distribution
on interfacial flow, and according to Equation (16), we can even realize of adjustment of
wall shear stress by changing these parameters.
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5.5. Influence of Other Parameters

In addition to the parameters of the zeta potential distribution discussed above, there
are also several other parameters that affect the EK flow at the solid–liquid interface, for
example, the electric conductivity and viscosity of the fluid. On the one hand, the electric
conductivity is closely related to Debye length, which affects the distribution of electric

potential φ and charge density ρe in the EDL. This in turn affects electric volume force
→
Fe

and the flow as delineated in Equations (2)–(5). On the other hand, the influence of viscosity
is also important. The EK flow induced by non-uniform ζ potential is intrinsically a balance
between EVF and viscosity [46,47], primarily due to the balance of electric volume force and
the viscous effect. The changing of viscosity could affect both the velocity profile and wall
shear stress τ near the wall. However, a comprehensive exploration on these parameters
accompanied with zeta potential variation are beyond the scope of this manuscript and
will be studied in future works.

6. Conclusions

In this investigation, the influence of the non-uniform 2D distribution of ζ potential on
the flow at the solid–liquid interface has been investigated numerically. Since the electric

volume force
→
Fe can be rotational, it further drives the fluid to produce a swirling flow. The
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streamwise vortices, which are important in the turbulent boundary layer, are theoretically
predicted in this laminar flow model when considering the 2D distribution of ζ potential.
This observation implies it is necessary to reconsider the origin of streamwise vortices in
turbulent boundary layer, from the perspective of electrokinetic flow. In addition, when
considering the influence of ζ potential distribution, the wall shear stress can be apparently
larger relative to no ζ potential considered. This is important for shear-sensitivity circum-
stances, particularly in biomedical and medical devices, and in vivo. We hope the present
work provides a theoretical foundation to understand the complex development and evolu-
tion mechanism through various electrical and dynamics parameters, and provides a new
way to control the vortices and shear stress in boundary layers.
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