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Abstract: Low-cost inertial and motion sensors embedded on smartphones have provided
a new platform for dynamic activity pattern inference. In this research, a comparison
has been conducted on different sensor data, feature spaces and feature selection methods
to increase the efficiency and reduce the computation cost of activity recognition on the
smartphones. We evaluated a variety of feature spaces and a number of classification
algorithms from the area of Machine Learning, including Naive Bayes, Decision Trees,
Artificial Neural Networks and Support Vector Machine classifiers. A smartphone app that
performs activity recognition is being developed to collect data and send them to a server
for activity recognition. Using extensive experiments, the performance of various feature
spaces has been evaluated. The results showed that the Bayesian Network classifier yields
recognition accuracy of 96.21% using four features while requiring fewer computations.
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1. Introduction

Human activity recognition aims to recognize the motion of a person from a series of observations
from the user’s body and environment. With the advances in wireless communications and
Micro-Electro-Mechanical System (MEMS) sensor technologies on mobile devices (e.g., accelerometer,
gyroscope, magnetometer), collecting a vast amount of information about the user is feasible in an
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automatic way; however, it is still difficult to organize and aggregate such information into a coherent,
expressive and semantically-rich representation of the user’s physical activity [1–4]. In other words, there
is a gap between low-level sensor readings and their high-level activity descriptions. Since the 1980s,
this research field has captured the attention of several computer science communities due to its strength
in providing personalized support for many different applications. The topic of activity recognition has
been motivated by a number of important applications including healthcare, sports, security agencies
and context-aware services (e.g., navigation and location-based services). One of the important
applications of activity recognition is healthcare. Pollack et al. [5] used an activity recognition system
to help the elderly deal with cognitive decline associated with sickness by sending personalized activity
reminders. In one work [6], motion recognition was applied to detect symptoms of Parkinson’s disease.
Chen et al. [7] implemented a cellphone based system for multiple vital signs monitoring. Another
application of activity recognition is in detecting abnormal human activity for security monitoring [8].
In ubiquitous computing, with the help of accurate activity recognition, researchers are now capable
of providing various personalized support for many real-world applications [1]. Activity recognition
has been employed to predict transportation modes [9–11]. Lamming and Flynn [12] utilized physical
context information such as location in the interaction between different Personal Digital Assistants
(PDAs) as retrieval keys. Motion sensors offer an emerging means of capturing body movement in
different sport applications which are an alternative to traditional methods [13]. In this research,
activity recognition information has been investigated in the context of navigation services. Several
opportunities can arise from the availability of such information to flexibly adapt the services to different
circumstances [14]. For example, a smartphone navigation application is capable of switching between
different navigation solutions once it recognizes that the user is changing his mode from stationary to
walking or driving [15].

Recent popularity of mobile devices such as smartphones has resulted in considerable research
directed towards the recognition and monitoring of dynamic activity patterns using the low-cost
sensors [3]. In this research, a comparison has been conducted on using different sensor data and pattern
recognition methods to identify the most efficient components of an activity recognition system for
smartphones. The main objective of this paper is to provide an experimental guideline for selecting the
most meaningful features of motion sensor data and eliminating the redundant information. To do so,
various feature extraction techniques have been explored including time-domain, frequency-domain, and
time-frequency-domain features. Then, a large number of features are extracted, some of which not only
provide irrelevant information for activity recognition but also increase the computation cost and training
time. Therefore, feature selection algorithms have been used to find the optimum and independent set
of features for each activity. The feature selection methods attempt to detect the information that are
proven to minimally produce a correct response by the activity classifier. Finally, an effective activity
recognition method is proposed using a useful set of sensors to identify the placement of the device with
respect to the user as well as a user’s activities. These activities are further used as context information
to demonstrate the capabilities of context-aware ubiquitous pedestrian navigation services [16].
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2. Background

Conventionally, physical activity recognition research focused on using different kinds of ambient
sensors including cameras, RFID tags and infra-red (IR) motion detectors [17]; however, most works
used acceleration sensors because they are small, cheap, light-weight, and consume little power [18].
Randell and Muller [19] used a single biaxial accelerometer for classifying six activities (i.e., walking,
running, sitting, walking upstairs, walking downstairs, and standing) by utilizing an artificial neural
network (ANN). Mäntyjärvi et al. [20] also applied ANNs for human motion recognition using a pair
of tri-axial sensors attached to the left and right hips. In their research, PCA (Principal Component
Analysis) and ICA (Independent Component Analysis) was applied to extract the feature vector. Lee
and Mase [21] developed an activity and location recognition system using a combination of a biaxial
accelerometer, compass, and gyroscope. Their classification technique was based on a fuzzy-logic
reasoning system. Ward et al. [22] investigated the use of wrist worn accelerometers and microphones
in a wood workshop to detect activities such as hammering or cutting wood. The aforementioned studies
relied upon wired sensors, which could be uncomfortable, unrealistic, and difficult to perform outdoor
or long-term experiments. Recently by development of wireless technology, wireless accelerometers
have become available, enabling measurements in more realistic approaches. Bao and Intille [23]
conducted an extensive study to detect twenty activities (such as cycling, walking and scrubbing the
floor) using five body-worn wireless biaxial accelerometers under real-world conditions. They used
Fast Fourier Transform (FFT) to extract means, energy, frequency-domain entropy, and correlation
features. Then, activity recognition was performed using decision tables, instance-based learning,
decision trees, and naïve Bayes classifiers and decision tree classifications delivered the best results on
the derived feature vector. Ravi et al. [24] used only a single tri-axial accelerometer worn in the pelvic
region. They investigated the base-level classifier algorithms and the meta-classifiers including voting,
stacking, and cascading frameworks using WEKA (Waikato Environment for Knowledge Analysis, is
free popular software for machine learning algorithms written in Java, developed at the University of
Waikato, New Zealand, http://www.cs.waikato.ac.nz/ml/weka/) toolkit [24]. In another set of research,
multiple sensors have been used to improve activity recognition. For example, accelerometer and
meta-information from audio was employed for contextual cues in live life recording using a laptop
and a wired sensor-based system [18]. Yi et al. [25] conducted a context awareness study to detect
changes in mobility under various lighting conditions using a single tri-axial accelerometer attached to
a handheld computer. To support continuous recording of activity, a real-time recognition system was
developed by Györbíró et al. [26]. They attached the devices to the wrist, hip, and ankle to recognize
the activities including resting, typing, gesticulating, walking, running, and cycling. The feed-forward
neural network was chosen for offline supervised learning of the activities.

For activity recognition, fusing of multiple sensor information not only improves the results but
is rather mandatory, as noted by Kern et al. [18]. Activity recognition systems, which employ the
fusion of different sensors, typically follow a hierarchical approach [13]. Figure 1 illustrates the activity
recognition steps. These steps are discussed in details in the following sections.

First, the sensors’ providers collect and track useful data and information about the user’s motions.
The next step is to extract features and characteristics of the raw measurements using statistical
techniques. Finally, a classification or pattern recognition algorithm is used to recognize the user’s
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activity based on the comparison of the extracted features with those that are already extracted for each
mode [27]. Although there are several research on this topic, there are still two open questions:

(a) What are the optimum features for recognition of activities using the experimental tests in this
research? There are no theoretical guidelines that suggest the appropriate features to use in specific
classification situation. Therefore, a careful investigation of the available features and transformations
can significantly improve the performance of the recognition method. A good feature space can often
yield a simple and easily understood classification techniques; a poor feature space may yield a complex
classification techniques whose true structure is difficult or impossible to discern. Table 1 provides a
comprehensive list of features commonly found in the literature for analyzing the sensor signals [13];
however, there is no single set of features that would work well for all activities.

(b) What is the most accurate classification method for recognition of activities? Classification is a
process of grouping data items based on a measure of similarity so it is a subjective process; the same
set of data items often needs to be partitioned differently for different applications. Because a single
algorithm or approach is not adequate to solve every classification problem, this subjectivity makes the
process of classification difficult. A possible solution lies in reflecting this subjectivity in the form of
knowledge. This knowledge is used either implicitly or explicitly in one or more phases of classification.
With advances in machine learning and pattern recognition, a variety of algorithms have been explored
for classifying different movements [28]. Summary of the research adopted in the activity recognition
literature are presented in Table 2.
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Table 1. The most widely used features [13].

Type Features

Time Domain
Mean, Variance, Standard Deviation (SD), Mean Absolute Error, Root Mean
Square (RMS), Cumulative Histogram, Zero or Mean Crossing Rate, Peak
Count & Amplitude, Quartile

Frequency Domain
Discrete Fast Furrier Transform (FFT) Coefficient, Spectral Centroid,
Spectral Energy, Spectral Entropy, Frequency Range Power

Time-Frequency Domain Wavelet Coefficient

Heuristic Features Signal Magnitude Area (SMA), Inter-axis Correlation

Domain-Specific Step Detection, Vertical or Horizontal Acceleration Projection

3. Literature Review of Activity Recognition Utilizing Smartphones

Smartphones have recently been used in monitoring human activities because of their portability
(small size and light weight), substantial computing power, embedding various sensors, ability to send
and receive data, and their nearly ubiquitous use in today’s life. Although there is a wide variety of
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research in activity recognition using wearable sensors; a limited number of studies use a smartphone to
collect data for activity recognition. Miluzzo et al. [29] explored the use of various sensors (such as a
microphone, accelerometer, GPS, and camera) available on the smartphones for activity recognition and
mobile social networking applications. They developed a phone-centric sensing system CenceMe, which
is body-fixed (e.g., in a pocket). According to the body positions, training stage can be done to address
the activity recognition. They collected accelerometer data from ten users to train the activity recognition
model for walking, running, sitting, and standing. This model had difficulty distinguishing between the
sittings and standing activities. Yang [30] also developed an activity recognition system using the Nokia
N95 phone to distinguish between sitting, standing, walking, running, driving, and bicycling. Although
this study achieved relatively high accuracies, just a few activities have been investigated and the training
and test data was collected from only four subjects. Brezmes et al. [2] also used the Nokia N95 phone
to develop a real-time system for recognizing six user activities. In their system, an activity recognition
model is trained for each user, meaning that there is no universal model that can be applied for new users.
Kwapisz et al. [4] recognized some of the daily activities using a tri-axial accelerometer sensor on the
Nokia N95 phone, by keeping it in a fixed position. They achieved accurate results with some activities;
however, they did not consider all activities and the impact of carrying the smartphone in different
locations. In another work [31], authors have discussed that if only accelerometer is available, the best
possible result is to identify the segments of the signal dominated by the gravity component and make
recognition based on the vertical component. In a research by Pei et al. [32], physical motion recognition
has been used in the indoor navigation solution (combining wireless local area network and pedestrian
dead-reckoning positioning) on a smartphone. A set of simple time-domain features has been used to
recognize the pattern of six common motions during indoor navigation (e.g., static, standing with hand
swinging, normal walking with holding the phone in hand, normal walking with hand swinging, walking,
and U-turning). An accuracy of 95% was achieved in this study by using a decision tree classifier [32]. In
another recent research study, a similar feature based classification method is used to distinguish between
walking, running, cycling and land-based vehicles modes [33] using smartphones. Table 3 summarized
the most significant research on activity recognition using smartphone low-cost sensors.

Most of the work listed in Table 3 used accelerometer sensors to identify basic movements.
They have employed different features for activity classification, varying from raw data to time and
frequency-domain features. The sets of activities that are included in most of the previous work is
standing, sitting, walking, lying and running together with more complex activities such as driving,
bicycling or ascending or descending stairs. With respect to the positions where the device may be
placed, some of the analysis let the user choose a predetermined position for all the experiments, while
others determine more than a fixed position to gather training data [34]. Yang et al. [27] computes the
vertical and horizontal projection over gravity of the acceleration to reduce the effect of the position
on the signals gathered from the accelerometer. However, none of the works intend to estimate where
the user is carrying the mobile device inferred from the signal. Those algorithms based on DT or BN
classifiers divide the processing algorithm among device computation and an external server. In other
words, more complex classification methods have been applied while needs systems gather and process
data outside the mobile device. In this research, the above challenges which play a key role in pattern
recognition of sensor data using low-cost MEMS sensors have been deeply investigated.
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Table 2. Summary of past work on activity recognition using accelerometers (The recognition accuracies values for references without
explicit statements have been marked: NA).

Reference
Number of
Sensor

Placement of the Sensors Activities Recognized Classification Techniques Accuracy

Foerster et al., 1999 [35] 4 Sternum, wrist, thigh, lower leg 9 ambulation and posture kNN 95.8%
Aminian et al., 1999 [36] 2 Chest, thigh 4 ambulation and posture Rule-based 89.3%
Laerhoven & Cakmakci, 2000 [37] 1 Thigh 6 ambulation, posture and cycling SOM 42%–96%
Randell & Muller, 2000 [19] 1 Knee 6 ambulation and posture ANN 85%–90%
Mantyjarvi, et al., 2001 [20] 2 Left and right hip 4 ambulation, posture PCA 83%–90%
Lee & Mase, 2002 [21] 1 Thigh 7 ambulation Rule-based 93%–96%
Chambers et al., 2002 [38] 1 Wrist 4 Kung-Fu Movement Hierarchical HMM 96.7%

Kern et al., 2003 [39] 12
Ankle, knee, waist, wrist, elbow and
shoulder (major joints)

Ambulation, writing on a white board,
typing on a keyboard, shaking hands

Naive Bayes 85%

Mathie & Coster, 2003 [40] 1 Waist Ambulation with transitions Threshold-based classification NA

Bao & Intille, 2004 [23] 5 Wrist, upper arm, waist, thigh, ankle
20 ambulation along with 20 other
activities

Decision table, DT, Navies
Bayes

84.26%

Mathie & Celler, 2004 [41] 1 Waist Ambulation with transitions Binary DT NA

Ravi et al., 2005 [24] 1 Waist
8 ambulation, vacuuming, brushing
teeth

Decision table, DT, kNN,
SVM, Naive Bayes

73.33%–99%

Allen & Ambikairajah, 2006 [42] 1 Waist Ambulation with transitions GMM 76.6%

Olgun & Pentland, 2006 [43] 3 Wrist, waist, chest
Ambulation, crawling, hand
movements

HMM 92.1%

Karantonis & Narayanan 2006 [44] 1 Waist
Ambulation, posture, energy
expenditure

Binary DT 90.8%

Heinz et al., 2006 [45] 8
Rear hip, neck, wrists, knees and
lower legs

Ambulation Threshold-based, NB NA

Lester et al., 2006 [46] 3 Shoulder, waist, wrist
Ambulation, riding elevators,
brushing teeth

HMM 90%

Tseng & Cook, 2006 [47] 3 Neck, waist, ankle
Walking for detecting age and health
condition

MLP, SVM, DT, NB, BN 85.7%
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Table 2. Cont.

Reference
Number of
Sensor

Placement of the Sensors Activities Recognized Classification Techniques Accuracy

Maurer & A. Smailagic, 2006 [48] 6 Wrist, belt, necklace, pocket, bag Ambulation DT, kNN, NB, BN 89.5%
Ward et al., 2006 [22] 2 Wrist, elbow Workshop activities HMM 72%

Bidargaddi et al., 2007 [49] 1 Waist
Walking from rowing, biking, arms
exercise, ball workout

Threshold- based 89.1%

Ibrahim & Ambikairajah, 2007 [50] 1 Hip different walking patterns GMM 88.8%
Lombriser et al., 2007 [51] 7 Wrist Ambulation kNN 91%
Suutala et al., 2007 [52] 4 Thigh, left and right wrist, neck Ambulation, brushing, cleaning SVM, HMM 93%
Muscillo & S. Conforta, 2007 [53] 1 Ankle Walking and climbing stairs DTW based kNN 85%

Jafari et al., 2007 [54] 1 Chest
Transitions between different
ambulation

ANN, kNN 84%

Al-ani et al., 2007 [55] 1 Waist
Different walking speeds, falls,
transitions

HMM NA

Krishnan & D. Colbry, 2008 [56] 2 Ankle, above the knee Ambulation AdaBoost, LR, SVM 95%
Yang, et al., 2008 [30] - Wrist Ambulation ANN 95%
Zappi et al., 2008 [57] 10 10 for right arm, 9 for left arm Ambulation HMM 87.4%
He et al., 2008 [58] - NA Ambulation SVM 82.2%
Wu et al., 2008 [59] 1 Knee Ambulation Naive Bayes NA
Choudhury et al., 2008 [60] 3 Wrist, waist, shoulder Ambulation, posture, brushing teeth HMM 93.8%

Huynh et al., 2008 [61] 2 Hip, wrist
34 ambulation, posture, working,
home actions

LSA 72.7%

Bicocchi et al., 2008 [1] 1 Waist 4 ambulation, posture Gaussian Mixture 85%
Krishnan et al., 2009 [62] 3 Wrist , Elbow 5 hand movement HMM, AdaBoost, kNN 65.4%–87%
Bicocchi et al., 2010 [1] 3 Arm, waist, leg 16 ambulation, working, home action kNN 95%

Susi et al., 2013 [63] 2 Hand and bag
swinging, texting/phoning/bag and
Irregular motion

DT
95%, 98%
& 94%

Notes: PCA, Principal components analysis; kNN, k Nearest neighbors; SOM, Self-organizing maps; IB, Instance based mechanisms; HMM, Hidden Markov model;
LSA, Latent semantic analysis; SVM, Support vector machine; BN, Bayesian network; DT, Decision tree; ANN, Artificial neural network; DTW, Dynamic time
warping; LS, Logistic Regression; NB, Naïve Bays; LPC, linear prediction coding.
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Table 3. Summary of past work on activity recognition using smartphones.

Reference Device (OS) Activity Mobile Position
Frequency

(Hz)
Feature Space Classifier Accuracy

Number of
Subjects

Ofstad et al., 2008 [64]
Nokia N95,
(Symbian)

Standing, Sitting Right trousers pocket 1 Raw data Bayesian 98.9% 1

Miluzzo et al., 2008 [29]
Nokia N95
(Symbian)

Walking, Running, Sitting,
Standing

Pocket, on a lanyard,
clipped to a belt

NA Variance, Mean, Num. of peaks J48 DT
68%, 78%, 94%, 74% for

activities
8

Yang 2009 [30]
Nokia N95
(Symbian)

Standing, Walking, Running,
Driving, Bicycling

In different (vertical and
horizontal components
computed)

36

Mean, SD, ZCR, 75%
percentile, Interquartile range,
Power spectrum, Entropy,
Cross-correlation

C4.5 DT, NB, kNN,
LibSVM

91% best performance 4

Albert et al., 2012 [65] Android 1.6
Sitting, Standing, Walking,
Standing

Front pocket 15–25
Mean, Moments, RMS,
Extremes, Histogram, FT,
Cross product means: xy, xz, yz

SVM, regularized
logistic regression

96.1% of healthy
subjects and 92.2% of
Parkinson’s patients

18 healthy and
8 Parkinson’s

patients

Brezmes et al., 2009 [2]
Nokia N95

Accelerometer

Walking
Climbing-down/upstairs,
Sitting, falling, Standing up

Chest pocket, front
trousers pocket, a rear
trousers pocket, an inner
jacket pocket, etc.

30
Not mentioned Time-frequency
domain

kNN 80% NA

Khan et al., 2010 [66]
Samsung Omnia
(Win mobile 6)

Sitting, Walking, Up-stairs,
Down-Stairs, Running

Shirt’s top pocket,
Jeans’ front pocket, rear
pocket, coat’s inner
pocket

45

Autoregressive Coefficients
SMA Linear Discriminant
Analysis
Kernel Discriminant Analysis

ANN 96% 6

Zhang et al., 2010 [67]
HTC touch

(Win mobile 6)
Sitting, Standing, Lying,
Walking, Posture transition

The same place on
bodies for all the
activities

1 Raw data Multi-class SVM 82.8% 10

Sun et al., 2010 [68]
Nokia N97
(Symbian)

Stationary, Walking,
Running, Bicycling,
Ascending/descending
stairs, Driving

6 pockets (2 front, 2 rear
trousers and 2 front
jacket pockets) 4
positions inside

10
(averaging

data)

Mean, Variance
Correlation, FFT energy,
Entropy

SVM
91.6% (unknown

position), 94.8% (Known
position)

7

Kwapisz et al., 2010 [4]

Nexus One,
HTC Hero, and

Motorola
Backflip

(Android)

Walking, Jogging, Up/Down
Sitting, Standing

User’s pocket NA
Mean, SD, Absolute
Difference, RMS, Time
Between Peaks, Histogram

J48, Logistic Regression,
Multilayer Perceptron,

Straw Man

85.1%, 78.1%, 91.7%,
37.2% for different

activities
29

Pei et al., 2013 [34]
Samsung

Galaxy Nexus
(Android)

Sitting, Normal-,
fast-walking, Standing,
Sharp-, gradient-turning

User’s pants pocket,
specific direction

NA
Selected features: Variance and
mean of horizontal and vertical
Accelerometer and Gyroscope

Least Square-SVM
92.9% for motion

recognition
4
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4. Developing an Activity Recognition Using MEMS Sensors

Information gathered by a single source can be limited and may not be fully reliable, accurate and
complete; therefore, in this research, a feature-level multi-sensor integration scheme [69] is used to
improve the accuracy and robustness of the activity recognition system by using features instead of raw
sensor measurements. This method that was also used in many other research (e.g., [27,34]) increased the
robustness of activity recognition by using various features that are less sensitive to the sensors aspects
such as noises and alignment. Activity recognition modules follow a hierarchical approach for fusing
various sensors (shown in Figure 1).

4.1. Preprocessing and Sensor Calibration

Accelerometer and gyroscope sensors commonly embedded on smartphones have a drift and offset on
every axis. The calibration procedure is to accurately determine the scaling factor and offset parameters
of the three independent, orthogonal axes. From a practical point of view in most mobile applications,
calibration is needed to assure sensor data quality and get accurate readings. In this research, the axes’
misalignments (non-orthogonalities) have not been considered, as scale factor and drift calibration is
already good enough for context detection application [15]. The six-position static is one of the most
commonly used calibration methods [70]. The six position method requires the inertial system to be
mounted on a levelled table with each sensitive axis of every sensor pointing alternately up and down.
For example, let

Ñ
a “ pax, ay, azq be a vector of raw accelerometer reading from mobile devices, and

g = 9.81 m/s2 is the earth gravity which can be used as a reference signal when the device is in static
mode. Therefore, as shown in Figure 2, the user gets the samples along the positive and negative direction
for each of the three axes. To do this, the user has to hold the accelerometer sensor in six different
orientations and make the corresponding axis strictly point to

Ñ
g direction.

Bias and scale factor can be estimated by summing and differencing combinations of the
sensor measurements. For example, to estimate bias and scale factor of the Z-accelerometer, the
measurements are:

aZup “ ba ´ p1` Saq g (1)

aZdown “ ba ` p1` Saq g (2)

where aZup and aZdown are accelerometer measurements when the device is located in position shown in
Figures 2a,c. ba, Sa and g represent bias, scale factor and gravity, respectively. Then, the bias and scale
factors can then be calculated using the following equations:

ba “
aZup ` aZdown

2
(3)

Sa “
aZup ´ aZdown ´ 2g

2g
(4)

Similarly for the gyroscopes, the device is oriented in static mode with the axis pointing vertically
upward and downward. For example, in the case of calibrating Z-axis gyroscope, the device is located
in position shown in Figure 2a. Then, the average of 10–15 min measurementsωZup is taken [70]:

ωZup “ bω ` p1` Sωqωesinφ (5)
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where bω, Sω, φ and ωe represent bias, scale factor, latitude of the gyroscope location and Earth’s
rotation rate, respectively. Next, the sensor is rotated by 180˝ (Figure 2c) such that the same axis is
pointing vertically downward and another average measurementωZdown is obtained:

ωZdown “ bω ´ p1` Sωqωesinφ (6)

Then, the bias and scale factor of gyroscope can then be calculated using the following equations:

bω “
ωup `ωdown

2
(7)

Sω “
Zup ´ ωdown ´ 2ωesinφ

2ωesinφ
(8)
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Figure 2. Six different positions for calibration of the accelerometer and gyroscope (each
sensitive axis pointing alternately up and down). (a) Z-axis is along with g but in the opposite
direction; (b) X-axis is along with g but in the opposite direction; (c) Z-axis is along with
g and with the same direction; (d) X-axis is along with g and with the same direction;
(e) Y-axis is along with g but in the opposite direction; (f) Y-axis is along with g and with
the same direction.

However, in low grade gyros such as MEMS sensors which suffer from bias instability and bigger
noise levels, the earth’s reference signal is not observable. Moreover, it is difficult for the end user to
determine the exact direction of the gravity and to hold the sensor accordingly. Usually, the procedure
is carefully performed several times and the average values needs to be used. Therefore, multi-position
calibration methods have been used to combine three axes effect of the local gravity and earth rotation
as references for calibration [71]. Using a redundant number of placements, the IMU errors can then be
estimated using a least squares adjustment. Since calibration is a one-time operation, computation is not
a big concern here.

After sensor calibration, accelerometers and gyroscopes are preprocessed for noise reduction using
low-pass filter [17]. Low-pass filters provide a smoother form of signal which removes the short-term
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oscillations, leaving only the long-term trend of the signal. After noise reduction signals have been
normalized. In some cases, gravitational acceleration has to be extracted from accelerometer data in
order to analyze only useful dynamic acceleration. For this purpose, high-pass filters can be used to
distinguish body acceleration from gravitational acceleration [72]. In this research, a mean filter was
used for each patch to remove the impact of gravity as a feature.

4.2. Feature Extraction

In general, features can be defined as the abstractions of raw data and the purpose of feature extraction
is to find the main characteristics of a data segment that accurately represents the original data [62]. In
other words, this process is defined as a process of identifying valid, useful, and understandable patterns
in data. The main outcome is to keep the most meaningful features of data and eliminate the redundant
features. There are no theoretical guidelines that suggest the appropriate feature set to be used for
specific classification situations. A good feature space can often yield a simple and easy to understand
classification technique; on the other hand, a poor feature space may yield a complex classification
technique where true structure is difficult or impossible to discern. The following features have been
applied for activity detection. The features are divided into time, and frequency domains [69].

Time-Domain Features: These features include basic waveform characteristics and signal statistics
and they are directly derived from the data. Some of the examples of time-domain features are
mentioned here:

Mean: The mean value of the signal over a window segment is considered as a feature according to
the equation below:

y “

řN
j“1 yi

N
(9)

Root Mean Square Error (RMSE): RMSE of a signal can be considered over a defined widow using
following formula:

RMSE “

c

1

N ´ 1

ÿN

j“i
pyi ´ yq2 (10)

Mean of absolute Error (MAE): It is the average of the absolute value of the residuals and is given by:

MAE “
1

N

N
ÿ

j“1

|yj ´ y| (11)

Inter-axis Correlation: It is especially useful for discriminating the activities that involve translation
in just one dimension. Bao et al. [23] used the correlation between axes and achieved good results
for distinguishing cycling from running. The following formula describes the correlation coefficient
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Zero or Mean Crossing Ratio (ZCR): ZCR is defined as the number of times that a signal changes
signs in a frame. This feature has been used heavily in both speech recognition and music information
retrieval [73]:

ZCR “
1

N ´ 1

N´ 1
ÿ

i“1

I tsisi´ 1 ă 0u (13)

where s is a signal of length N and the indicator function I tAu is 1 if its argument A is true and
0 otherwise.

Quartile feature: It is a measure of the distribution of the signal values. Quartile is computed by
partitioning the signal over a given window into four quarters of the data (Q1 = 25%, Q2 = 50% and
Q3 = 75%). In this research, the upper quartile, which is equal to the 75th percentile (splits off the
highest 25% of data from the lowest 75%) is considered as a feature. This is achieved by sorting the
signal values and finding the value of 75% on the window length.

Orientation-invariant feature: For a tri-axial accelerometer, the raw readings are measured according
to the current sensor orientation. Orientation-invariant features have been used in some of the resent
research to avoid the effect of accelerometer orientation [27]. By using the concept of gravity three
features is defined: (1) the summation of three axial accelerometers, (2) the approximate vertical
projection and (3) the approximate horizontal projection of the accelerometer signal vector. The second
and third feature can be used to roughly translate the local coordinate system to the global vertical and
horizontal plane based on a method described by Mizell [74]. In this method in a window of 256 samples,
the gravity vector,

Ñ
g “ pgx, gy, gzq, is roughly estimated using the average of all the measurements:

Ñ
g “ pgx, gy, gzq “

ˆř
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where
Ñ
a i “ paxi, ayi, azi q , i “ 1, 2, . . . , N are acceleration measurements. Then, the vertical

component
Ñ
a

Vertical
i of each sample of accelerometer is computed using the following equation:

Ñ
a

Vertical
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˜
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Ñ
g
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¸

Ñ
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Then, the horizontal component
Ñ
a

Horizontal
i of the acceleration vector

Ñ
a i can be computed by vector

subtraction, (i.e.,
Ñ
a

Horizontal
i “

Ñ
a i ´

Ñ
a

Vertical
i ). The extracted vertical and horizontal components provide

two orientation invariant features, which are considered as an approximation of the horizontal and
vertical movements.

Frequency-Domain Features: These features focus on the periodic structure of the signal, such as
coefficients derived from Fourier transforms.

Frequency Range Power: This feature is based on computing the power of the discrete FFT
components for a given frequency band. An FFT computes the discrete Fourier transform (DFT) and
produces exactly the same result as evaluating the DFT definition directly; the only difference is that an
FFT is much faster:

X pkq “
N
ÿ

j“1

x pjqω
pj´ 1qpk´ 1q
N (16)
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whereωN = e(´2πi)/N is the N-th primitive root of unity, k = 1, ..., N. For example, the frequency of human
walking can be considered in the range of 2–5 Hz [71]; therefore, this frequency band can efficiently
separate different activities (such as walking, running, driving, and so on).

Spectral Energy: Spectral energy density describes how the energy of a signal is distributed over the
different frequencies. Energy features can be used to capture periodicity of the data in the frequency
domain and it can be used to distinguish inactive activities from dynamic activities. The energy feature
was calculated as the sum of the squared discrete FFT component magnitudes of the signal. For the
signal in discrete form, energy can be calculated using the following equations:

Sxx pωq “ |x̂ pωq|
2 (17)

where ω is the angular frequency and x̂ pωq is Fourier Transform of the signal. When the feature is
computed over a window, the sum of the above equation over the window is divided by the window
length for normalization.

Spectral Entropy: To discriminate the activities with similar energy values. The frequency entropy is
calculated according to the following formula:

Entropy “ ´ P pxiq log pP pxiqq (18)

where xi are the frequency components of the signal for a given frequency band and P(xi) the probability
of xi This feature is a measure of the distribution of the frequency components in the frequency band.

Time-Frequency-Domain Features: These features are used to investigate both time and frequency
characteristics of the signal and they generally use wavelet transformation [13].

Discrete Wavelet Transform Coefficients: While Fourier Transform shows the frequency content of
a stationary signal, wavelet analysis provides spectral information of non-stationary signals, where the
frequency content changes over time. In the discrete wavelet transform, a signal y(t) is split into an
approximation signal (a2j ) and a detail signal (d2j ) using the coefficients of a discrete low-pass filter and
a high-pass filter. These base filters are called scaling function (φj,k) and mother wavelet functions (ψj,k)
as shown below:

a2j pnq “

ż

y ptqφj,n ptq dt (19)

d2j pnq “

ż

y ptqψj,n ptq dt (20)

This is an iterative procedure using the approximation signal for decomposition. In fact, variation in
scale levels (j) of the base functions enables frequency resolution and the shifting of the scale (k) in the
base function provides the time information [15]. The original signal y(n) can be reconstructed from the
wavelet coefficients using the following formula:

y pnq “
n
ÿ

t“1

ÿ

nPR

d2j pnqφj,n ptq ` a2j pnqψj,n ptq (21)

The choice of mother wavelet is crucial in any application. In this research, Daubechies mother wavelet
of order 8 is used for extracting the detail signals [75]. Daubechies wavelet is asymmetric and its
scaling filters are minimum-phase filters. The first order Daubechies wavelet is also known as the Haar
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wavelet, in which a wavelet function resembles a step function. The order of the wavelet functions can
be compared to the order of a linear filter. These wavelets are compactly supported orthogonal wavelets.
The ratio between the power of the detail signals in specific scales and the total power of the details of
the acceleration was calculated as the wavelet coefficient feature. This measure is defined below:

Macc “

řβ
n“α

`

d2j pnq
˘2

řn
n“1

`

d2j pnq
˘2 (22)

where α =3, β = 4 and j = 8 in based on our experimental results.

4.3. Feature Selection

In order to increase robustness of activity recognition and reduce computations, a feature selection
method is applied. In other words, if the dimensionality of a feature set is too high, some features might
be irrelevant and do not even provide useful information for classification, and therefore the computation
is slow and training is difficult. The feature selection approach consists of detecting and discarding the
features that are demonstrated above, to provide a correct classification results by minimum number of
features. This reduces the dimensionality of the feature space and can result in faster and more efficient
learning algorithms. Feature subset selection has long been a research area within statistics and pattern
recognition [76].

A feature selection algorithm can be seen as the combination of a search technique for proposing
new feature subsets, along with an evaluation measure which scores the different feature subsets. Two
main categories of feature selection algorithms include wrappers and filters methods described in the
literature. The wrapper is tuned to the specific interaction between an induction algorithm and its training
data. However, filter methods are much faster as they do not involve repeatedly invoking a learning
algorithm. In some cases, a subset of features is not selected explicitly; instead, features are ranked
with the final choice left to the user. In general, feature weighting does not reduce the dimensionality
of the original data. Other algorithms require features to be transformed in such a way that actually
increases the initial number of features and hence the search space. In general, feature weighting does
not reduce the dimensionality of the original data. In this paper, four different feature evaluation methods
have been used including Correlation Feature Selection (CFS), Principal Component Analysis (PCA),
Support Vector Machine (SVM) and gain ratio. Table 4 summarized these methods.

4.4. Classification Algorithms

The selected features are used as inputs for classification methods. A number of features from the
pre-selected feature set is used to train and test different classifiers [15]. Given a set of objects, each of
which belongs to a known class, and each of which has a known vector of features, the aim is to construct
a set of rules which assign future objects to a class, given only the vectors of feature describing the future
objects. Problems of this kind, called problems of supervised classification. Supervised classification
can be formally defined as follows. Given a data set Z = {z1, z2, ..., zp, ..., zNp}. where zp is a pattern in
the N-dimensional feature space, and Np is the number of patterns in Z, then the classification of Z is to
partition it into K classes, C = {C1, ..., Ck}, satisfying the following conditions:
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‚ Each pattern should be assigned to a class, i.e., YKj“1Cj “ Z.
‚ Each pattern is assigned to one and only one class (in case of hard classification only), i.e.,

Ck X Cj = 0, where k “ j.

In fact, however, various classification techniques may consider different factors which mean that the
assumption is not as detrimental as it might seem. Different methods have been developed for supervised
classification. Some of the popular classification methods in the activity recognition research community
that have been used in this study are listed in Table 5.

The details of each classification method are described in the next section. In order to select the most
accurate technique, these classifiers have been evaluated using various data sets and by applying the
WEKA toolbox [77].

Table 4. Feature selection methods used in this paper.

Name Algorithm Criteria

CFS

A filter algorithm to ranks feature
subsets (f ) in the search space of all
possible feature subsets according to
a correlation based heuristic
evaluation measure (Mf).

Ranking features that are correlated with the class and uncorrelated with
each other. Mf “

Rf´c?
k`kpk´ 1qRf´f

where k: features, f : feature subset,

Rf´c: mean feature-class correlation, Rf´f : average feature-feature
intercorrelation.

PCA

A transformation to convert a set of
features into a set of linearly
uncorrelated variables called
principal components. This can
result in a loss of meaning from the
original features representation and
the interpretation of induced models.

Normalizing feature-space and calculating the covariance matrix, finding
the eigenvectors and eigenvalues and then selecting the eigenvectors
corresponding to the first m largest eigenvalues and denote these
eigenvectors as new feature space and comparing the BN classification
accuracy for these two sets of features.

SVM

A wrapper techniques for feature
selection using greedy algorithms
(start with none or all features and
remove/add until the error doesn’t
improve). SVM with linear kernels
used as a model and select features
which improve the error returned by
the SVM classifier.

For each feature p with E(´p)(α, σ) = 1 the following criteria can be
computed t determine the irrelevant features:

Ep´ pq pα, σq “
ř

lPVAL
| yvl ´ sgn

ˆ

ř

iPTRAIN
αiyiKσ

´

x
p´ pq
i , x

vp´ pq
l

¯

` b

˙

|

where VAL is the Validation subset and xvl and yvl are the objects and
labels of this subset, respectively. xp´ pq

i , x
vp´ pq
l means training object

i (validation object l) with feature p removed. E(´p)(α, σ) is the number of
errors in the Validation Subset when feature p is removed, using the
currently selected features as indicated by σ.

Gain
Ratio

The algorithm is applied recursively
to form sub-trees, terminating when
a given subset contains instances of
only one class. A C4.5 uses gain
ratio which applies normalization to
information gain [78].

The gain ratio is defined as
Gain„RatioAttribute “ Gain„Attribute{SplitInfo„Subset

Attribute. Gain ratio is used
as one of disparity measures and the high gain ratio for selected feature
implies that the feature will be selected as the splitting attribute and useful
for classification.
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Table 5. Categorization of the classification methods.

Classification Methods Description

k-Nearest Neighbour
(kNN)

kNN is based on the closest training samples in the feature space. The most popular
similarity measure to find the closest samples is the Euclidean distance. k denotes the
number of classes.

Naïve Bayes (NB)
NB is a simple probabilistic classifier which uses Bayes’ theorem with naive
independence assumptions. This assumption simplifies the estimation of
P(ActivityClass|feature) from the training data.

Bayesian Network (BN)

BN is a probabilistic graphical model that encodes probabilistic dependencies among the
corresponding variables of interest by using training dataset. BN is used to learn
relationships between activity classes and feature space to predict the class labels for a
new sample [79,80].

Decision Tree (DT)

DT is a classifier that predicts the activity classes (dependent variable) of a new sample
based on features values. The internal nodes of a decision tree denote the different
features; the branches between the nodes tell us the possible values that these features
can have in the observed samples, while the terminal nodes tell us the final value
(classification) of the dependent variable. The algorithm used to generate a decision tree
is information entropy [81].

Artificial Neural
Network (ANN)

ANNs are capable of “learning” patterns by a number of known training patterns.
In this research the used ANN has three layers; input layer, hidden layer and output layer.
A simple back propagation algorithm (using RMSE) is used as the learning process.

Support Vector
Machine (SVM)

SVMs are binary classifiers, derived from statistical learning theory and kernel-based
methods. In this research using (Gaussian) radial basis function, a non-linear learning
model is adapted for different activities [82].

5. Experiment and Results

This experiment aims at finding the useful set of sensors and features that contributes to an accurate
activity recognition module. The activity recognition module is designed for detecting different user’s
modes and motions. Using extensive experiments, the performance of activity recognition module has
been evaluated.

5.1. Training and Test Data Collection

A Samsung Galaxy Note smartphone was used for the purpose of data collection for this study.
This smartphone has a built-in tri-axial accelerometer (K3DH Sensor: 0.25 mA by STMicroelectronics,
Geneva, Switzerland), a tri-axial gyroscope (K3G Sensor: 6.1 mA by STMicroelectronics) and a tri-axial
magnetometer (AK8975 Sensor: 6.0 mA by Asahi Kasei Microdevices, Tokyo, Japan) that can record
the user’s motions. Since most of the computations are accomplished on the server, the sensor’s data
is sent a DB on the server and then other services such as data mining and navigation can have access
to these data. As shown in Figure 3, an application is developed to capture and send the data of the
smartphone to the server. This application can be used in real time to collects data with a timestamp. For
automatically sending the sensor’s data to the server, another application was used to update the database
on the server.

Activity data was collected from four subjects consisting of two males and two females, their age
ranging from 26 to 40. Each activity with a different device placement mode was performed for one
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minute except for the elevator mode, which was carried out three times for each subject to capture
enough data in a four-story building (Figure 4). In total, 30 min of data per person was collected for
each subject and stored in a database (DB) on the server. To build the reference data, subjects were
asked to annotate main activities with start and finishing times. Therefore, the reference data which
is the true user activity is recognized by users based on their input value. Five seconds were removed
from the beginning and end of most activities to ensure the data truly corresponded to the pure activity
being recorded. Then, a cross folding method has been used to consider 70% of the data for training the
classification algorithm and the remaining 30% of the sample data were used for the testing procedure.
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In order to collect the test data, the smartphone was loosely placed in specific orientations including
in the bag, in the jacket pocket, on the belt, in hand close to the ear for talking, and down at one’s side
while the arm is swinging. No special requirement has been imposed on how to wear the smartphone
except for its location on the body. Different activities and device location contexts considered in this
research based on the pedestrian navigation application.

5.2. Preprocessing and Calibration

The preprocessing of the inertial sensors is the first step before using any activity recognition
algorithm [83]. Each reading of the sensor consists of three components along the X-axis, Y-axis,
and Z-axis according to the current phone orientation. Preprocessing includes calibration, signal
normalization, low-pass filtering and resampling to a required sampling rate. After accelerometers and
gyroscopes sensor calibration, all the signals are preprocessed for noise reduction using low-pass filter.
Almost always, high frequency noise in data needs to be removed. Therefore, non-linear, low-pass
Gaussian filters [71] can be employed for removal of high-frequency noise. After that, noise reduction
signals are normalized. In some cases, gravitational acceleration has to be extracted from accelerometer
data in order to analyze only useful dynamic acceleration. For this purpose, a mean filter can be used to
remove the impact of gravity. For the segmentation of the signal, a sliding window algorithm is applied
that is popular for activity recognition as a simple and online algorithm [84]. Figure 5 presents an
example of inertial sensors’ output in different placement scenarios after sensor calibration and low-pass
filtering. Some modes are easy to identify, such as the dangling mode in which one axis of the gyroscope
has a significantly large magnitude due to the arm swing. However, other modes are quite similar to each
other and require pattern recognition algorithms for classification.
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5.3. What Is the Best Sampling Frequency?

The gravity component is usually found below 0.5 Hz while human body’s movements have
frequencies below 20 Hz (99% of the signal energy is below 15 Hz frequencies). In fast walking, the step
time upper band is about 0.35 s/step [16,83], so even with a data rate of 6.25 Hz steps can be detected
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with at least several samples of each step. There is a trade-off between sampling frequency from one
side and sampling precision (sampling precision is defined as the percentage of uneven sampling periods
compared to the average sampling period) and battery consumption from the other side. Moreover,
a higher data rate means that more samples are gathered in each window and the calculation of the
features becomes more demanding. Therefore, selection of the proper sampling frequency, which is
providing sampling accuracy as well keeping the battery budget, is an important issue. One of the
settings options on the sensor_reading application developed for gathering data is the sampling rate
(using Android SensorManager which includes: listing sensors, sampling, some processing functions).
The sampling rate is available through the Android API (Application Programming Interface) and it has
four options: normal, UI (user interface), game and fastest sampling. The Android API has provided
sampling frequency in symbolic categories, and there is not a specific sampling frequency stated in
the sensors’ specifications. Therefore, the measurements gathered in the different experiments have
been analyzed to characterize this parameter. The sampling frequency is not constant on smartphones
(measurements are not perfectly periodic due to device multitasking). The sampling is not the most
important activity of the phone and there are always interruptions from other applications. The lower the
sampling frequency is, the smaller the sampling period variation is going to be.

Table 6 illustrates the investigation of different sampling frequencies of the smartphone. The
variations in sampling period are about milliseconds in Samsung Galaxy Note 7000 (Table 6). It has
to be considered that there are significant differences in the sampling frequency values of different
phone models. There is significant battery consumption associated with high sampling rate. NORMAL
sampling frequency has significantly lower battery consumption than the others. Moreover, a higher data
rate means that more samples are gathered in each window and the features calculation becomes more
complex. Consequently, the normal sampling is enough to detect changes in orientation and movement to
recognize activity. To measure sampling rates precisely, the time stamp that comes with the sensor event
is used and interpolated. The sample rate used in data collection was either the normal option on the
android sensor event. The sampling rate of the data can be set using the time stamp in the preprocessing
GUI (Graphical User Interface) of the activity recognition module in MATLAB and Table 6 describe the
effect of sampling frequency on battery consumption.

Table 6. Investigation of different sampling frequencies of Samsung Galaxy Note 7000.

Label Average Frequency Max Frequency Min Frequency Battery Consumption (%/h)
Normal 4.74 4.81 4.49 1.71

User Interface 14.15 14.19 11.64 3.19
Game 32.55 32.8 22.75 3.27
Fastest 94.77 96.44 37.68 3.41

5.4. What Is the Useful Sensor Information?

When facing activity recognition with mobile sensors, it is relevant to determine which set of sensors
are providing the better accuracy and offering enough quality. In this work, a Samsung Galaxy Note
smartphone, equipped with accelerometer, gyroscope, magnetometer, proximity and light sensors, is
used. Accelerometer sensors have been widely used for motion detection [23], and step detection (for
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detection of walking mode). Gyroscopes are another useful sensor for activity recognition that captures
user’s motion and device orientation changes. Orientation determination is a significant feature to
distinguish among sets of on-body device positions: vertical (pocket), horizontal (in hand while reading
the phone) or random (bag, backpack). Magnetometer sensor also helps determining the orientation
as well as absolute heading information (deviation from earth magnetic field). In addition to such
physical hard-sensors, orientation soft-sensor provided by android API can be used to estimate the device
orientation using the fusion of accelerometer, gyroscope and magnetometer signals. The orientation
information includes the angles (roll, pitch, and yaw) which describe the orientation of the device
coordinate system with respect to the local navigation reference frame. The output of the orientation
soft-sensor can be either used as an independent sensor or as a means to project other sensor data from
device’s coordinate system to the reference navigation system. Another signal which can be used is
the projection of the gravity vector onto the coordinate axis. This signal approximately measures the
orientation of the device, so it is used for the same purpose.

The useful set of sensors is the one which has the most correlation with the activity classes. There
is a processing stage to analyze which sensor signals have the most useful information for activity
recognition. The classification accuracy and time efficiency of different sensors have been investigated
using all the activity and device orientation classes, which are listed in Figure 6.

In this research, different motion sensors were used including: tri-axial accelerometer, gyroscope
magnetometer, orientation sensor and projection of the accelerometer, gyroscope and magnetometer
signals using orientation angles. In this investigation, all the features have been extracted from the
datasets and a BN classifier applied for classification using all of the features [85]. Figure 7 gives the
overall accuracies for the recognition of the user’s physical activity, device placement, and both activity
and device placement modes while using the different set of sensors.

Time efficiency is a critical issue when using smartphones. Figure 8 shows time efficiency obtained
from different sets of sensors for the DB of all users and all activities. Although this figure is showing
the time consumption for a specific computer and DB, it is useful for comparing the time efficiency
achieved by using various sensors. Also in this figure, three recognition scenarios were considered,
including user’s physical activity, device placements, and both activity and device placement modes.
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By comparing Figures 7 and 8 it is obvious that although applying all the sensor information leads
to the highest accuracy, using accelerometer and orientation information has a better balance between
accuracy and battery consumption.

5.5. What Is the Optimums Set of Features?

After selecting the appropriate signals, the window size can be defined by clicking and dragging
the mouse on the shown signals or by entering the starting and ending point. To accomplish feature
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extraction, the data is divided into two-second segments and features are extracted from 80 readings
conducted within the two-second segments. The two-second duration has been chosen because the
experiments show that it provides sufficient time to capture meaningful features involved in different
activities. The signal windows have a 50% overlap. To investigate the results of the feature extraction
step, various combinations of sensors have been considered to find the useful set of sensors for discerning
each set of activity and device placement. As shown in Figure 9, a GUI has been developed for feature
extraction. All the sensors and signals from the previous step (preprocessing) can be used and shown in
this GUI.

In the left panel, there is a list of different features considered in this research. After selecting a
window of the signals (tri-axial accelerometer in Figure 9), various features can be extracted from
the selected data. By pressing the “Feature Extraction” button (Figure 9), selected feature can be
shown in the “Show Feature” panel. The computational complexity of the feature extraction techniques
is different.

Figure 10 indicates the time consumption of the feature extraction techniques in MATLAB using a
CORE i7 CPU @ 2.7 GHz computer. It is noticeable that the histogram, wavelet and frequency-domain
features have more computations in comparison with simple time-domain features.
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Although Figure 10 shows time efficiency obtained from a specific sensors and specific sample
numbers, it is useful for comparing the time efficiency achieved by using various features. Time
efficiency is a critical issue when processing different sensors and signals. However, there is a trade-off
between recognition accuracy and time efficiency of the algorithm. There are no theoretical guidelines
that suggest the appropriate features to use in specific classification situation. Therefore, a careful
investigation of the available features is necessary to improve the performance of the recognition
method. A good feature space can often yield simple and easily understood classification techniques;
a poor feature space may yield complex classification techniques whose true structures are difficult or
impossible to discern. In the following section, different feature selection methods and their accuracies
for activity recognition is discussed.

5.6. What Is the Optimum Feature Selection Method?

In order to increase efficiency of activity recognition and reduce computations, a feature selection
method is applied. Optimum features are those with maximum correlation with the class attributes and
minimum inter correlation with the other features. In other words, if the dimensionality of a feature set is
too high, some features might be irrelevant and do not even provide useful information for classification,
and therefore the computation is slow and training is difficult. The feature selection approach consists
of detecting and discarding the features that are demonstrated to minimally cause a correct response by
the classifier. In this research, four different feature evaluation methods have been used including CFS
(Correlation Feature Selection), PCA (Principal Component Analysis), SVM (Support Vector Machine)
and gain ratio. In the first case, all of the 46 features have been considered and the overall accuracy of
99% is reached. Then, using different feature selection methods is explored. CFS uses 28 uncorrelated
features which results in 88% overall activity recognition accuracy. PCA uses 12 independent linear
combinations of features and results in 87% recognition accuracy. The two other methods, SVM and
gain ratio use only four of the features to classify the data and provides recognition accuracy of 96.2%
and 94.4%, respectively, in the maximum case. Figure 11 illustrates the overall classification accuracies
of using different sets of feature for recognition of physical activities, device placement, and both activity
and device placement.
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Table 7 lists the most efficient features in each case for activity recognition using SVM and gain ratio
feature evaluators. As it can be inferred from Table 7, SVM has the best recognition rate of 96.2%
between the other methods using only four features.
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Table 7. Selected feature using SVM and Gain Ratio feature evaluator and their
corresponding recognition accuracy (Classifier: BN).

Recognition Scenario Selected Feature (SVM) Selected Feature (Gain Ratio)

Recognition of User Activity

Quartile Mean

Standard Deviation RMS

Spectral Energy Frequency Range Power

Frequency Range Power Spectral Entropy

Accuracy 70.6% 72.1%

Recognition of Device Placement

Frequency Range Power Standard Deviation

Spectral Entropy Frequency Range Power

Zero Crossing RMS

Variance Spectral Energy

Accuracy 98.1% 97.3%

Recognition of Activity & Device Placement

Frequency Range Power Mean

Spectral Entropy RMS

Zero Crossing Spectral Energy

Quartile Frequency Range Power

Accuracy 96.2% 94.4%

5.7. What Is the Best Classification Algorithm?

The selected features are used as inputs for the classification and recognition methods. In this stage,
a number of features from the pre-selected feature set were used to train and test different classifiers.
Several classifiers provided by WEKA [77], namely BN, NB and ANN are evaluated and compared.
Comparative studies on classification algorithms are difficult due to the lack of universally accepted
quantitative performance evaluation measures. Many researchers use the classification error as the final



Micromachines 2015, 6 1124

quality measurement; therefore, this research adopts a similar approach [61]. An error or confusion
matrix is often used to evaluate the true labels and the labels returned by the classification algorithms as
the quality assessment measure. Table 8 shows Confusion matrix for 12 classes of activity and device
location when BN classifier is used. It can be observed that some of the activities (such as walking
and using stairs) and some of the device placements (such as on-belt and trousers front pocket position)
were misclassified or cross classified. This can be improved by using new features such as using a
walking pattern.

Regarding the confusion matrices, it can be observed that some of the activities (such as walking and
using stairs) and some of the device placements (such as on-belt and trousers front pocket positions)
were misclassified or cross-classified. This can be improved by using new features such as walking
patterns. In addition, the direction for further work includes collecting data in more natural environments
without researchers’ interventions and using a larger number of people to test the reliability of the trained
classifier in its recognition of new and unseen activity patterns.

For evaluating the classifiers, F-measure accuracy (overall accuracy) of the test data has been used in
this research to evaluate recognition performance using the following formulas:

Precision “
1

N

ÿN

i“1

TPi
TPi ` FPi

(23)

Recall “
1

N

ÿN

i“1

TPi
TPi ` FNi

(24)

F ´ measure “
2*Preciion*Recall
Preciion` Recall

(25)

where TP indicates the number of true positive or correctly classified results, FP is the number of
false positive or unexpected results, and FN is false negative or miss-classified results. The 10-fold
cross-validation is used to evaluate the classification models. By using this algorithm, the database of
the test data has been randomly divided into 10 equally sized folders. Each time, one folder has been
chosen as the test data set and the rest as training data sets. After training the classifier, an evaluation
is made using the test data set to get the precision, recall and the F-measure for each activity. After
each folder is tested, the average F-measure of all the folders is computed as the overall result for the
activities (Figure 12).

Performance degrades especially for three modes: belt, pocket and backpack. More specifically:

‚ “Belt” is often misclassified as “Pocket”;
‚ “Pocket” is often misclassified as “Backpack”;
‚ “Backpack” is sometimes misclassified as “Belt” and “Reading”.

This is expected since the way the users put their navigators in pocket and bags are actually quite
ambiguous. In this case, it might be practical to merge the three confusing modes together and consider a
universal classification. However, talking, dangling and reading have good distinctions, even for different
users. By investigating each activity’s recognition rate, it can be inferred that the user activities such as:
driving, walking, running, taking stairs and elevator modes have an accuracy of 95%. In contrast, the
classification models cannot perform as well in device placement recognition.
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Table 8. Confusion matrix for 12 classes of activity and device location for BN classifier.

BN Classifier
Walking

Bag
Walking

Belt
Walking
Jacket

Walking
Hand

Walking
Pants

Walking
Texting1

Walking
Texting2

Walking
Talking

Transition
Driving

Dashboard
Stairs U/D
Texting1

Running
Hand

Elevator-Texting1

Walking Bag 763 0 0 0 1 0 0 0 5 0 3 0 0

Walking Belt 0 575 0 0 32 0 0 0 0 0 0 0 0

Walking Jacket 0 0 629 0 0 0 0 0 0 0 0 0 0

Walking Hand 2 0 0 922 0 0 0 0 3 0 1 0 0

Walking Pants 1 0 0 0 893 0 0 0 0 0 0 0 0

Walking Texting1 0 0 0 0 6 1961 0 0 0 0 131 0 0

Walking Texting2 0 13 0 0 0 101 641 0 0 0 7 0 0

Walking Talking 0 0 0 0 0 0 0 801 1 1 0 0 0

Transition 0 0 0 0 0 0 0 35 825 0 44 0 0
Driving

Dashboard
0 0 0 0 0 0 0 0 3 504 0 0 0

Stairs U/D
Texting1

0 0 0 0 0 235 33 0 80 0 818 0 0

Running Hand 0 0 0 0 0 0 0 0 0 0 0 531 0

Elevator Texting1 0 0 0 0 0 0 0 0 0 0 0 0 541
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Table 9 shows the recognition rate for some of the activity modes using four features selected by SVM
feature evaluator and by applying various classifiers such as BN, NB [86] and ANN. By investigating
each activity’s recognition rate, it can be inferred that the classification models distinguish between the
device placements and user activities with an overall accuracy of 95%.

Table 9. Comparison of different classifier in activity recognition of the database (DB)
of 120 min data using four essential features selected by the support vector machine
(SVM) method.

Classifier Accuracy Time
Bayes Network 96.21 0.72

SVM 85.45 0.76

Naive Bayes Classifier 84.2 0.04

J48 pruned tree 93.4 0.39

ANN (Multi-Layer Perceptron) 89.8 1.84

Although ANN requires more computational capabilities in comparison to Bayesian Network and
Naïve Bayes methods, the accuracies obtained from the three classifiers are close to each other (Table 9).
This could be the result of the fact that the activities are discriminated by the four extracted features with
a high accuracy.

6. Conclusions

This paper presents an activity recognition system that employs a smartphone’s sensors
(accelerometer, gyroscope, and magnetometer) to monitor a user’s physical movements for navigation
applications. Different activities which are important in a navigation application, such as walking,
running, descending/ascending stairs and using an elevator have been explored, as well as transitions
between these different activities. One unique aspect of this research is that no particular constraint on
device placement was imposed. Various common device positions were used such as being held for
talking while on the ear, held for texting, in a pocket, on a belt, in a bag and down at one’s side hanging
naturally while walking.

The activity recognition algorithm is based on the learning capability from sample datasets [87].
Three recognition scenarios were investigated including: identifying the user’s activity, device placement
(where the mobile device is placed on the user’s body) and both user’s activity and device placement
modes simultaneously. This paper investigated the best set of sensors to use in smartphones and the
optimum features needed for a simple and efficient classification solution using the experimental tests
conducted in this research to establish a good balance between accuracy and computational cost.

In the first step, the number of input sensors signals has been investigated. Results showed that
using accelerometer sensors are efficient in recognition of user motions but not enough for recognition
of device location and orientation; therefore, the orientation soft-sensor (based on the fusion of
accelerometer, magnetometer and gyroscope) is added as a new sensor reading, which can relieve the
effect of the orientation change on the performance of activity classification.

The second step was to select the best set of extracted features instead of using all of the time-domain
and frequency-domain features to train the classifier. Experiments demonstrated that when feature
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selection methods were applied, it was successful in removing redundancy in features and thus
reducing computational complexity. For activity recognition, four features have been explored to
reduce computational load without compromising accuracy. A set of four essential features selected
by SVM feature evaluator method includes Frequency Range Power, Spectral Entropy, Zero Crossing
and Quartile.

Compared to the more complex classifiers such as ANN, the results showed that the Bayesian Network
classifier yielded a similar performance, having a more extensible algorithm structure and requiring
fewer computations. The Bayesian Network classifier provides an overall recognition accuracy of 96.2%
on a variety of six activities and six device positions using only four features provided by SVM feature
selection method.

Inspired from multi-sensor activity recognition research [4,30,32], three MEMS sensors on the
smartphone (accelerometer, gyroscope and magnetometer sensors) are used in this research to consider
both motion and orientation of the device. As an improvement to the previous work, the accelerometer
and gyroscope as well as other sensors such as the magnetometer sensor are integrated to recognize
activity context more reliably. Moreover, in most of the research in this area, the specialized
accelerometers are fixed to the users’ body or have a certain orientation, this assumption usually does not
hold for the usual case of carrying the phone in the hand or pocket. However, in this study no assumption
is made about how users carry their mobile phones. This study contributes to the intelligent navigation
computation domain by focusing on three issues: (i) evaluation analysis for classifiers’ accuracies and
providing reliable results for selecting the best set of sensors and features to optimize the performance of
activity-logging applications on smartphones, (ii) extensive analysis of the effect of a separate estimation
of user activity and device placement or considering both of them together, and (iii) considering different
placement of the mobile device without any assumptions on fixing the device orientation.
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