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Abstract: Low-cost MEMS sensors are widely utilized in UAV platforms to address atti-
tude estimation problems due to their compact size, low power consumption, and cost-
effectiveness. Diverse UAV payloads pose new challenges for attitude estimation, such as
magnetic interference environments and high dynamic environments. In this paper, we
propose a hierarchical decoupled attitude estimation algorithm, termed HDAEA. Initially,
a novel hierarchical decoupling approach is introduced for the attitude and angle represen-
tation of the direction cosine matrix, enabling the representation of angles in a new manner.
This method reduces the data dimensionality and nonlinearity of observation equations.
Furthermore, a magnetic interference identification algorithm is proposed to compute the
magnetic interference intensity accurately and quantitatively. Combining the quantified
errors of estimated state variables, an error model for magnetic interference and attitude
angles in high-dynamic environments is constructed. Subsequently, the proposed error
model is employed to calibrate the hierarchical decoupled angles using accelerometer and
magnetometer measurements, effectively mitigating the impact of magnetic interference on
the calculation of pitch angles and roll angles. Moreover, the integration of the proposed
hierarchical decoupled attitude estimation algorithm with the error-state extended Kalman
filter reduces system nonlinearity and minimizes linearization errors. Experimental results
demonstrate that HDAEA exhibits significantly improved attitude estimation accuracy of
UAV payloads.

Keywords: MEMS; error-state extended Kalman filter (ESKF); magnetic interference;
orientation decoupling; attitude estimation; multifunctional payloads

1. Introduction

In recent years, unmanned aerial vehicles (UAVs) carrying payloads with different
functions have been widely used in the fields of geographic mapping, firefighting, search
and rescue, and military confrontation [1-3]. In the process of UAV mission execution, the
accurate attitude of the payload platform is the basis for controlling the function of various
payloads. With the development of microelectromechanical systems (MEMS), the accuracy
and stability of the attitude measurement system based on low-cost MEMS design have
been steadily improved, and it has gradually become the preferred solution for unmanned
system attitude measurement [4—6].

A typical low-cost MEMS attitude measurement system consists of a three-axis gy-
roscope and a three-axis accelerometer. Combined with appropriate attitude estimation
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algorithms, these sensors can determine the roll angle and pitch angle attitude of the
carrier [7,8]. At rest, the accelerometer can obtain a more accurate gravitational accelera-
tion when the attitude measured by the sensor system is more reliable. However, during
accelerated motion (especially vertical acceleration), accelerometers will not be able to
provide an accurate orientation reference [9]. At the same time, the integration error of
MEMS gyroscopes accumulates over time, which in turn leads to a degradation of the
attitude estimation accuracy of the sensor system over time [10]. Nine-axis sensor systems,
such as the attitude and heading reference system (AHRS), are formed by introducing a
three-axis magnetometer and then combining it with an inertial sensor [11]. Researchers
have developed several sensor fusion algorithms based on nine-axis MEMS sensors to
achieve higher accuracy in 3D attitude estimation of roll angle, pitch angle, and azimuth
for long-time carriers [12-15].

Obviously, the gravitational and geomagnetic fields can provide absolute observations
of the three-dimensional attitude, and the algorithms mentioned above assume that the
directions of the gravitational and geomagnetic fields are perpendicular to each other to
obtain highly accurate attitude estimates. However, the real geomagnetic field is not as
we assume, due to the magnetic inclination and magnetic field disturbances. When a
non-orthogonal uniform magnetic field is used as a reference, the pitch and roll are not
decoupled from the magnetic field [16-18]. In order to solve the problem of the effect
of magnetic disturbances on the attitude angle, a commonly used attitude estimation
algorithm is to allow the accelerometer and magnetometer to correct the attitude during
the update process [19]. For the measured magnetic field vector, only the horizontal
component is meaningful to observe, but its vertical component still affects the estimation
of the pitch and roll. With the above method, the magnetometer measurements affect
pitch and roll, even in an environment with a clean magnetic field [20]. The degree
of distortion of the three attitude angles will be even more severe when magnetic field
disturbances are present, which greatly reduces the engineering usefulness of the attitude
estimation algorithm. There are two general research ideas for dealing with magnetic
disturbances. The first one is to monitor the intensity of magnetic disturbances in real time
and correlate it with the magnetometer observation noise [21,22]. Another idea is to recover
the true geomagnetic information from the magnetometer data containing the disturbance.
Reference [23] modeled a magnetometer and a six-axis IMU to solve a maximum likelihood
problem, but it could not run in real time.

For nine-axis MEMS attitude estimation systems, the choice of models is divided into
two main categories. The first category includes the classical Kalman filter (KF) applied to
linear systems and its improvements for nonlinear systems. There is another class of attitude
estimation algorithms represented by the complementary filter (CF) [24], which is used to
update the attitude prediction of the gyroscope by controlling the proportional integration
of the low-pass and high-pass filters combined with accelerometer and magnetometer
measurements. In contrast, the gradient descent algorithm (GDA) [25] considers reducing
the difference between the attitude estimation direction and the observed direction as an
optimization problem. Through a series of optimization measures, the method estimates
the direction of the uniform field and combines it with the gyroscope to obtain an optimal
estimate. Compared with KFs, these two methods can obtain good real-time performance,
but the accuracy is not as good as KFs. The extended Kalman filter (EKF) can act on
nonlinear systems. Many scholars use EKF for attitude estimation in highly dynamic
environments [26,27]. In order to solve the linearization error problem of EKF, some
researchers proposed the iterated extended Kalman filter (IEKF) [28] to effectively reduce
the nonlinear error, but at the same time, IEKF will introduce additional computational load.
The environment we applied is a scenario with limited computing resources, so this iterative
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algorithm is not suitable. Reference [29] used adaptive attenuation root mean square UKF
to estimate drill tool attitude. However, the unscented transformation process of UKF is
more computationally intensive than the first-order Taylor expansion process of EKF, and
the UKF algorithm also introduces two parameters to determine the selection of Sigma
points, which brings great difficulty to parameter adjustment in practical engineering.
There is also a group of researchers who have divided the 3D attitude estimation into
two parts, using a two-layer Kalman filter to estimate different attitude angles [30-32].
Combined with the observability of the sensors, the estimation accuracy of the pitch and
roll angles is improved. Regardless of the method chosen, these classical methods have a
recognized weakness in that pitch and roll estimates are not, or not fully, decoupled from
yaw estimates, leading to unpredictable attitude errors.

Typically, the absolute attitude of a UAV payload platform relative to the geo-
referenced system is obtained by converting two sets of attitude angles, including the
UAV AHRS measured attitude angle and the attitude angle of the payload stabilization
platform. We mount a sensor system based on a low-cost MEMS design directly on the UAV
payload platform. We constructed a hierarchical decoupled attitude estimation algorithm
(HDAEA) in conjunction with the error-state extended Kalman filter (ESKF) [33], which
improves the performance of the algorithm in highly dynamic and magnetically disturbed
environments. The main contributions of this paper are as follows:

(1) Anew framework for attitude estimation based on a low-cost MEMS sensor system is
proposed. The attitude angle of the carrier relative to the geo-referenced system is
directly estimated.

(2) By decoupling the attitude angle, the effect of high dynamic and magnetic field
interference environment on the attitude angle estimation, especially on the azimuth
angle estimation, is greatly reduced.

2. Materials
2.1. Data Acquisition Devices

In this paper, a self-designed sensor module is used for the experiment. According to
the overall design requirements, we chose STM32F103RCT6 (ST, Geneva, Switzerland) as
the core processor. The inertial/magnetic sensor is the core device in this design. Consider-
ing factors such as sensor size, power consumption, operating temperature, measurement
range, and accuracy, MTI-3-8A7G6T (Xsens, Enschede, The Netherlands) is selected as
the sensor module of this design. The physical map of the sensor assembly is shown in
Figure 1. The raw data output frequency of the sensor can reach up to 100 Hz, which meets
the requirements of UAV scenarios. The specific parameters of the MTI-3-8A7G6T module
are shown in Table 1.

Figure 1. Physical map of the sensor assembly.

Table 1. Specific parameters of the MTI-3-8A7G6T module.

Parameter Reference Value

Gyroscope range +450°/s
Gyro bias stability 0.003°/s
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Table 1. Cont.

Parameter Reference Value
Roll angle accuracy (static/dynamic) (0.5°/0.8°)
Pitch angle accuracy (static/dynamic) (0.5°/0.8°)
Yaw angle accuracy 2°

Accelerometer range 160 m/s?
Accelerometer bias stability 0.03mg

Accelerometer accuracy 0.03 m/s?
Magneto metric range £80 uT

2.2. Attitude Representation

In order to realize the dynamic, high-precision, real-time attitude measurement of
the UAV payload platform, it usually needs to include three sensors: an accelerometer,
a gyroscope, and a magnetometer. As shown in Figure 2, the three-axis accelerometer,
gyroscope, and magnetometer are installed in three mutually orthogonal directions of the
UAY payload platform.

Figure 2. Installation diagram of sensors and coordinate system.

As shown in Figure 2, we select the right-handed rectangular coordinate system
formed by the geographic coordinate system in the order of “north-east-down” as the navi-
gation coordinate system (n-system) and express it with OX,,Y;,Z,, to derive the calculation
formula of attitude estimation. The payload coordinate system (b-system) is established
with the three basic axes of the payload, which is represented by O'X,Y;Z;, where Z,
coincides with the payload axis, X; and Y} are perpendicular to each other, and the plane
formed by them is perpendicular to the payload axis.

The three basic parameters in the UAV payload platform are pitch angle, azimuth,
and roll angle. Figure 2 depicts the Euler angle representation of the pose based on the
previously described coordinate system. The pitch angle 6 (6 € (—90°,90°)) is the angle
between the payload Z; axis and the normal line of the horizontal plane. The azimuth angle
7 (v € (—180°,180°)) is the angle between the projection of the X; axis on the horizontal
plane and the X, axis. The roll angle ¢ (¢ € (—180°,180°)) is the angle between the
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projection of the Y}, axis on the Y,,0Z, plane and the Y}, axis of the navigation system. The
H-plane is the horizontal plane. The P-plane is the cross-section in the axial direction of
the payload. The horizontal plane is rotated about the X, axis by an angle of ¢ which is
the V-plane.

3. Methods
3.1. Hierarchical Decoupling of Attitude Angles

In general, Euler angles, quaternions, and direction cosine matrix (DCM) can represent
the three-dimensional attitude angles of an object [34]. However, when the second order
rotation angle is 90 degrees, Euler angles have a “gimbal lock” problem, which can lead to
incorrect estimation of concurrency; the representation of quaternions is both compact and
has no singularity. The disadvantage is that the expression information of each element to
the angle is not clear, and the single angle cannot be decoupled. DCM uses nine quantities
to describe the rotation of 3 degrees of freedom (3DOF), which is redundant, but the
advantage is that each parameter is represented by the positive cosine value of the angle
value, and the physical meaning is clear. The last line only contains the information of two
angles and does not contain the information of azimuth. Combined with the Lie groups and
Lie algebras, a new method of hierarchical decoupling of attitude and angle of orientation
cosine matrix is proposed, which reduces the dimension of attitude representation and
decouples its attitude angles, thereby obtaining a new way of representing the measurement
of roll angle, pitch angle, and azimuth. The attitude angle to the rotation matrix should be
rotated in an XYZ manner:

GC(pC —YcPs + ')/sesqoc YsPs + %954%

bR = RyRoRy = |0cps Yoo + ¥sbs@s  —Vs@c + 1cbs@s (1)
—05 'Ysgc ')/CGC
IR = }R(w;)" (2)

In the formula, the rotational angular velocity of the b-system with respect to the

n-system is denoted as wy, and (wy) is its antisymmetric matrix.
The decoupled attitude is represented as:

r = 6 !
(2 o] .
= [ Ocpe e ]

where g is the local acceleration vector, g’ is the measurement value of the accelerometer
in the payload coordinate system, and it can be known that the relationship between ry, g,

and gt is:
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As can be seen from (4), 1 has a linear relationship with g’, and g! is a constant factor.
The observation equation becomes linear.

m? is the measurement value of the magnetometer. The sum of the first two elements of
m" points to the geomagnetic north pole. The rotation matrix without azimuth information
is expressed as D. The relationship between m" and r; can be obtained:

D= l 0. 0575 Osvc ‘| (5)
0 Ye —s

_ m?cec + mg')’sgs + mlz77695
mﬁ% — mlys

3.2. The First Layer Attitude Estimation Algorithm

The attitude angular error and gyro bias are used as state estimates for Kalman filtering.
The error state dynamics equation and the error measurement equation are derived. Similar
to [34], the process is reasonably simplified here. The block diagram of the hierarchical
decoupled attitude estimation algorithm is shown in Figure 3.

Equivalent rotation

' Gyro }

Accelero
meter

Magneto
meter

vector
A A
Nominal state Error state
estimation estimation
M »| ESKFI | 6 ¢
| Ml |
#I ESKF2 I
] | y
A
Elimination of noise

components

Figure 3. The overall block diagram of the algorithm.

The last row r of the attitude rotation matrix R from the payload coordinate system
(b-system) to the navigation coordinate system (n-system) is chosen as the state variable
expressing the pitch and the roll angles. In attitude estimation, the prediction equation
is essentially a process of integrating the output value of the gyroscope, so the zero bias
of the gyroscope can cause a large cumulative error. For this reason, the zero bias of the
gyroscope is also treated as a state variable estimation.

The nominal state vector of the first layer is:

X1 = [n bg} !

where r; = [—Gs’Ys@c’YcGC]T-
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From the above definition, let ” @, be the equivalent rotation vector in the time period
[k — 1, k]. Hence, the prediction equation can be written as:

_ A b /\I\
Fio=rip1— ("P) 11
A

(®)

bg,k - bg,k—l

The main principle of ESKF [35] is to treat a combination of the nominal state R and the
error state matrix ¢ as the actual state R; (the error rotation matrix in Lie algebra is denoted
as d¢). It should be noted that the elements in R must satisfy the orthogonality constraint.
In the code operation, the norm of the elements in the last row, which is estimated in the
first layer, must be 1. From the differential equation Ry = RExp(d¢) of the rotation matrix,
the relationship between the true state 7 of the attitude angle and the nominal state r can
be derived as follows:

= Exp(5¢)Tr &)

where Exp(d¢) is the exponential mapping of the error state to SO(3) [34].
The relationship between the real gyroscope bias and the error gyroscope bias is:

bgt = bg + Obg (10)

The steps to update the error state are as follows:

_ _ -1
Ky = PyiHY  (Hy (P cHY | + Ry g)

0x = 0% + Ky p(ay, o — P11 (11)
Py = (Is — Ky Hy ;) Py

According to (9) and (10), the nominal state is updated by the following formula:

g = Exp(&i'k)T?Lk 12)

bg,k = Eg,k + 5bg,k

3.3. The Second Layer Attitude Estimation Algorithm

In single-layer filtering algorithmes, it is often necessary to compensate for external
acceleration to minimize the effect of accelerometer measurement errors on azimuth es-
timation accuracy in highly dynamic environments [36]. The algorithm designed in this
paper uses gyroscopes and magnetometers for azimuth estimation in the second layer of
the filtering structure, avoiding the interference of accelerometer errors. We construct a
figure of merit function (MF) characterizing the intensity of the magnetic interference and
use the figure of merit function to compensate the observation matrix in the filter structure,
which greatly improves the effect of the magnetic interference on the accuracy of azimuth
estimation. The flow chart of the second layer filtering is shown in Figure 4.

The module magnetic field dip angle is the angle between the three-axis magnetometer
composite magnetic vector of the module and the horizontal plane of the earth. In the
actual calculation, it is indirectly calculated by the angle between the magnetic vector and
the gravitational acceleration vector [6]. The calculation formula is as follows:

dip = (%) — arccos (g’ - mb) (13)
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b W |» ® by =1 Covariance
m k matrix
I r2,k Pz’k
>| State prediction ™
0. ¢ !
b Kalman .
o D gain M
Magnetic interference R
detection m,,, 2,k

Figure 4. The second layer filtering flow chart.

It should be noted that only when the module is in a pure geomagnetic field environ-
ment, the module magnetic field dip angle equal to the local magnetic dip angle. When
there is external magnetic interference, the dip will change (may increase or decrease), and
the direction of its angle change is uncertain. Here, we use the difference between the dip
and the local magnetic dip to measure the intensity of the magnetic interference, which is

dip,,; — dip‘. The occurrence of magnetic interference is not necessarily reflected in the

change of dip. The magnetometer modulus value is also often used to measure the intensity
of magnetic interference. Generally speaking, the stronger the magnetic interference, the
larger the modulus value.

In view of the fact that magnetic interference is very complicated, the magnetic field
inclination of the module or the magnetometer alone cannot measure the magnetic inter-
ference intensity. In order to measure the magnetic interference intensity more accurately,

dip and Hmfn H are used to evaluate the magnetic interference intensity. The merit function

) o

In the above formula, m;,, is the magnitude of the magnetic interference. In order to

is as follows:

Mien = log("mfn“ sin(‘dip — dipref

allow the smaller magnetic interference to be detected in time, the logarithmic function is
taken for the product of the two. To reduce the influence of the magnetic interference on
the azimuth information, the intensity of the magnetic interference is correlated with the
observation error matrix R; ; and the specific formula is as follows:

Roj = (Mien3 + 03 ) o (15)

where 07, is the standard deviation of the magnetometer noise and o0} is the basic standard
deviation of the magnetic interference.

The state vector of the second layer is x; = r,, where 1, = [0.¢.6, q)s]T. We can easily
know that the prediction equation of the orientation information is:

» Rz ZRB] l(bz,k] 16)
k-1

A
Xop =%Xok—11 |, "
pRan Ry — Dy i
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Py = LPyI; + Qy (17)

In the above formula, | R12, j R13, y R22, and ; Rp3 are calculated from #_; and &5 ;1.

The calibration process needs to introduce x, magnetometer to correct the heading
information. The magnetometer data cannot directly correct the state, and it needs to be
converted to the same dimension as the state x,. The conversion value m;, measured by
the magnetometer can be obtained from (5).

Ky = Pyy(Py + Rok)
Xp = X+ Ky (mr, — X 1) (18)

Py = (I, — Ky) Py

where the observation noise matrix R; ; changes with the intensity of the magnetic interfer-
ence. To sum up, the algorithm is shown in Algorithm 1.

Algorithm 1: Hierarchical Decoupled Attitude Estimation Algorithm

Input: Triaxial angular velocity w;,, acceleration a,,, Magnetic field strength m,,.
1. (6, @, ) < init_pose (a0, Mmyp);
2. Initialize: 5C1/0, (5521,0, PLO, er Rq, 5(2,(), P2,0, QZ/ R, depref;
while k > 2(k=1,2, ..., «) do:
3. Construct the equivalent rotation vector ®y in At time;
The first layer of pose estimation(0, )
nominal_state prediction: ¥ x;
error_state and covariance prediction: 6%y k, Py k;

4.
5.
6. Compute the observation matrix: Hy x;
7. error_state update: §%q x;
8. error_state injection and reset: &1 x = ¥k B &1k, O = 0, Py = IPy I
9. (6, ¢) +—solve_angle(xy x);
The second layer of pose estimation(g)
10. State 2 prediction: X, j;
11. Calculate magnetic interference: myj,,,;
12. Compute the observation error matrix: Ry ;
13. state 2 update: &, ;
14. () < solve_angle(%, x);
15. k=k+1;
end while
Output — Bit attitude (pitch 6, roll ¢, azimuth 7)

4. Results and Discussion

In this section, we compare the proposed algorithm with EKF [26], ESKF [30],
DEKEF [31], and DOEA [32] to evaluate its accuracy in attitude estimation and efficiency
under different experiments. In this paper, a self-designed sensor module is used for the
experiment. See Section II for details on hardware design. To fairly evaluate and clearly
observe the influence of magnetic disturbances, there are no preconditioning mechanisms
utilized for the accelerometer and magnetometer in all algorithms during these experiments.
In order to verify the accuracy of the algorithm, this experiment chose the attitude angle of
the MTI-G-710 (Xsens, Enschede, The Netherlands) module as the reference. The algorithm
parameters of this experiment are shown in Table 2. The algorithm was developed and
tested on a PC but ultimately runs on a single-board Raspberry Pi 5.
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Table 2. The key parameters of the experimental algorithm.
Symbol Meaning Reference Value
0 Local gravitational acceleration 9.7944 m/s?

[|"mg || Local geomagnetic field strength 0.52708 Gauss
At The sampling period 0.01s
iy Gyro zero bias 0.003° /s
af Accelerometer measurement variance 0.001 m/s?
o2 Magnetometer Noise Variance 0.001 uT
05 Basic variance of magnetic interference 0.0001 Gauss

A total of two sets of experiments are set up. In Experiment A, we aim to investigate the
effect of magnetic field interference on the attitude estimation of the sensor system. During
the experiment, the sensor module is fixed on a stable platform for the experiment in order
to avoid as much as possible the interference from external acceleration. In Experiment B,
the sensor system and monocular visual payload are mounted on the payload platform
of the fixed-wing UAV ASN-216 (ASN, Xi’an, China), and the sensor system has been
subject to external acceleration interference throughout the experiment. In the first half of
experiment B, the UAV visual payload is controlled to be stationary, with respect to the
UAYV, when the sensor system is not affected by the servo motors of the payload platform.
In the second half of experiment B, we activate the UAV payload platform servo motor to
control the visual payload to track the ground target, at which time the sensor system is
subject to changing magnetic field interference.

4.1. Experiment A

As mentioned above, using the new method of attitude angle decoupling, the algo-
rithm HDAEA proposed in this article can completely eliminate the influence of magnetic
interference on the roll angle and pitch angle when calculating the attitude. To this end, we
place the module on a stabilizing platform, slowly rotate the module, and then allow the
module to return to its initial state and remain stationary. While the module remains sta-
tionary, we use a magnet to move closer to the sensor module and then slowly move away.
We ran the EKF algorithm, the ESKF algorithm, the DEKF algorithm, the DOEA algorithm,
and the HDAEA algorithm proposed in this article, respectively, and then observed the
degree of influence of the attitude angle.

As shown in Figure 5, the movement process of the module can be roughly divided
into two periods. In the first period of 0~18 s, the module started to rotate slowly from rest,
and in the second period of 18~64.9 s, the module was in a stationary state; then, it slowly
approached the module with a magnet and finally moved away from it.

As shown in Figure 6, the EKF algorithm and the ESKF algorithm have no resistance
to magnetic interference, and when the magnetic interference occurs, not only the azimuth,
but also the pitch and roll angle are also affected to varying degrees because it allows the
magnetometer and the accelerometer to correct the attitude at the same time. However, the
pitch angle and roll angle calculated by the DEKF algorithm, the DOEA algorithm, and the
algorithm proposed in this article are hardly affected by magnetic interference. Only the
azimuth calculated by the algorithm proposed in this article is hardly affected by magnetic
interference. In the static, pure magnetic interference environment, our algorithm achieves
the highest accuracy.

The data statistics of the five algorithms are shown in Table 3. Compared with EKF,
ESKF, DEKF, and DOEA, the algorithm proposed in this article has improved indicators,
especially in azimuth, which has the largest improvement. The algorithm can stabilize the
azimuth error within a reliable range. Experiments show that the proposed hierarchical
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attitude decoupling method can suppress the influence of magnetometer interference
on azimuth.
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Figure 5. Attitude angle reference benchmark of experiment A. (a) Pitch. (b) Roll. (c) Azimuth.

In order to verify the validity of the merit function (MF) characterizing the intensity
of the magnetic interference proposed in this paper, we use the figure of merit function
to improve the second layer filter of the comparison methods DEKF and DOEA. In the
same test environment, DEKF, EOEA, DEKF + MF, DOEA + MF, and HDAEA were used to
estimate the attitude of the same set of sensor measurements. In the static, pure magnetic
interference environment, both DEKF and DOEA algorithms optimized using the merit
function have significantly improved azimuthal attitude estimation accuracy, as shown in
Figure 7. However, our algorithm, HDAEA, still exhibits the highest accuracy. The data
statistics are shown in Table 4.
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Figure 6. Comparison of attitude errors of five methods in experiment A. (a) Pitch error. (b) Roll error.
(c) Azimuth error.
Table 3. Pose estimation error evaluation in experiment A (RMSE).
Attitude Angle EKF ESKF DEKF DOEA HDAEA
Pitch 1.01 0.91 0.43 0.31 0.26
Roll 1.39 1.12 0.57 0.46 0.20
Azimuth 11.41 10.23 6.02 2.79 1.60
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Figure 7. Comparison of attitude errors in the experiment to verify the validity of the merit function.

(a) Pitch error. (b) Roll error. (¢) Azimuth error.

Table 4. Pose estimation error evaluation in the experiment to verify the validity of the merit
function (RMSE).

Attitude Angle DEKF DOEA  DEKF + MF DOEA + MF HDAEA

Pitch 0.43 0.31 0.43 0.31 0.26
Roll 0.57 0.46 0.57 0.46 0.20
Azimuth 6.02 2.79 4.12 213 1.60

4.2. Experiment B

In order to further evaluate and clearly observe the effects of external acceleration and
magnetic field disturbances on UAV payload attitude estimation. We mounted the sensor
module on a fixed-wing UAV for flight testing. We record the raw data output by the sensor
and the attitude angle of the MTI-G-710 module. As shown in Figure 8, the attitude angle
of the payload covered the full measurement range: the pitch angle 6 (6 € (—90°,90°)),
the azimuth angle 7 (y € (—180°,180°)), and the roll angle ¢ (¢ € (—180°,180°)). The
movement process of the module can be roughly divided into two periods. In the first
period, from 0 to 30 s, the attitude of the module changes slowly with the flight of the UAV.
In the second period, from 30 to 76.4 s, the payload requires larger attitude adjustments
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during the tracking of the ground target by the UAV. We ran the EKF algorithm, the ESKF
algorithm, the DEKEF algorithm, the DOEA algorithm, and the HDAEA algorithm proposed
in this article, respectively, and then observed the degree of influence of the attitude angle.
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Figure 8. Attitude angle reference benchmark of experiment B. (a) Pitch. (b) Roll. (¢) Azimuth.

Assuming that the attitude movement range is large, if the attitude calculation result
and the reference benchmark output by the module are directly displayed together, we
cannot see the slight change trend. As shown in Figure 9, in order to show the details
more clearly, here we compare the attitude angle calculated by the five algorithms with the
reference datum output by the module.

In the first stage of the movement, we analyzed the data curves of the pitch and
roll angle in Figure 9 and obtained that the angle errors solved by the DEKF algorithm
and the DOEA algorithm were kept within £7°, and the angular errors also remained
within £18° in the second segment of the movement. The angle errors solved by the
algorithm in this article were kept within +3° in the first segment of the movement, and
the angular errors also remained within £10° in the second segment of the movement.
However, the angles obtained by the EKF algorithm and the ESKF algorithm are quite
different from the reference angles. For the azimuth, the EKF algorithm, the ESKF algorithm,
the DEKF algorithm, and the DOEA algorithm can still maintain a small error in the first
30 s, but the azimuth error is wildly inaccurate after magnetic interference, while for the
algorithm HDAEA proposed in this article, the error compared to the reference angle
remains within +3° during the first segment of the movement range, and the error is within
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£10° in the second motion. The data statistics of the five algorithms are shown in Table 5.
Compared with EKF, ESKF, DEKF, and DOEA, the algorithm proposed in this article has
improved indicators. In particular, the azimuth has the largest improvement, which can
stabilize the azimuth error within a rational range.
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Figure 9. Comparison of attitude errors of five methods in experiment B. (a) Pitch error. (b) Roll error.
(c) Azimuth error.

Table 5. Pose estimation error evaluation in experiment B (RMSE).

Attitude Angle EKF ESKF DEKF DOEA HDAEA
Pitch 2.30 1.95 1.38 1.29 0.83
Roll 9.36 4.54 2.65 2.80 1.09
Azimuth 13.98 9.07 6.72 3.61 217

5. Conclusions

The algorithm in this article solves the problem of the attitude estimation algorithm
being prone to diverge, and the attitude angle is easily affected by magnetic interference
due to the large nonlinear error in the high-dynamic scene. The algorithm decouples the
rotation matrix into two layers to obtain a new attitude angle representation and derives
a linear relationship between the decoupled angle of the first layer and the accelerom-
eter measurements. Initially, the linearized filtered observation equation is established,



Micromachines 2025, 16, 632

16 of 18

which further reduces the external magnetic field interference that the magnetometer will
inevitably encounter. In order to measure the magnetic field interference intensity more
accurately, we designed a new magnetic interference identification method to quantify the
magnetic interference intensity accurately. Then, we combine its measurement results with
the state estimation error in the second layer filtering model to construct an error-based
state estimation model. Finally, we construct a hierarchical decoupled attitude estima-
tion model based on the error state, which improves the performance of the algorithm in
high-dynamic and magnetic interference environments.

Based on the research results in this paper, related studies such as geo-localization of
UAV remote sensing targets with load attitude information as a known condition [37] will
be improved even further. However, our limitation is that we did not take into account the
effects of various extreme environments, including environmental changes such as high
winds, heavy rain, sand, and dust. We will analyze the stability of our system for UAV
payload attitude estimation in different extreme environments in future studies, and we
will discuss the effects of different magnetic interference compensation methods on attitude
estimation in future studies as well.
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Abbreviations

The following abbreviations are used in this manuscript:

HDAEA  Hierarchical decoupled attitude estimation algorithm

UAV Unmanned aerial vehicle

MEMS Micro-electro-mechanical systems
AHRS Attitude and heading reference system
IMU Inertial measurement unit

KF Kalman filter

CF Complementary filter

GDA Gradient descent algorithm

EKF Extended Kalman filter

IEKF Iterated extended Kalman filter
UKF Unscented Kalman filter

ESKF Error-state extended Kalman filter
DCM Direction cosine matrix

3DOF 3 degrees of freedom
MF Merit function
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