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Abstract: Droplet-based microfluidics is a colloidal and interfacial system that has rapidly
progressed in the past decade because of the advantages of low fabrication costs, small
sample volumes, reduced analysis durations, high-throughput analysis with exceptional
sensitivity, enhanced operational flexibility, and facile automation. This technology has
emerged as a new tool for many recently used applications in molecular detection, imaging,
drug delivery, diagnostics, cell biology and other fields. Herein, we review recent
applications of droplet microfluidics proposed since 2013.
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1. Introduction

Microfluidics appeared in the early 1980s as a promising interdisciplinary technology and has since
received considerable attention. Microfluidics involves volumes of fluid in the range of microliters to
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picoliters, and demonstrates many advantages such as rapid mass delivery and heat transfer, and reduced
reagent use and waste generation [1,2]. The reagent use can be reduced to nanoliters or less, and the
reaction time can be reduced to mere seconds. Miniaturizing biological assays or processes on a chip
has emerged as a hopeful technology [3–7].

Droplet microfluidics entails both continuous-flow emulsion-based droplet microfluidics and
electrowetting-based droplet (also called discrete droplet or digital droplet) microfluidics as shown in
Figure 1. Droplet formation of the continuous-flow microfluidics is the result of an emulsion created
using two immiscible fluids, including liduid/liquid and gas/liquid systems. Various techniques, such
as channel geometry (T-junction or flow-focusing) and dielectrophoresis, were well applied for good
control of droplet generation. As for the electrowetting-based droplet, an electric field can change the
interfacial tension between the liquid and the surface. Activation of the electrodes leads liquid wetting,
and switching off the electrodes reverses. The change in the interfacial tension is capable of producing
liquid finger and then breaking off from the reservoir to form a droplet.
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Figure 1. The two major types of droplet microfluidics. (A) Continuous-flow emulsion-based
droplet microfluidics from T-junction and flow-focusing; (B) Electrowetting-based
droplet microfluidics.

The microchannels in continuous-flow microfluidic devices have at least one dimension smaller
than 1 mm. Droplets acting as individual compartments in the fluid are comparable in size with
the apparatus itself. In contrast to that in macroscale channels, the capillary force in microchannels
dominates the inertial effects, and capillary action dramatically alters system behavior. For obtaining
fine control over the size and shape of droplets, several active and passive methods involving various
techniques have been proposed [8,9]. As shown in Figure 2, droplet microfluidics is a rapidly growing
field, and the number of publications (according to ISI Web of Knowledge) has increased substantially
since 2010. Droplet microfluidics not only has most conventional microfluidic characteristics but also
provides numerous superior advantages such as ultrahigh-throughput generation and manipulation of
microreactors, implementation of ultrasmall reactors, expulsion of Taylor diffusion and sample dilution,
minimization of sample absorption on channel walls, and enhanced mixing and mass transfer inside
droplets [2].
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Figure 2. Number of publications on droplet microfluidics in the past 15 years.

Droplet microfluidics exhibits great promise for various applications in a broad spectrum of fields.
Droplet-based platforms have been employed in chemical reactions, molecule synthesis, imaging,
drug delivery, drug discovery, diagnostics, food, cell biology, and other applications. For example,
they can be applied in polymerase chain reaction (PCR)-based analyses, enzyme kinetics and protein
crystallization studies, cell cultures, functional component encapsulation, and small molecule and
polymeric particle synthesis [10–15]. The fundamental features of these droplet-based microfluidic
platforms with high-level integration include fine control of small sample volumes, reduced amounts of
reagents and samples, reduced analysis times, improved sensitivity, lowered detection limits, increased
high-throughput screening, enhanced operational flexibility [9].

Many researchers have conducted fundamental studies on droplet microfluidics [16]. Sarvothaman et al.
developed a strategy that involves using fluoroalkyl polyethylene glycol copolymers to reduce protein
adhesion, which causes droplet movements to fail [17]. Seiffert et al. proposed faster droplet production
by delayed surfactant-addition to push droplet-based microfluidics to an industrially relevant scale [18].
Pirbodaghi et al. developed an accurate approach that entails using bright-field microscopy with white
light illumination and a standard high-speed camera for studying the fluid dynamics of rapid processes
within microfluidic devices [19]. Musterd et al. calculated the volume of elongated droplets in
microchannels from a top-view image in interpreting experiments on reaction kinetics and transport
phenomena [20]. Zantow et al. applied the Hough transform for image analysis to automatically
determine microfluidic droplet sizes [21]. Luo et al. proposed a design method to reduce the number
of control pins and facilitate the general purpose of digital microfluidic biochips [22]. Janiesch et al.
found key factors for stable retention of fluorophores and labeled biomolecules such as antibodies,
streptavidin, and tubulin proteins in droplet-based microfluidics [23]. Pan et al. studied optimization
algorithms for designing digital microfluidic biochips [24]. Lai et al. developed an intelligent digital
microfluidic processor for biomedical detection [25]. Huang et al. proposed a reactant and waste minimization

algorithm for multitarget sample preparation on digital microfluidic biochips [26]. Chen et al. developed
a reliability-oriented placement algorithm for reconfigurable digital microfluidic biochips by using a 3D
deferred decision making technique to optimize bioassay completion times [27]. Maftei et al. proposed
a module-based synthesis of digital microfluidic biochips with droplet-aware operation execution [28].
Luo et al. investigated error recovery by using a cyberphysical resynthesis technique to recompute
electrode-actuation sequences on digital microfluidic biochips [29]. In addition, Isgor et al. developed
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a scalable, portable, robust and high-sensitivity capacitive microdroplet content detection system using
low-cost coplanar electrodes and off-the-shelf capacitive sensors for biochemical assay monitoring [30].

Considering the substantial size miniaturization and small component contents in droplet
microfluidics, facilities and techniques that are more sensitive and powerful are required for detection and
characterization of droplets in microfluidics. Lu et al. developed a microfluidic chip coupled with
surface enhanced Raman scattering spectroscopy “lab-on-a-chip” system to rapidly detect and
differentiate pathogens [31]. Kawano et al. developed a Darkfield Internal Reflection Illumination
system for observing a microfluidic device containing microbubbles, fluorescent particles, or
fluorescently labeled cells to overcome the limitation on conventional methods [32]. Kim et al. used
optofluidic droplet interrogation device for ultrahigh-throughput detection of fluorescent drops at a rate of
254,000 drops/s [33]. Muluneh et al. demonstrated a handheld-sized device to monitor four independent
channels with scaled-up to more than sixteen simultaneously [34].

Thus, increasingly more versatile applications of droplet microfluidics have been proposed, indicating
marked matureness in various fields. In this article, we review the applications of droplet microfluidics,
which are categorized as follows: molecular detection, imaging, drug delivery, diagnostics, cell biology,
and other applications.

2. Molecular Detection

Droplet microfluidics revolutionizes molecular detection to replace cumbersome chemical laboratory
experiments by using miniaturized and integrated systems [24] demonstrating the advantages of precise
liquid handling for chemical assays, minimized reagent consumption, and maximized outputs for
high-throughput configurations [35]. Droplet microfluidic systems have been applied in analytical
detection by using various techniques for qualitative content analysis in droplets. Such analytical
detection techniques entail image-based analysis, laser-based molecular spectroscopy, electrochemistry,
capillary electrophoresis, mass spectrometry, nuclear magnetic resonance spectroscopy, absorption, and
chemiluminescence detection [2].

Single molecule detection has been emphasized from examining the physical properties of biological
macromolecules to extracting genetic information from DNA. Many protein biomarkers utilized
for monitoring disease progression or healthy states are generally in complex samples at low
concentrations [36]. However, the traditional macroscale detection of single molecule is often limited to
measuring equilibrium states and is subject to background noises [37]. Therefore, isolating and analyzing
single molecules at low concentrations in a complex mixture of biological samples are nearly impossible
to implement [38]. Droplet microfluidics facilitates manipulating single molecules at the microliter
scale and smaller, and has unique microscale fluidic characteristics for conducting single-molecule
experiments with high sensitivities and throughput [35].

Oedit et al. thoroughly reviewed techniques used for bioanalytical applications over the past 3 years
and discussed the involved merits and limitations, such as the growing popularity of throughput, small
volume, disposability, and automation in bioanalysis [39]. In addition, Zeng et al. reviewed the recent
progress of microfluidic design and applications in quantitative and systems biomolecular analysis
including biomolecular interaction profiling, genomics and transcriptomics, proteomics, and clinical
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diagnostics [40]. Other applications of droplet microfluidics in molecular detection are summarized in
Table 1.

Table 1. Recent applications of droplet microfluidics in molecular detection.

Topic Target Remark Ref.

A droplet-based fluorescence polarization
immunoassay platform for rapid and
quantitative analysis of biomarkers

Bovine angiogenin
Accurately determined the angiogenin concentration
in cow’s milk, and required a total sample volume of
less than 1 nL.

[41]

A novel droplet dosing strategy-based
versatile microscale biosensor for detection
of DNA, protein, and ion

dsDNA, streptavidin,
and Hg2+

The contact-induced droplets dosing based on
adsorption and desorption was developed to
overcome the channel-fouling problem.

[42]

Specific detection of avidin-biotin binding
using liquid crystal droplets

Bovine serum albumin,
lysozyme, hemoglobin,
and chymotrypsinogen

The 5CBPAA-biotin droplets toward avidin were found
to have high sensitivity, specificity, and stability.

[43]

Glucose sensor using liquid-crystal droplets
made by microfluidics

Glucose
The biosensor detected samples under crossed
polarizers at concentrations of 0.03 mM and 3-min
response times.

[44]

Enzyme incorporated microfluidic
device for in situ glucose detection in
water-in-air microdroplets

Glucose
The fluorescence intensity linearly increased with
glucose concentration up to 3 mM, and its detection
limit was 6.64 µM.

[45]

Integrating bipolar electrochemistry and
electrochemiluminescence imaging with
microdroplets for chemical analysis

Quinones

Closed bipolar cell sensor could avoid the
interference and cross-contamination between
analyte solutions and
electrochemiluminescence-reporting reagents.

[46]

Peptide nucleic acid molecular beacons for
the detection of PCR amplicons in
droplet-based microfluidic devices

Olea europaea L. and
Roundup Ready
soybean genes

Efficiently discriminated oligonucleotide sequences
carrying single-base mutations at 100 nM.

[47]

A highly parallel microfluidic droplet
method enabling single-molecule counting
for digital enzyme detection

β-Galatosidase
An integrated microfluidic chip offered the
feasibility of detecting single-enzyme molecules
based on a digital counting method.

[48]

Digital microfluidic-enabled single-molecule
detection by printing and sealing single
magnetic beads in femtoliter droplets

β-Galactosidase
The fluorescent detection had a linear dynamic range
of four orders of magnitude ranging from 10 aM to
90 fM.

[49]

Protein–protein interaction analysis in single
microfluidic droplets using FRET and
fluorescence lifetime detection

Bovine serum albumin,
avidin, and streptavidin

Could be used for quantitative detection of
molecules in direct and competitive assay formats
within nM detection limits.

[50]

3. Imaging

The use of imaging analysis is increasing worldwide, thereby ensuring optimal research and clinical
diagnosis. In imaging techniques, enhancing the clarity and quality of an image by using contrast agents
is critical. Droplet microfluidics has been used in imaging applications for synthesizing monodisperse,
size-controlled, and high-quality microparticles, such as microbubbles and volatile liquid droplets for
echogenic particles [51–53].

Microbubbles are spherical particles with gas encapsulated in a shell, and have excellent
biocompatibility at clinically relevant ultrasound frequencies for image contrast enhancement [54].
Traditional methods for generating microbubbles rely on bulk mechanical agitation, leading to a
polydisperse size distribution. The polydisperse populations of microbubble sizes hinder the ability
to cross the circulation and acoustic response. Microfluidics can achieve a fine degree of monodispersity
and increase the overall yield of microbubbles for various applications [55].

With a high sensitivity and low detection limit, fluorescence is another frequently used tool for
imaging. A new fluorescent molecule can perform different intracellular interactions with positive
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and specific responses for visualizing the fluorescence process under analysis with a considerably low
fluorophore concentration [56]. High-quality fluorescent CdTe:Zn2+ quantum dots of various emission
spectra and other fluorescence probes can be synthesized in monodisperse polymeric microspheres by
using an on-demand one-step process with droplet microfluidics [57]. Observing the particle size and
concentration of fluorescent nanoparticles can clarify the nature of such particles in complex media.
Many studies have used fluorescence to sort droplets or probe droplet-based microfluidic systems in
high throughput [9].

For the biodistribution of microparticles in vivo, determining which organ or tissue traps the
microparticles depends on the size, whereas determining the uptake efficiency depends on the
uniformity [58]. Wang et al. reported using monodisperse radiolabeled microparticles from microfluidics
for imaging of different organs and tissues [58]. The favorable properties of these microparticles
demonstrated excellent performance in imaging according to their homogeneous and efficient retention.
Other applications of droplet microfluidics in imaging are summarized in Table 2.

Table 2. Recent applications of droplet microfluidics in imaging.

Topic Target Remark Ref.

Atom-economical in situ synthesis of
BaSO4 as imaging contrast agents within
poly(N-isopropyl acrylamide) microgels
using one-step droplet microfluidics

Microgel

Fourteen-nanometer crystallites
of BaSO4 as an X-ray imaging
contrast agent were in situ
synthesized with
interlinking reactions.

[59]

Cloud-enabled microscopy and droplet
microfluidic platform for specific detection
of water

Escherichia coli

Magnetic beads conjugated with
fluorescently labeled antibodies
could selectively capture and
isolate specific bacteria.

[60]

Live cell imaging compatible
immobilization of Chlamydomonas
reinhardtii in microfluidic platform for
biodiesel research

Chlamydomonas
reinhardtii

Provided real-time monitoring
and analysis of lipid
accumulation using single cell
imaging for rapid optimization
of microalgae culture conditions.

[61]

4. Drug Delivery

Droplet microfluidics establishes new frontiers and provides promising and powerful platforms
for precise production of novel functional materials as drug delivery vehicles and drug
molecules [8,16,58,62,63]. In the medical field, drugs can be supported to these fine particles, forming
a type of drug delivery system for releasing drugs. The drug delivery vehicles have flexible delivery of
existing drugs with improved performance [58]. The interaction force between drugs and carriers can
control the drug release rate [64]. Protein and peptide therapeutics are typical examples of drug carrier
systems in droplet microfluidics, because of their poor bioavailability in the gastrointestinal tract before
reaching the bloodstream [65]. The main functions of drug carrier systems in pharmaceutics include
(i) the immobilization process, (ii) protection against degradation, (iii) improved drug stability, and (iv)
controlled drug delivery behavior [16].
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Droplet microfluidics demonstrates great potential for production of complex drug systems of uniform
size, monodisperse size distribution, and desired properties. Microfabricated drug delivery systems
include emulsions, microparticles, microcapsules, and microgels [66]. Several recent applications of
droplet microfluidics in drug delivery are summarized in Table 3.

5. Diagnostics

The performance of droplet microfluidics is suitable for miniaturized diagnosis platforms [58,63,66].
Droplet microfluidics can perform clinical laboratory tests by a part of reagents and in a short period.
It has been shown in different fields to improve the diagnostic process for analyzed components,
especially in proteomics and nucleic acid-based diagnosis [67]. For example, PCR devices of droplet
microfluidics demonstrate many crucial advantages including portability, low reagent consumption, rapid
heating/cooling, and a short assay time. Droplets for enzymatic assays can confine molecules and
reactions to a small volume (picoliters to nanoliters), thereby reducing the number of mixing and washing
steps [68].

Based on enzymatic reactions and cell cultures, Rosenfeld et al. investigated the performance metrics
of droplet microfluidic systems. According to mature detection of nucleic acids in droplet microfluidics,
a similar analysis can be applied to many other assay systems [68]. In addition, Kaler et al.
reviewed electroactuation-based droplet microfluidics and its clinical diagnostic assays in nucleic
acid amplification and real-time detection, immunoassays, and protein analysis [63]. Several recent
applications of droplet microfluidics involving diagnostic chips are summarized in Table 4.

6. Cell Biology

Droplet microfluidics and new related techniques offer new possibilities for life science research.
The basic principle of droplet microfluidic systems relies on unique liquid-handling capabilities
and highly monodisperse aqueous droplets in an inert carrier oil flow. Therefore, each droplet is
the functional equivalent of an independent microculture for cells. Encapsulated cells can remain
viable for extended periods in droplets for additional cell-based assays and biochemical assays [69].
Rakszewska et al. well review recent developments in droplet microfluidics as a versatile tool for
single-cell studies [70].

Droplet microfluidics in cell biology can be applied variously. Schlicht et al. developed a scalable and
automated formation of arrays by using droplet-interface-bilayer techniques to imitate cell membrane
processes [71]. Recently, Cao et al. thoroughly reviewed the toxicological screenings and applied
sensing principles of organisms and cells inside microdroplets [72]. Despite the great progress of
cell study in digital microfluidics, the mentioned technologies may impose potential biases. Au et al.
recommended that digital microfluidic experiments involving cells be optimal for ensuring driving
frequencies lower than 10 kHz and electrode sizes smaller than 5 mm to prevent DNA damage and
changes in gene expression [73]. Table 5 lists recent applications of droplet microfluidics in cell biology.
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Table 3. Recent applications of droplet microfluidics in drug delivery.

Topic System Remark Ref.

Microfluidic-assisted engineering of polymeric microcapsules
with high encapsulation efficiency for protein drug delivery

Polycaprolactone microcapsules
encapsulating bovine serum albumin

The high encapsulation efficiency of proteins in the microcapsules
reached 84%, and 30% of their content was released within 168 h.

[65]

Microfluidic assembly of multistage porous silicon-lipid
vesicles for controlled drug release

Thermally hydrocarbonized porous
silicon microparticle-lipid vesicle

The drug encapsulation efficiency was 19%, and the whole
payload was released after only 6 h at pH 7.4.

[74]

Generation of uniform polymer-eccentric and core-centered
hollow microcapsules for ultrasound-regulated drug release

Polydimethylsiloxane microcapsules
encapsulating Rhodamine 6G and
domperidone maleate

The system demonstrated the properties of a floating drug delivery
system absorbed in the upper segments of the gastrointestinal tract
for a long gastric residence time.

[75]

Synthesis of uniform core-shell gelatin-alginate
microparticles as intestine-released oral delivery drug carrier

Core-shell gelatin-alginate
The fabricated microparticles could remain intact in gastric juice
for more than 3 h, indicating effective protection in an acidic
environment.

[76]

Controllable microfluidic fabrication of Janus and
microcapsule particles for drug delivery applications

Poly(lactic-co-glycolic acid
/poly(ε-caprolactone) microcapsule

The microparticles exhibited distinct degradation behavior,
implying programmable drug delivery in different manners.

[77]

Core-shell structure microcapsules with dual-pH-responsive
drug release function

Ampicillin loaded in the chitosan shell
and diclofenac loaded in the alginate core

Demonstrated higher drug release efficiency than respective core
or shell particles for dual-drug carriers.

[78]

Microfluidic-assisted generation of innovative polysaccharide
hydrogel microparticles

Pectin-pectin (homo Janus) and
pectin-alginate (hetero Janus)
encapsulating bovine serum albumin

Facilitated studying the relationships between combined enzymatic
hydrolysis and active release for anisotropic microparticles.

[79]

Microfluidic synthesis of monodisperse PEGDA microbeads
for sustained release of 5-fluorouracil

Poly(ethylene glycol) diacrylate
microbeads encapsulating 5-fluorouracil

The drug (0.1 to 0.5% w/w) demonstrated relatively fast elution in
the first 12 h and continued to release over the next 156 h to
effectively inhibit Huh-7 tumor cells in vitro.

[80]

Chitosan/agarose hydrogels: cooperative properties and
microfluidic preparation

Chitosan and agarose composite
hydrogels containing 5-fluorouracil

The hydrogels released 5-fluorouracil from chitosan/agarose
macrogels with dual-pH and temperature properties.

[81]

Microfluidic fabrication of monodisperse biocompatible
phospholipid vesicles for encapsulation and delivery of
hydrophilic drugs or active compounds

Phospholipid vesicles encapsulating
doxorubicin hydrochloride

The encapsulation efficiency was approximately 94%, and showed
superior sustained release.

[82]
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Table 4. Recent applications of droplet microfluidics in diagnostic chips.

Topic Target Remark Ref.

Detecting and tracking nosocomial methicillin-resistant
Staphylococcus aureus by using a microfluidic SERS biosensor

Staphylococcus aureus
A reliable detection and epidemiological surveillance of bacterial
infections in a bacterial mixture at levels from 5% to 100% was developed.

[31]

Ultrarapid generation of femtoliter microfluidic droplets for
single-molecule-counting immunoassays

Prostate-specific antigen
The femtodroplet system enabled a single enzyme molecule
for prostate cancer to be detected within 10 min and reduced the
concentration to 46 fM.

[83]

Microfluidic droplet-based liquid-liquid extraction and on-chip
IR spectroscopy detection of cocaine in human saliva

Cocaine
Showed a 2´3-fold higher extraction efficiency compared with
state-of-the-art H-filters.

[84]

A centrifugal microfluidic platform for point-of-care
diagnostic applications

Plasma and blood cells
Achieved pumping and valving of fluids and generation of monodisperse
droplets on lab-on-a-disk system.

[85]

An integrated CMOS quantitative-polymerase-chain-reaction
lab-on-chip for point-of-care diagnostics

Staphylococcus aureus
The complementary metal-oxide-semiconductor-integrated
circuit had a reliable and sensitive detection of Staphylococcus aureus from
1 to 104 copies per 1.2-nL droplet.

[86]

Picoliter droplet microfluidic immunosorbent platform for
point-of-care diagnostics

Human anti-tetanus
immunoglobulin G

Reduced the reagent volume by four orders of magnitude and the detection
time from hours to minutes.

[87]

Analysis of single-nucleotide polymorphism in human
angiogenin using droplet-based microfluidics

Human angiogenin

The detection of single-nucleotide polymorphism in the droplet
could be performed using TaqMan probes on DNA samples amplified
offline by using a conventional thermocycler rather an expensive
real-time PCR system.

[88]

Magnetic bead droplet immunoassay of oligomer amyloid β for
the diagnosis of Alzheimer disease using micropillars to enhance
the stability of the oil-water interface

Oligomer amyloid β
The platform markedly reduced the assay time to 45 min and the amount of
antibody usage to 10–30 ng per assay.

[89]

Droplet microfluidic chip based nucleic acid amplification and
real-time detection of influenza viruses

Influenza A and C
The detection threshold of the chip-based qRT-PCR for detecting
and quantifying viral nucleic acids was approximately five copies
per PCR reaction.

[90]

Multiplex, quantitative, reverse-transcription PCR detection of
influenza viruses using droplet microfluidic technology

Influenza A and B
The qRT-PCR process was found to be less than 10 RNA copies
accomplished within 40 min.

[91]

Rapid detection of tuberculosis using droplet-based microfluidics BlaC enzyme
For a 30-µm droplet size, the fluorescent intensity change could be
detected after less than 1 h of incubation.

[92]
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Table 4. Cont.

Topic Target Remark Ref.

Development of a microfluidic-based optical sensing device for
label-free detection of circulating tumor cells through their lactic
acid metabolism

Circulating tumor cells
Could detect the targeted cancer cells without interference by
the cell species.

[93]

Assembly-line manipulation of droplets in microfluidic platform
for fluorescence encoding and simultaneous multiplexed
DNA detection

Human immunodeficiency
virus, variola virus

The result indicated that targets could be simultaneously detected using a
time-saving process and without a complex dye-labelling process.

[94]

Digital microfluidic platform for the detection of rubella
infection and immunity: a proof of concept

Rubella virus
For both rubella viruses IgG and IgM, the performance panel samples
demonstrated 100% diagnostic sensitivity and specificity.

[95]

Rapid and reproducible analysis of thiocyanate in real human
serum and saliva by using a droplet SERS-microfluidic chip

Human serum and saliva
The reaction required less than 15 s in the designed channel, which is at
least 40-fold shorter than that for solid metallic substrates.

[96]

A novel microbead-based microfluidic device for rapid bacterial
identification and antibiotic susceptibility testing

Escherichia coli O157
The immunocapture efficiency was 85%–92%, higher than 44%–86% of
offline immunomagnetic separation.

[97]

Rapid detection of bacteriophages in starter culture using
water-in-oil-in-water emulsion microdroplets

Escherichia coli BL21
and T7 phages

The lytic phage infection in a bacterial culture could be measured using a
simple and inexpensive imaging approach in contrast to flow cytometry
and PCR methods.

[98]

Rapid enumeration of phage in monodisperse emulsions
T4-LacZ and
nonlytic M13

This quantification was robust and insensitive to environmental fluctuations
in contrast to bulk assays.

[99]

Highly sensitive and homogeneous detection of membrane
protein on a single living cell by using aptameric and
nicking enzyme-assisted signal amplification based on
microfluidic droplets

Protein tyrosine kinase-7
Used for constructing a high-throughput platform for detecting a
single cell by using aptameric and enzyme-assisted amplification for
membrane proteins.

[100]

A biocompatible open-surface droplet manipulation platform for
detection of multi-nucleotide polymorphism

Multi-nucleotide
polymorphism

The entire procedure required only 5 min and the total sample volume
consumed in each operation was only 10 µL.

[101]

Topography-assisted electromagnetic platform for blood-to-PCR
in a droplet

KRAS oncogene
Integrated automatic nucleic acid extraction (only 15 min) with real-time
amplification detection of genetic targets.

[102]

Single-molecule quantitation and sequencing of rare
translocations by using microfluidic-nested digital PCR

Lymphoblasts
Demonstrated quantitative measurement and single-molecule sequencing
at extremely low levels (<10´6) in healthy subjects.

[103]
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Table 5. Recent applications of droplet microfluidics in cell biology.

Topic Target Remark Ref.

Single-cell analysis and sorting by using
droplet-based microfluidics

Mouse hybridoma cells
This protocol displayed the use of two-phase droplet-based microfluidics
for high-throughput single-cell analysis and sorting.

[69]

Versatile microfluidic droplet array for bioanalysis HL-60 cells
The novel regional hydrophilic chip demonstrated high-throughput
screening in toxic tests of CdSe on cells, and a rapid biosensing approach
for carcinoma embryonic antigen was developed.

[104]

Mixed hydrogel bead-based tumor spheroid formation and
anticancer drug testing

Human cervical carcinoma
(HeLa) cells

Multicellular tumor spheroids were formed in the microfluidic droplets,
and the viability of cells encapsulated in the mixed hydrogel beads was
higher than 90%.

[105]

Cell-based drug combination screening with a microfluidic
droplet array system

A549 nonsmall lung
cancer cells

The sequential operation droplet array technique provided flexible
approach for performing cell-based screening, and the reagent
consumptions were decreased by two to three orders of magnitude
compared with traditional multiwell plates.

[106]

Digital microfluidics for time-resolved cytotoxicity studies on
single nonadherent yeast cells

Saccharomyces cerevisiae
strain BY4741

Could isolate single nonadherent cells and monitor their dynamic
responses at a defined position over time for implementation of
high-throughput cytotoxicity assays.

[107]

Droplet-based microfluidic platform for high-throughput,
multiparameter screening of photosensitizer activity

Escherichia coli

Could detect both live and dead cells online to score cell viability
and enable simultaneous measurement of many experiments including
those on dark toxicity, photosensitizer concentration, light dose, and
oxygenation levels.

[108]

Changing growth behavior of heavy-metal tolerant bacteria:
media optimization using droplet-based microfluidics

Bacillus sporothermodurans
and Streptomyces tendae

The nitrogen source between the light scattering and the
fluorescence signal may be used for the production of fluorescent
secondary metabolites.

[109]

Generation of monodisperse cell-sized microdroplets using a
centrifuge-based axisymmetric coflowing microfluidic device

Yeast cells
After the encapsulation process, 87% of the yeast cells were alive in the
monodisperse microdroplets.

[110]

Real-time image processing for label-free enrichment
of Actinobacteria cultivated in picoliter droplets

Actinobacteria
Implemented high-throughput cultivation of soil-derived Actinobacteria
and developed trigger imaging for picoliter droplet sorting.

[111]

Digital microfluidic processing of mammalian
embryos for vitrification

Mammalian embryos
The benefits of this digital microfluidic device over conventional manual
operation include cryoprotectant concentration gradient generation,
automated operation, and feasibility of loading and retrieval of cells.

[112]
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Table 5. Cont.

Topic Target Remark Ref.

Single-cell forensic short tandem repeat typing within
microfluidic droplets

Human lymphoid cells
Individual cells were efficiently encapsulated in nanoliter agarose droplets,
serving as the reactors for PCR assays.

[113]

Microfluidic encapsulation of cells in alginate
particles via an improved internal gelation approach

Antibody-secreting
hybridoma cells (9E10 cell)
and mouse breast cancer
cells (M6C cell)

Two mammalian cell types were encapsulated with a viability of higher
than 84% and grew well inside the microparticles.

[114]

A droplet-based heterogeneous immunoassay for screening
single cells secreting antigen-specific antibodies

Alginate microbeads
encapsulating
antibody-secreting cells

Screened anti-TNF-alpha antibody-secreting cells from a mixture of cells
in alginate microbeads as cell culture chambers.

[115]

Ultrahigh-throughput detection of single-cell β-galactosidase
activity in droplets using microoptical lens array

Escherichia coli
This analytical throughput by a parallelized fluorescent detection
compatible with droplet reinjection was larger than those obtained using
flow cytometry.

[116]

New glycosidase substrates for droplet-based
microfluidic screening

Cellobiohydrolase activity
on model bacterial strains
(Escherichia coli and
Bacillus subtilis)

The fluorogenic substrates could be utilized to assay glycosidase activities
in a broad pH range (4–11) and with incubation times of more than 24 h in
droplet-based microfluidic systems.

[117]
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7. Other Applications

In addition to the described applications in molecular detection, imaging, drug delivery, diagnostics,
and cell biology, droplet microfluidics can be applied in many other fields. For example, droplet
microfluidics can be used for monitoring the kinetics of reactive encapsulations occurring at the
droplet interface to provide guidelines for generating microcapsules with soft interfaces [118].
Other applications are addressed as follows.

7.1. Particle Shaping

Advanced progress in microfluidics and other techniques have inspired the design of new
microcarriers [12]. Shim et al. thoroughly reviewed the elaborate design strategies for microcarriers
categorized by particle-type carriers, capsule-type carriers, and foldable carriers [119]. Microfluidics is
a novel tool for particle shaping and is an improvement over the conventional mechanical
shaping method. For example, two types of microgel-capsule structures, bulk microcapsules and
core-shell structures, could be easily tailored by droplet-based microfluidic templating followed
by subsequent droplet gelation [120]. Furthermore, droplet microfluidics has been applied in
manufacturing poly(lactide-co-glycolide)/TiO2 hybrid microparticles [121], silica microparticles [122],
and polysaccharide hydrogel microparticles [79] of various shapes such as spherical, ellipsoidal,
disk-like, and rod-like.

7.2. Food

The most common application of droplet microfluidics in foods entails the preparation of emulsions
for providing accurate control over the droplet size and shape of internal structures [123]. Emulsion
droplets can have a triggered release of flavor or other functional components, and they can also be
used as solid particles for structural elements after the phase transition of the emulsion droplets [123].
Moreover, food microgel particles (typically biopolymer hydrogels) can be used for encapsulation
of phytonutrients and prebiotics, satiety control, texture control, and targeting delivery in the
gastrointestinal tract [124].

Therefore, droplets microfluidics has been proved to be a promising platform for numerous
applications such as above-mentioned fields. Although the great progress in recent droplet microfluidics,
there are still some concerns and challenges to overcome. For example, the current challenge is the
numbering-up to produce large quantities of droplets, especially for more complex core-shell structures.
Many used conditions in literatures are model samples and ideal conditions to demonstrate their
feasibilities, and therefore there are considerable challenges to be a true device in the real world,
especially for a robust and automated instrumentation. In addition, the ability to analyze droplet content
qualitatively and quantitatively in the small-volume droplets is still a bottleneck that needs to be solved.

In the future directions, an integrated system is necessary to broaden their applications. For example,
combining electrochemical methods, Raman spectroscopy, and mass spectrometry can contribute to a
powerful analytical detection technique. The integration of actuators into microfluidic devices is effective
for complex flow control and portability. The 3D mold elements can be applied for 3D structures in
droplet trapping and sorting, fission and fusion, fluid mixing, and other manipulation. Besides, the
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development of advanced sample pretreatment techniques will expand the range of possible applications
in chemical and biological analysis to solve real-world problems.

8. Conclusions

Droplet microfluidics provides the benefits of miniaturization, automation, low reagent consumption,
high sensitivity, and high-throughput for various applications. In this paper, we review the recent
applications of droplet microfluidics since 2013, such as molecular detection, imaging, drug delivery,
diagnostics, cell biology, and other applications involving particle shaping and food products. Many
recent developments in various fields are tabulated for comparison. With many exciting possibility
and opportunities, droplet microfluidics provides novel solutions to today’s challenges in biology and
medicine for advanced diagnostics and therapeutics. It also gives a promising platform for the next
generation of ultrahigh-throughput screening and microsystems for applications. It can be expected that
the growth of droplet-based microfluidics will contribute to future revolutions in the field of lab on a chip.
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