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Abstract: With the continuous progress of aerospace, military technology, and marine development,
the MEMS resonance pressure sensor puts forward the requirements of not only a wide range but
also high sensitivity. However, traditional resonators are hardly compatible with both. In response,
we propose a new sensor structure. By arranging the resonant beam and the sensitive diaphragm
vertically in space, the new structure improves the rigidity of the diaphragm without changing the
thickness of the diaphragm and achieves the purpose of increasing the range without affecting the
sensitivity. To find the optimal structural parameters for the sensor sensitivity and range, and to
prevent the effects of modal disturbances, we propose a multi-objective optimization design scheme
based on the BP and NSGA-II algorithms. The optimization of the structure parameters not only
improved the sensitivity but also increased the interference frequency to solve the issue of mode
interference. The optimized structure achieves a sensitivity and range of 4.23 Hz/kPa and 1–10 MPa,
respectively. Its linear influence factor is 38.07, significantly higher than that of most resonant pressure
sensors. The structural and algorithmic optimizations proposed in this paper provide a new method
for designing resonant pressure sensors compatible with a wide range and high sensitivity.

Keywords: resonant pressure sensor; MEMS; BP; NSGA-II; algorithmic optimization

1. Introduction

As the global industry develops and advances, higher requirements are placed on pres-
sure sensors for measurement accuracy, sensitivity, and range. For example, submarines
need to accurately monitor depth positions in the 0–1000 m range. This requires highly
accurate and sensitive pressure sensors with a range of 10 MPa. Resonant MEMS pressure
sensors are the most accurate and stable pressure sensors available. They calculate the
pressure by detecting the eigenfrequency change in the resonator, without analog-to-digital
conversion, which makes signal acquisition and processing convenient. Device accuracy is
mainly affected by the mechanical properties of a single-crystal silicon structure, strong anti-
interference ability, and stable performance. Thus, it is very suitable for ocean exploration
and other areas that require the accurate measurement of pressure in complex environ-
ments. Currently, researchers have conducted extensive studies on the range and sensitivity
of resonant pressure sensors [1–3]. In the research on a wide range, Xiang C et al. [4] de-
ployed silicon islands on the device layer to enhance the equivalent stiffness and structural
stability of the pressure-sensitive diaphragm, achieving a measurement range of 0.2–7 MPa,
sensitivity of 2.26 Hz/kPa, and a linear influence factor of 15.386. The linear influence factor
means sensitivity × range, which is the product of the sensitivity and range. Yu J et al. [5,6]
designed electromagnetic-excited sensors and electrostatically excited sensors, obtaining
high measurement ranges of 0.11–30 MPa and 0.11–50 MPa, respectively, by increasing
the thickness of the sensitive diaphragm. However, the sensitivity of these two sensors
was only 0.43 Hz/kPa and 0.066 Hz/kPa, with linear influence factors of 12.83 and 3.3,
respectively. Yan P et al. [7] proposed a resonator made of SOI and SOG materials, with a

Micromachines 2024, 15, 509. https://doi.org/10.3390/mi15040509 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi15040509
https://doi.org/10.3390/mi15040509
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://doi.org/10.3390/mi15040509
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi15040509?type=check_update&version=1


Micromachines 2024, 15, 509 2 of 18

sensitivity of 11.89 Hz/kPa within a range of 0.1–1 MPa, and a linear influence factor of 10.7.
Lu Y et al. [8] introduced a resonant pressure sensor with a measurement range of 1 MPa,
featuring a sensitivity of 13.1 Hz/kPa and a linear influence factor of 13.1. These pressure
sensors increase the diaphragm stiffness by either increasing the diaphragm thickness or
reducing the diaphragm area to minimize diaphragm deformation at high pressures, ensur-
ing measurement accuracy under high-pressure conditions. However, thicker diaphragms
may reduce the conversion ratio, thereby sacrificing sensitivity to varying degrees. To
achieve a higher sensitivity, Han X et al. [9] proposed a high-precision differential resonator.
The lower thickness of the sensitive diaphragm (75 µm) resulted in a high sensitivity of
35.5 Hz/kPa, but the low stiffness of the diaphragm made the structure fragile. Significant
deformation under high pressure led to a decreased linearity and accuracy, resulting in
a range of only 0–0.2 MPa and a linear influence factor of 7.1. Y. Li et al. [10] proposed a
high-sensitivity MEMS resonant differential pressure sensor based on bulk silicon, with a
sensitivity of up to 143.17 Hz/kPa, but with a range of only 0.11 MPa and a linear sens-
ing factor of 15.75. Additionally, Shi X et al. [11] and Lu Y et al. [12] proposed resonator
structures with linear influence factors of 11.12 and 14.14, respectively, achieving a high
sensitivity. Currently, traditional resonant pressure sensors are unable to meet the perfor-
mance requirements of both a wide range and high sensitivity due to structural limitations.
Pressure sensors compatible with both range and sensitivity not only enhance the measure-
ment accuracy, expand the application scope, and improve the system performance but
also reduce sensor application costs. Therefore, investigating resonators compatible with
both range and sensitivity is of significant importance.

The working principle of traditional resonant pressure sensors, as shown in Figure 1,
utilizes a secondary stress transfer island–diaphragm structure [10]. When external pressure
acts on the sensitive diaphragm, the stress generated by the deformation of the diaphragm
is transmitted through the silicon islands to the resonant beam, causing a change in the
resonant beam frequency. However, the sensor can only reliably convert pressure changes
into frequency changes when the deflection deformation of the sensitive diaphragm is
small. Under high pressure, excessive deformation of the sensitive diaphragm leads to a
decrease in linearity and accuracy [13], affecting the sensor’s range.
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Figure 1. (a) Schematic diagram illustrating the working principle of the traditional beam–diaphragm
structure; (b) schematic design of the new structure.

In response to the current shortcomings of resonator structures, this paper proposes a
vertical resonator structure for resonant pressure sensors, and the structural principle is
shown in Figure 1b. The new structure eliminates the influence of excessive diaphragm
deformation on the linearity, providing feasibility for designing sensors compatible with a
high sensitivity and wide range. Additionally, parasitic modes exist in resonant pressure
sensors, and the proximity of parasitic mode frequencies to the operating mode frequency
can lead to a decreased measurement accuracy. To eliminate the influence of mode in-
terference on sensor performance in the new structure and improve two key indicators,
namely the structure sensitivity and range, a multi-objective optimization design scheme
for resonant pressure sensors based on Back Propagation Neural Network (BP) and Non-
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dominated Sorting Genetic Algorithm-II (NSGA-II) algorithms is proposed. The optimized
structure avoids the influence of parasitic modes and achieves device performance with
a high sensitivity and wide range. The new structure provides a conceptual approach
for designing resonant pressure sensors with a wide range and high sensitivity. Further-
more, the multi-objective optimization scheme for sensitivity and range proposed for
resonant pressure sensors can be applied to the multi-parameter optimization of other
sensor structures.

2. Principle and Design of High-Sensitivity and Wide Range Resonator Structure

The principle of the vertical resonator structure, with the resonant beam perpendicular
to the sensitive diaphragm, is illustrated in Figure 1b. When external pressure acts on the
sensitive diaphragm, the diaphragm transmits the pressure to the resonant beam through
the connecting beam, causing a change in the resonant beam frequency. Compared to the
original structure, in the new structure, when the diaphragm is subjected to external forces,
it not only receives support force from the four edges of the diaphragm but also obtains
support force from the resonant beam. Additionally, the sensor adopts a secondary stress
transfer island–diaphragm structure to suppress the energy coupling between the resonator
and the sensitive diaphragm, reducing the impact of resonance on sensor accuracy, and thus
improving the Q factor and accuracy. The resonant beam in the new structure suppresses
the deformation of the diaphragm, improving the equivalent stiffness of the pressure-
sensitive diaphragm and the overall stability of the structure under high pressure. This
effectively addresses the problem of linear attenuation and accuracy reduction caused by
the large deflection deformation of the sensitive diaphragm under high pressure. Based
on the principle shown in Figure 1b, we designed the resonant pressure sensor shown
in Figure 2.
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The structure of the resonant pressure sensor is depicted in Figure 2. The resonator
consists of an upper cover layer, a resonant layer, and a lower cover layer. The square hole
in the middle of the structure serves as the pressure hole, allowing fluid to apply pressure
to the surroundings through the square hole. The pressure hole consists of two thick
walls (support surfaces) and two thin walls (sensitive diaphragms). The support surfaces
prevent the overall deformation of the structure and fix the sensitive diaphragms, which
are responsible for sensing external pressure. The stress on the diaphragm is transmitted to
the resonant beam through silicon islands and connecting beams, causing a corresponding
frequency change in the resonant beam. Excitation and detection electrodes are located
on both sides of the resonant beam, forming capacitors C1 and C2, respectively, with the
resonant beam. The sensor operates by exciting C1 and collecting the capacitance frequency
signal through C2. The signal is transmitted to external circuits through wire holes, and
external pressure is calculated using the frequency–stress relationship.

3. Mathematical Modeling and Parametric Analysis of Resonators

The stress and deformation of the new structure can be equivalent to the structure
shown in Figure 3. When pressure acts on the sensitive diaphragm, the structure will
undergo deformation from Figure 3a to Figure 3b. According to the principle of force
equilibrium in the same direction, the pressure P acting on the sensitive diaphragm should
be equal to the support force of the diaphragm. The support force on the diaphragm can be
divided into two sources: one is the support force around the diaphragm, and the other
is the support force provided by the resonator beam. The force acting on the diaphragm
satisfies Equation (1).

P = P1 + 2P2 (1)
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In Equation (1), P represents the external pressure on the diaphragm, P1 denotes the
support force around the sensitive diaphragm, and P2 signifies the support force provided
by a single resonator beam.

Furthermore, according to the deformation analysis depicted in Figure 3b, the sen-
sitive diaphragm, connecting beam, and resonator beam satisfy relationship 2 in terms
of deformation:

wd = wc+0.5wr (2)

where wd is the deformation of the diaphragm, wc is the deformation of the connecting
beam, and wr is the deformation of the resonant beam.

By combining the displacement equation and the stress equation, the structure satisfies
relationship 3: {

P = P1 + 2P2
wd = wc+0.5wr

(3)
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To solve the unknowns in Equation (3), calculate the stretching deformation wr of the
resonator beam, and subsequently determine the axial stress in the resonator beam.

3.1. Analysis of the Connecting Beam

According to Newton’s third law, the forces acting on the connecting beam and the
resonator beam are equal in magnitude and opposite in direction. Therefore, the magnitude
of the forces acting on both ends of the connecting beam is P2. The deformation of the
connecting beam satisfies the conditions for solving the cantilever beam deformation, and
the deflection deformation is expressed by Equation (4):

wc =
P2Lc

3

12EIc
(4)

where E, Lc, and Ic are the modulus of elasticity of the silicon, the length of the connecting
beam, and the moment of inertia of the connecting beam cross-section, respectively.

3.2. Analysis of the Diaphragm

The sensitive diaphragm is a rectangular diaphragm with four fixed sides, and its
deformation under pressure P1 conforms to the theory of small deflection deformation
of diaphragms, as shown in the deformation of the sensitive diaphragm in Figure 3. For
a sensitive diaphragm with width 2a and length 2b, its deflection deformation can be
expressed as Equation (5):

Ehd
3

12(1− v 2
)(∂4w

∂x4 +2
∂4w

∂x2∂y2 +
∂4w
∂y4

)
=

P1

S
(5)

where wd is the deflection of the diaphragm, S is the sensitive diaphragm area, v and hd are
the silicon Poisson’s ratio and the thickness of the diaphragm, respectively. The bending
stiffness of the diaphragm can be expressed as

D =
Ehd

3

12(1 − v2)
(6)

The boundary conditions for a rectangular diaphragm with fixed connections on all
four sides are

wx=−a,a= 0, ∂w
∂x

∣∣∣
x=−a,a

= 0

wy=−b,b= 0, ∂w
∂y

∣∣∣
y=−b,b

= 0

 (7)

The deflection deformation of rectangular diaphragms with fixed connections on all
four sides can be represented by a trigonometric function as Equation (8):

wd(x, y) =
∞

∑
m=1,3,5···

∞

∑
m=1,3,5···

Cmn

(
1 + cos

mπx
a

)(
1 + cos

nπy
b

)
(8)

Substituting Equations (7) and (8) into Equation (5), the expression for the diaphragm
deflection can be obtained as Equation (9):

wd =
4P1a4((1 + cosπx

a
)(

1 + cosπy
b

))
Sπ4D

(
3 + 2 a2

b2 +3 a4

b4

) (9)
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3.3. Resonant Beam Analysis

The stress–strain deformation of the resonant beam, as shown in Figure 3, can be
represented by Equation (10):

wr =
P2l
EA

(10)

where A, wr, and l are the cross-sectional area, elongation in length direction, and length of
the resonant beam.

For a resonant beam without damping and driving effects, the formula for the resonant
frequency is expressed as Equation (11):

EJ
∂4w(x, t)

∂x4 − P2
∂2w(x, t)

∂x2 + ρm
∂2w(x, t)

∂t2 = 0 (11)

where J is the moment of inertia of the resonant beam cross-section. ρm is the density
of silicon.

The boundary conditions for the simply supported beam of length l at both ends are

w| x=0,l= 0
∂w
∂x

∣∣∣∣
x=0,l

= 0 (12)

The solution of Equation (11) can be expressed as

w = w(x, t)= w(x)cosωt (13)

Substituting Equation (13) into Equation (11) and solving, under the action of axial
force P2, the frequency equation for the first-order free vibration in the width direction of
the beam with both ends fixed can be expressed as Equation (14):

w(P2) =

(
E(4.73 )4br

2

12l4ρm
+

(4.73)4(0.295)P2

12l2ρmhrbr

) 1
2

(14)

In Equation (14), l, hr, and br represent the length, width, and height of the resonant
beam, respectively.

The first-order resonant frequency of the resonant beam along the width direction
under the action of axial force is

f =
ω1(P2)

2π
=

(
E(4.73) 4br

2

12l4ρm
+ (4.73) 4(0.295)P2

12l2ρmhrbr

) 1
2

2π
(15)

3.4. Overall Structural Analysis

The stress and deformation of the structure under the pressure shown in Figure 3 can
be summarized using Equation (3). By substituting Equations (4), (9), and (10) into the
unknown variables of Equation (3), the axial force acting on the resonant beam satisfies the
relationship expressed in Equation (16):

4P1a4((1 + cosπx
a
)(

1 + cosπy
b

))
Sπ4D

(
3 + 2 a2

b2 +3 a4

b4

) =
P2Lc

3

12EIc
+

P2l
2EA

(16)

Using P2 to represent P1, the equation can be expressed as

4(P− 2P 2)a
4((1 + cosπx

a
)(

1 + cosπy
b

))
Sπ4D

(
3 + 2 a2

b2 +3 a4

b4

) =
P2Lc

3

12EIc
+

P2l
2EA

(17)
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The deflection at the midpoint of the diaphragm can be represented as

16(P− 2P 2)a
4

Sπ4D
(

3 + 2 a2

b2 +3 a4

b4

) =
P2Lc

3

12EIc
+

P2l
2EA

(18)

The deflection coefficient at the midpoint of the diaphragm under a uniformly dis-
tributed load is given by

k =
192a4(1− v 2

)
π4Ehd

3
(

3 + 2 a2

b2 +3 a4

b4

) (19)

The axial force P2 in the resonant beam is given by

(P− 2P 2)k
S

=
P2Lc

3

12EIc
+

P2l
2EA

(20)

P2 =
kP

SL3
c

12EIc
+ Sl

2EA+2k
(21)

Substituting P2 into Equation (15), the relationship between pressure P and frequency
f is given by Equation (22):

f =

(
10.428Ebr

2

π2l4ρ
+

SAL3
c+6SlIc+24EkAIc

3.9π2l2ρhrbrkPEAIc

) 1
2

(22)

Randomly selecting parameters such as the length, width, and height of the resonant
beam, connecting beam, and sensitive diaphragm, we calculated the resonant frequency
of the resonator under a pressure of 10 MPa using the proposed mathematical model. A
comparison with data obtained from COMSOL 6.1 software revealed a maximum frequency
difference of 2754 Hz and a maximum error of 1.96%, indicating the high accuracy of the
proposed mathematical modeling. The calculated and comparison results are shown
in Figure 4.
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4. Pressure Sensor Design and Optimization

To make resonant pressure sensors (absolute pressure sensors) not only capable of
achieving a specific measurement range of 1–10 Mpa but also characterized by a high
sensitivity, we systematically varied the individual parameters and analyzed their effects
on the sensor sensitivity and interference frequency for the resonator beam, connecting
beam, and diaphragm. Based on the analysis results, we selected the sensor structure with
the highest sensitivity within the specified range.

4.1. Resonant Beam Structural Analysis and Design

According to Equation (15), the relationship between the length l, width hr, and height
br of the rectangular resonant beam and the initial frequency and sensitivity is shown in
Figure 5. Here, when the length changes from 800 µm to 1500 µm, the resonant beam
frequency decreases by 60% on average, and the sensitivity also decreases slightly. When
the height changes from 40 µm to 50 µm, the resonant beam frequency remains basically
unchanged, but the sensitivity decreases by 0.6 Hz/kPa on average, which is 20%. When
the width is increased from 20 µm to 30 µm, the resonant beam frequency increases by 50%
on average, while the sensitivity decreases by 50%. Reducing both the width and height
can effectively improve the resonant beam sensitivity, but the close proximity of the width
and height will lead to interference between the horizontal and vertical resonant modes,
so there should be a certain difference between the height and width in the parameter
selection. Compared with reducing the height, reducing the width of the resonant beam not
only improves the higher sensitivity but also reduces the intrinsic frequency and increases
the resonant beam amplitude. Therefore, a smaller width rather than height is chosen in
the structure design. Based on the resonant beam parameters and resonant frequencies of
the existing structures [10,11,14], a resonant beam structure with a length of 1200 µm, a
width of 20 µm, and a height of 40 µm is selected with an intrinsic frequency of 120 kHz.
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Figure 5. The influence of resonant beam parameters on the natural frequency and sensitivity:
(a) Relationship between the parameters of the harmonic beam and the intrinsic frequency; (b) Trend
of the influence of the variation of the parameters of the harmonic beam on the sensitivity.

Preliminary structural models have been established, and dynamic analysis of the
structure has been conducted using COMSOL. The first six mode shapes of the resonator
structure are shown in Figure 6, while the first three mode shapes of the resonant beam are
illustrated in Figure 7.
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Figure 7. Vibration modes of the resonant beam: (a) the first mode shape; (b) the second mode shape;
(c) the third mode shape.

Compared to higher-order modes, lower-order modes have advantages such as larger
resonance amplitudes, easier excitation and detection, and stronger interference resistance.
Therefore, in the selection of operating modes for resonators, lower-order modes are
typically preferred. For this reason, in this study, the first-order horizontal resonance mode
of the resonant beam is chosen as the operating mode, which is the fifth-order resonance
mode in the overall structure. The frequencies of the first four modes of the structure are
concentrated in the range of 50–80 kHz, which is significantly different from the operating
mode at 120 kHz and can be disregarded. As the frequency of the resonant beam increases
under external pressure, the frequency difference between it and the sixth-order mode
gradually decreases until they intersect. To prevent the intersection of the operating mode
and the sixth-order mode (interfering mode) within the measurement range, which would
lead to an increase in the measurement error, finite element analysis is utilized to analyze
the structural parameters affecting the interfering mode and the operating mode. Based on
the analysis results, the structure is optimized to obtain the optimal sensitivity structure
without mode interference within a specific range (1–10 MPa).
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4.2. Connecting Beam Structure Analysis and Design

The relationship between the interference frequency of the sensor and the parameters
of the connecting beam is shown in Figure 8 (left). The sensitivity and parameters of the
connecting beam are depicted in Figure 8 (right), where wc, Lc, and hc represent the width,
length, and height of the connecting beam, respectively. When the width wc is increased
from 200 µm to 500 µm, the average sensitivity of the structure increases by approximately
3.5 Hz/kPa, which is about a 230% increase. Meanwhile, the average interference frequency
decreases by around 60 kHz, representing about a 30% decrease. Increasing the width
significantly improves the sensitivity of the structure, but also reduces the interference
frequency and compresses the range of frequency variation in the resonant beam operation.
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Figure 8. The impact of parameters on the disturbance frequency and sensitivity.

The connecting beam is located in the resonant layer along with the resonant beam,
as shown in Figure 2, with a height of 40 µm. When the length Lc of the connecting beam
increases from 1500 µm to 1700 µm, the average sensitivity of the structure decreases by
0.4 Hz/kPa, and the average interference frequency decreases by 40 kHz. Increasing the
length leads to a decrease in both the sensitivity and interference modal frequency, thereby
limiting the performance parameters of the structure. To achieve a higher sensitivity and
interference frequency, the length should be minimized. The length of the connecting beam
can be represented by the width of the diaphragm, as shown in Equation (23).

Lc= 2a + c (23)

where Lc represents the length of the connecting beam, 2a is the width of the pressure-
sensitive diaphragm, and c denotes the designed electrode placement distance, which
is 200 µm.

4.3. Sensitive Diaphragm Structural Analysis and Design

The relationship between the diaphragm parameters and interference frequency and
sensitivity is illustrated in Figure 9, where 2a, 2b, and hd, respectively, represent the width,
height, and thickness of the diaphragm. The width 2a increases from 600 µm to 1100 µm,
resulting in an average decrease of 70 kHz in the interference frequency, representing a
30% reduction. The sensitivity of the structure with a height of 800 µm is maximized when
the width is 900 µm, while the sensitivity of the structure with a height of 1000 µm is
maximized when the width is 1100 µm. As the height 2b increases from 600 µm to 1100 µm,
there is no significant change in the interference frequency, but the sensitivity increases on
average by 1.5 Hz/kPa, representing a 150% increase. When the thickness hd increases from
50 µm to 95 µm, the interference frequency increases on average by 30 kHz, a 20% increase,
while the sensitivity decreases on average by 3 Hz/kPa, representing a 75% reduction.
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4.4. Resonator Structure Optimization

The pressure and frequency of the resonant structure exhibit a highly linear relation-
ship; hence, the sensitivity s can be represented in terms of the operating frequency S at a
full-scale pressure of 10 MPa, as shown in Equation (24):

S = f0 + s × r (24)

where S is the full-scale frequency, f0 is the natural frequency of the structure, the value is
120 kHz, s is the sensitivity of the structure, and r is the range; since resonator sensitivity is
usually measured in Hz/kPa, the value here is 1000.
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The design of the structure should aim for both a high range and high sensitivity.
Therefore, within the determined range of 10 MPa, adjusting the parameters to achieve a
higher sensitivity is necessary, meaning a higher full-scale operational frequency should be
pursued. Additionally, to prevent interference mode effects in this structure, the interference
frequency should be higher than the operational frequency at the full scale of the sensor.

Therefore, in the design of the structure, the goal should be to obtain the maximum
full-scale resonant frequency while ensuring that the interference frequency is greater than
the full-scale operational frequency.

In the structural parameters, the parameters of the resonant beam are related to
sensitivity but not to interference frequency. The relationship between the length of the
connecting beam and the width of the diaphragm is given by Equation (23), indicating
a linear relationship between the two. The height of the connecting beam is the same as
that of the resonant beam, which is 40 µm. These parameters can be selected through
single-objective optimization.

For the width of the connecting beam and the width, height, and thickness of the sensi-
tive diaphragm, there is usually an inverse relationship between the interference frequency
and the parameters chosen for the full-scale resonance frequency. When parameters leading
to higher full-scale resonance frequencies are selected, the interference frequency tends
to be lower, whereas when parameters leading to lower full-scale resonance frequencies
are chosen, the interference frequency tends to be higher. This contradictory relationship
implies that single-objective optimization methods cannot meet the requirements for de-
signing the optimal structure. Consequently, exhaustive search methods become one of
the most common approaches for selecting structures from multiple parameters. However,
exhaustive methods are not only inefficient and costly but also may fail to find the global
optimum when dealing with large search spaces, leading to being trapped in local optima.
Therefore, it becomes challenging to obtain the optimal structure of the resonator. To ad-
dress this issue, a multi-objective optimization design scheme for resonant pressure sensors
based on the BP algorithm and NSGA-II algorithm is proposed, achieving the simultaneous
optimization of range and sensitivity.

4.4.1. BP- and NSGA II-Optimized Structures

The BP neural network [15] is widely utilized due to its simplicity, strong nonlin-
ear mapping capability, and high operability. It serves as a black-box function to solve
engineering optimization problems with complex input–output relationships, making it
particularly suitable for fitting the unknown relationships between sensor structural pa-
rameters and performance. NSGA-I introduced a non-dominated sorting and elite strategy,
while NSGA-II [16], based on NSGA-I, proposed congestion and crowding comparison
operators, facilitating fast search and improving the convergence speed of optimization. It
is often employed for handling multi-objective optimization problems.

In order to extract the parameter mapping relationship of the resonator and construct a
high-precision BP network, 300 sets of data were randomly selected for the four parameters
that simultaneously affect the interference frequency and operating frequency, namely the
width of the connecting beam and the width, height, and thickness of the diaphragm. The
corresponding operating frequency S and interference frequency F for each parameter set
were calculated using the commercial software COMSOL. Among these, 260 sets of data
were chosen as the training set and 40 sets as the validation set for training the BP neural
network. Partial data are shown in Table 1.

Build a BP neural network with four inputs and two outputs, using diaphragm width
2a, diaphragm height 2b, diaphragm thickness hd, and connection beam width wc as
input independent variables, and interference frequency F and operating frequency S as
output dependent variables. The function relationship fitted by BP is used as the objective
function for NSGA II iteration optimization to obtain the Pareto optimal solution set with
two outputs. The optimization framework of the structure is illustrated in Figure 10. Cal-
culate the interference frequency and operating frequency corresponding to the structural



Micromachines 2024, 15, 509 13 of 18

parameters using finite element analysis and import them as training and testing sets into
the BP training network. The weight model trained by BP is imported into NSGAII as
the functional relationship equation, and the Pareto solution set after 1000 iterations of
population iteration is taken as the optimal solution set. The solution most in line with the
requirements is selected from the Pareto solution set as the optimal structure, and finite
element analysis is conducted to validate the structure.

Table 1. BP network training set.

hd/µm 2b/µm 2a/µm wc/µm S/Hz F/Hz

50 800 600 230 −145,745.2954 −206,431.3251
50 800 600 240 −147,728.3998 −203,625.0286
60 800 700 250 −144,926.1623 −195,884.3529
65 800 700 250 −140,845.8125 −202,368.2791
70 800 700 250 −137,959.511 −207,989.4299
75 800 700 250 −135,335.4896 −213,111.4485
70 750 700 250 −136,039.2568 −207,997.5868
70 800 700 250 −137,959.511 −207,989.4299
70 850 700 250 −139,393.7201 −207,660.0328
60 800 650 250 −142,946.4384 −206,745.8811
60 800 700 250 −144,926.1623 −195,884.3529
60 800 750 250 −146,436.1059 −185,449.8793
60 800 800 250 −147,310.5528 −176,572.7048
60 800 850 250 −148,220.33 −168,312.7138
. . . . . . . . . . . . . . . . . .
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Figure 10. Optimization process.

The optimization model constructed employs a three-layer neural network structure
for BP training, comprising an input layer, a hidden layer, and an output layer. Each layer
is associated with corresponding weights and thresholds. The input matrix and output
matrix are illustrated in Equations (25) and (26), respectively.

X =[2a 2b hd wc] (25)
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Y =[F S] (26)

The three-layer neural network structure consists of four input parameters and
two output parameters, with a hidden layer containing nine nodes. The specific formula
is 27.

n = 2m + 1 (27)

where n represents the number of hidden nodes, and m represents the number of input
layer nodes.

In the BP training process, if there are significant differences in the range of the data, it
can lead to large biases during weight updates, resulting in slow training. To improve the
training speed of the BP network and mitigate the issues of gradient vanishing or explod-
ing, all data are normalized using the normalization equation as shown in Equation (28).
Subsequently, the data are de-normalized using Equation (29).

Xi= 2× (xi−xmin)

xmax−xmin
− 1(i = 1, 2, · · · , n) (28)

Yi =
(yi+1)× (ymax−ymin)

2
+ymin(i = 1, 2, · · · , n) (29)

For the iteration of weights in the BP network model, adjustments are made using
the error backpropagation algorithm. When the mean squared error E between the fitted
output data and the actual values exceeds the expected value for the current iteration, the
error is propagated backward from the output layer, and the weights and thresholds are
updated until the error gradually decreases to achieve the desired accuracy. The mean
squared error is calculated using the formula shown in Equation (30).

E =
1
n

n

∑
i=1

(pi−ri)
2 (30)

where pi is the predicted value of the BP fitting, and ri is the true value of this training.
The NSGA-II algorithm employs a strategy of fast non-dominated sorting and crowd-

ing distance to achieve good convergence in multi-objective optimization problems. It can
quickly converge to the Pareto front with a high convergence, solution set diversity, and
uniformity. Its workflow is illustrated in Figure 11.
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An initial population Q1 is generated by random selection, and a second-generation
population Q2 is generated by a genetic operator. Subsequently, during the population
iteration process, the offspring population Qt generated in generation t is merged together
with the parent population P to form a new population of population size 2N. Then, the
population Rt is non-dominated sorted to find a series of non-dominated sets Z1, and the
crowding degree of each individual is calculated. Since the individuals of both parent
and child generations are contained in population Rt, the non-dominated set Z1 after
non-dominated sorting contains the best set of individuals in the whole population R1,
so Z1 is put into the new parent population Pt+1 first. If at this point the size of the
population is smaller than N, then it is necessary to continue to fill Pt+1 with the next
level of non-dominated set Z2 until the size of the population exceeds N when the non-
dominated set Zn is added, then, individuals are extracted using the crowding comparison
operator for each individual in Zn to bring the size of the population Pt+n up to N. Genetic
operators such as selection, crossover, and mutation are then used to generate new offspring
populations Qt+1 in order to prevent the results from not converging due to the infinite
size of some parameters in the optimization process, and at the same time to avoid the
structure not being processed or processing difficulties due to some parameters being too
small. According to the results of the above analysis, the boundary of the optimization
parameters is divided, and the boundary conditions are shown in Equation (31):

700 ≤ 2a ≤ 1000
00 ≤ 2b ≤ 1000
50 ≤ hd ≤ 95

200 ≤ wc ≤ 400

(31)

The weighted model trained by BP is imported into NSGA-II as the functional rela-
tionship, and the Pareto solution set obtained after 1000 iterations of the population is
considered the optimal solution set. Each Pareto solution set contains the optimal points
with their corresponding input parameters 2a, 2b, hd, and wc, as well as the optimized F
and S. This process yields the optimal structure of the resonant pressure sensor and the
highest sensitivity within the 10 MPa range.

4.4.2. Optimization Results

The trained BP neural network algorithm accurately predicts two output variables,
the interference frequency and operating frequency, based on four input variables: the
diaphragm length, width, and height, as well as the width of the connecting beam. The
optimization solution set obtained through the NSGA-II algorithm is depicted in Figure 12,
where the horizontal axis represents the resonant frequency S of the structure at the full scale
of 10 MPa, and the vertical axis represents the interference mode frequency F. Points below
point C satisfy the requirement that the operating frequency is less than the interference
frequency. Among them, point A represents the structure with the highest operating
frequency under the condition of the operating frequency being lower than the interference
frequency. According to Equation (24), the highest operating frequency corresponds to the
highest sensitivity; thus, point A exhibits the highest sensitivity. However, at higher initial
frequencies and tens of thousands of quality factors [17], in order to avoid the decrease
in sensor measurement accuracy caused by the interference frequency approaching the
operating frequency, a large frequency difference needs to be maintained between the two.
Zhang F et al. [18] reported an initial frequency of 37,431 Hz for a sensor, with a difference
of 5000 Hz from the interference frequency, thus avoiding the influence of interference
modes. Therefore, we select point B as the optimal solution, with a frequency difference
of 15,558 Hz between the interference frequency and the operating frequency, effectively
avoiding the interference mode. The parameters at this point include a diaphragm width 2a
of 713 µm, a height 2b of 999 µm, a thickness hd of 50 µm, and a connecting beam width wc
of 234 µm. The resonant frequency at full scale is 163,751 Hz, and the interference frequency
is 178,817 Hz. The optimization results were validated using the commercial software
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COMSOL, showing resonant and interference frequencies of 162,479 Hz and 178,493 Hz,
respectively, which are in good agreement with the results of the NSGA-II multi-objective
optimization. The specific structural parameters are listed in Table 2.
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Table 2. Key parameters of optimized structure.

Name Definition of Parameters Range (µm)

2a Width of diaphragm 713
2b Height of diaphragm 999
hd Thickness of diaphragm 50
wc Width of connect beam 234
Lc Length of connect beam 1626
hc Height of connect beam 40
l Length of resonant beam 1200

br Height of resonant beam 40
hr Width of resonant beam 20
S Resonant frequency 162,479 Hz
F Interference frequency 178,493 Hz

Within the full range of 10 MPa, the maximum internal stress of the resonator is
2.5 × 108 Pa. After optimization, within the 10 MPa range, the relationship between the op-
erating mode (Mode 5) and other modes is depicted in Figure 13. The frequency difference
between the operating mode and the nearest interference mode within the range is greater
than 15 kHz, effectively eliminating the influence of the interference modes. The sensitivity
of the sensor within the operating range of 1–10 MPa is calculated to be 4.23 Hz/kPa, with
a linearity of 0.9984 and a linear influence factor of 38.07. Table 3 lists the resonant pressure
sensors proposed in recent years. Among them, the structure proposed by Y Lu and PC
Yan has a sensitivity greater than 10 Hz/kPa, but its range is only around 1 MPa, resulting
in a linear influence factor of around 10. The structures proposed by Y Jie have wide
measurement ranges of 30 MPa and 50 MPa, but their sensitivities are only 0.4 and 0.066,
resulting in linear influence factors of 12 and 3, respectively. The sensor structure designed
in this study demonstrates good compatibility between the range and sensitivity, with a
linearity impact factor significantly higher than that of most traditional resonant pressure
sensors reported to date.
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Table 3. Comparison of optimized structures.

Time Author Range (MPa) Sensitivity (Hz/kPa) Linear Influence Factor Linearity

2019 Lu Y [8] 0.02–1 13.1 12.838 0.9999
2019 Yan P [7] 0.01–1 11.89 11.6522 0.9999
2020 Xiang C [19] 0.02–2 3.15 6.237 0.9999
2021 Xiang C [3] 0.02–7 2.26 18.0348 0.9998
2021 X Han [9] 0–0.2 35.5 7.01 0.9999
2022 Yu J [5] 0.11–30 0.428 12.84 0.9999
2022 Yu J [6] 0.11–50 0.066 3.3 0.9999

This structure 1–10 4.23 38.07 0.9984

5. Conclusions

Traditional resonant pressure sensors often struggle to achieve both a wide range
and high sensitivity simultaneously, limiting their applications in scenarios requiring both.
To address this issue, we propose a novel sensor structure. By vertically distributing the
resonant beam and pressure-sensitive diaphragm, we enhance the overall stability of the
resonant structure and the equivalent stiffness of the diaphragm under high pressure.
This effectively resolves the problem of reduced accuracy due to excessive deformation of
the sensitive diaphragm, achieving good compatibility between the range and sensitivity.
To mitigate the impact of parasitic modes during sensor operation, we present a multi-
objective optimization design approach for resonant pressure sensors based on BP and
NSGA-II algorithms. This approach addresses modal interference while optimizing the
structural sensitivity. Validation of the optimization results using commercial software
demonstrates a frequency optimization error of 0.7768% and an interference frequency
optimization error of 0.1812%, confirming the reliability of the optimization approach.
The optimized resonant structure achieves a high sensitivity of 4.23 Hz/kPa and a linear
range of 1–10 MPa. The design strategy of the new structure provides guidance for the
design of resonant pressure sensors with a wide range and high sensitivity, effectively
addressing the compatibility issue between the sensitivity and range. The multi-objective
optimization algorithm proposed for resonant pressure sensors can also be applied to
optimize multiple parameters in other MEMS sensor structures, thereby improving the
structural performance.
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