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Abstract: In this paper, a silicon-based radio frequency micro-electromechanical systems (RF MEMS)
pattern reconfigurable antenna for a Ka-band application was designed, analyzed, fabricated,
and measured. The proposed antenna can steer the beam among three radiating patterns
(with main lobe directions of −20◦, 0◦, and +20◦ approximately) at 35 GHz by switching RF MEMS
operating modes. The antenna has a low profile with a small size of 3.7 mm × 4.4 mm × 0.4 mm,
and consists of one driven patch, four parasitic patches, two assistant patches, and two RF MEMS
switches. The active element pattern method integrated with signal flow diagram was employed to
analyze the performances of the proposed antenna. Comparing the measured results with analytical
and simulated ones, good agreements are obtained.

Keywords: silicon-based; RF MEMS pattern reconfigurable antenna; Ka-band; RF MEMS switch;
active element pattern method

1. Introduction

Pattern reconfigurable antennas received considerable attention owing to its attractive performance,
as they can switch radiating patterns while keeping other operating parameters unchanged,
such as operating frequency and polarization. In spacecraft, satellite, and missile applications, antenna
constraints include weight, size, cost, and aerodynamic profile. Thus, the implementation of a pattern
reconfigurable antenna with a low profile can alleviate those constraints. To date, many pattern
reconfigurable antennas [1–5] have been developed, and reconfigurable antennas are commonly
implemented using variodes [6,7] and PIN diodes [1,2]. Compared with the variodes, PIN diodes,
and other technologies, radio frequency (RF) micro-electromechanical systems (MEMS) switches
possess many attractive advantages, such as high linearity, high quality factors, and almost no
Please check the sections highlight in yellow in “the whole text” as we have made little modification.
direct current (DC) power consumption [8]. Many reconfigurable antennas have been developed
by employing MEMS switches [9–12]. However, most of those reconfigurable antennas operate at a
low frequency and do not have process consistence, namely, the RF MEMS switches were mounted
on circuitry after the antenna patch was implemented, instead of the integrated manufacture of the
antenna patch and the RF MEMS switches. In addition, with the various superiorities such as a wide
bandwidth, a compact device structure, and a high data throughput capacity, devices in a Ka-band
have many advantages.

A pattern reconfigurable antenna that consisted of a driven patch (active element) and two
assistant radiated patches (passive elements) was designed [6], but the proposed method to design
and analyze the assistant patches was severely dependent on full-wave simulation, which is
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time-consuming. A beam-steering antenna was designed in [1], and the antenna was comprised
of active patch and passive patch elements, but the analysis of the passive patch elements was
rough and had no quantified calculations. In [13] an antenna using parasitic coupling was designed,
but the analysis of the parasitic coupling function was insufficient, and the antenna only had simulated
results. The active element pattern method integrated with the signal flow diagram needs to be
shown to be effective in analyzing the passive antenna patches (parasitic coupling) [14,15]. The active
element pattern of an element is defined as its radiation pattern when all other elements terminate
in matched loads [16], and an antenna can be fully described by the its active element pattern and
scattering parameters. This method is employed to design and analyze the proposed RF MEMS pattern
reconfigurable antenna in this study.

In this paper, a pattern reconfigurable antenna operating at 35 GHz is proposed by employing RF
MEMS switches. By changing the two RF MEMS switches operating modes, the proposed antenna
can switch among four different kinds of operating states and obtain three kinds of reconfigurable
patterns (because two operating modes possess the same pattern). The proposed pattern reconfigurable
antenna is analyzed using an active element pattern method and a signal flow diagram. Comparing
the calculated and simulated results with the measured ones, good agreement is acquired.

This paper is divided into five sections: Section 2 illustrates the design of the pattern reconfigurable
antenna, Section 3 analyzes the operating mechanism of the proposed pattern reconfigurable antenna,
Section 4 displays the measurement and results, and Section 5 summarizes the paper.

2. Design of the Pattern Reconfigurable Antenna

2.1. Antenna Design

A pattern reconfigurable is designed and its structure is illustrated in Figure 1, the close-ups
shown in Figure 1b are the RF MEMS switch and its DC actuating circuit. The geometry configurations
of Figure 1a are shown in Table 1. The antenna consists of one rectangle driven patch radiator,
four rectangle parasitic patches, two assistant patches, and two RF MEMS switches. The RF MEMS
switch was terminated by a λg/4 sector open stub and a high resistivity bias line. Parastic patch 1 and 2
are used for extending the operating bandwidth. The proposed pattern reconfigurable antenna patches
and RF MEMS switches were all fabricated on a high resistivity silicon substrate with a thickness of
400 µm and a dielectric constant of 11.9.
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Table 1. The geometry configuration of the proposed antenna.

Symbol Value (µm) Symbol Value (µm) Symbol Value (µm)

Wdu 2460 W f 383 W1 500
Ld 1000 Wau 400 L1 300

Wdb 2100 Wab 580 W2 600
Wdm 130 Lal 900 L2 300
Ldm 1300 Lar 518 - -

By changing the mode of the RF MEMS switches, the antenna is capable of switching among four
operating modes (00, 01, 10, 11; the “0” represents the up state, and the “1” stands for the down state)
and achieving three pattern reconfigurable states in the yoz plane (φ = 90◦) accordingly, because two
of the operating modes are at the same pattern reconfigurable state. According to the measurement
results of the fabricated pattern reconfigurable antenna, the three reconfigurable radiating patterns at
operating frequency 35 GHz were obtained, i.e., left (approximately −20◦), middle (approximately 0◦),
and right (approximately +20◦), respectively. The detailed results of the reconfigurable radiating
pattern main lobe direction and its associated RF MEMS switches operating modes are shown in
Table 2.

Table 2. The reconfigurable radiating pattern main lobe direction and its associated radio frequency
micro-electromechanical systems (RF MEMS) switches operating modes.

Mode Description Main Lobe Direction (φ = 90◦) Reconfigurable Radiating Pattern

(1,0) Only left switch in the up state θ = −20.2 left
(0,0) Double switches in the up state θ = −0.2 middle
(1,1) Double switches in the down state θ = −0.2 middle
(0,1) Only right switch in the up state θ = 20.5 right

2.2. RF MEMS Switch Design

The reconfigurations of the proposed antenna are realized by controlling the modes of RF MEMS
switches; thus, the performance of RF MEMS switch is critical for the overall system. The thickness of
the RF MEMS switch beam is 1 µm, and the air gap between the beam and the signal line that connects
the derived patch and assistant patch is 1.5 µm. The other pivotal size is shown in Table 3. The top
view and 3D view of the designed RF MEMS switch are illustrated in Figure 2.

Table 3. The pivotal size of the designed RF MEMS switch.

Symbol Value Symbol Value Symbol Value Symbol Value

Lb 90 µm Wb 340 µm a 8 µm δ 46◦
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As shown in Figure 2, the RF MEMS switch is terminated by a λg/4 sector open stub and a high
resistivity bias line, which is used to apply the direct current. To alleviate the influences on return loss
and resonant frequency, the λg/4 sector open stub is employed, which has many advantages such as
miniaturization of struction and the convenience of connection. The dielectric shown in Figure 2a,b is
Si3N4 with a thickness of 0.15 µm, and it is used to separate the beam and the signal line when the
air gap is 0 µm. By actuating the RF MEMS switches using the direct current, the gap between the
beam and the signal line varies from 0 to 1.5 µm (i.e., down state to up state). The down or up state
determinate whether the assistant patch is connected to the driven patch, i.e., when the switch is in the
down state (the gap is 0 µm), the assistant patch is detached from the driven patch, and vice versa.

According to the simulated results, the isolation of the proposed RF MEMS switch reaches 20 dB,
and the insertion loss is 0.35 dB at operating frequency 35 GHz, respectively. The performance of the
antenna can therefore be guaranteed. When the position of the RF MEMS switch beam is pulled to the
point (2/3)g0, the increase of the restoring force is exceeded by the increase of the electrostatic force.
This leads to a rapid drop-down of the RF MEMS beam, and the actuating voltage reaches a maximum.
The actuating voltage can be calculated by

Vp =

√
2ke

ε0WbLd

g0

3

(
2g0

3
+

te

εr

)2
(1)

where ε0 is the dielectric constant of free space, εr is the relative dielectric constant of dielectric Si3N4,
g0 is the gap between the RF MEMS switch beam and the signal line, ke is the elastic coefficient
of the beam, te is the thickness of the beam, and Wb and Ld are the width and length of the beam,
respectively. The actuating voltage is approximately 7.5 V calculated by Equation (1), but the measured
voltage is actually 20.8 V. The measured actuating voltage is more than twice the calculated value,
the main reasons for this phenomenon being the incomplete releasing of the polyimide and the
inhomogeneity of the polyimide thickness. If the manufacture process has good release and flatness,
the actuating voltage will be close to the theoretical value. The quality factor [8] of the RF MEMS
switch is Q = [4$te

2E−1/2/µ(WbLd)2]g0
3 ≈ 1. Thus, the pull in time of the RF MEMS switch is

ts ≈ (27Vp
2)/(4ω0QVs

2) ≈ 12.6 µs, where E is Young’s modulus, µ is the air viscosity coefficient
between the RF MEMS beam and the Si3N4 dielectric, and Ω0 is the mechanical resonant
frequency, respectively.

3. Theory Analysis of Pattern Reconfigurations

An antenna array can be fully described by its scattering parameters and the active element
pattern of each radiating element [16]. The proposed pattern reconfigurable antenna in this paper
can be viewed as the degenerated antenna array shown in Figure 3a. (The whole structure of the
reconfigurable antenna can be divided into three parts shown in Figure 3a, i.e., the left part, middle
part, and right part. These three parts constitute an antenna array with three elements. However,
the three elements in this array are not identical; both the left and right parts did not equip a separate
microstrip feed line. Therefore, the reconfigurable antenna is equivalent to a degenerate antenna array.)
Thus, the active element pattern, the scattering parameters, and the signal flow diagram method can
be employed to analyze the proposed antenna appropriately. The active element pattern of an element
is defined as its radiation pattern when all other elements are terminated in matched loads [16].
In this paper, a method combining an active element pattern and a signal flow diagram [17],
is employed to analyze the pattern reconfigurations of the antenna-based RF MEMS switches.

The proposed antenna can be divided into three parts. As shown in Figure 3a, the driven
patch and the feed line comprise Part 1, and Part 2 (namely load Z2) consists of an assistant patch,
a RF MEMS switch, parasitic patch 1, and parasitic patch 2, and the composition of Part 3 (namely load
Z3) is the same as Part 2. The parasitic patch in Part 2 and Part 3 are used to slightly tune the frequency
of the overall antenna structure and extend the operating bandwidth. Without any loss of analysis
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precision, the parasitic patches are involved in loads Z2 and Z3, as shown in Figure 3. Moreover,
the port associated with each part is marked in Figure 3a as well.Micromachines 2017, 8, 11 5 of 10 
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The proposed antenna can be modeled as an equivalent scattering parameter matrix SD,
which consists of a regular scattering parameter matrix Sr and the electric field intensity matrix
E of active element pattern. The equivalent scattering parameter matrix SD is defined as

SD =

(
Sr ET

E 0

)
(2)

and the electric field intensity matrix E is

E =
(

E1(θ,ϕ) E2(θ,ϕ) E3(θ,ϕ)
)

(3)

where Ei(θ, ϕ) is the electric field vector of each active element pattern, and ET is the transpose matrix
of E.

As shown in Figure 3, the driven patch (part 1) is terminated by load Z2 and load Z3. The regular
scattering matrix Sr includes three ports, and S32 and S23 are all approximately equal to zero because
the couplings between load Z2 and load Z3 can be neglected. According to the symmetry of the
designed antenna overall structure, S13 = S12 and S31 = S21, respectively. Thus, Sr is defined as

Sr =

 S11 S12 S12

S21 S22 0
S21 0 S33

. (4)

The signal flow diagram of the proposed antenna is shown in Figure 3b, all of those parameters
are extracted from a full wave simulation. The Γi is the reflection coefficient of Port No. i. Using the
active element pattern and Mason rules, the return loss RL and gain G(θ, ϕ) of the proposed antenna
are calculated as follows:

RL = 20 log
(

M
P

)
(5)

G(θ,ϕ) = 20 log
N

P

√
3
∑

n=1

∣∣Inejϕn
∣∣2 (6)
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where Inejϕn is the signal current applied to Ports n, M, N, and P, which are defined as follows:

M = S11 − S11ΓL2S22 − S11ΓL3S33

+S11ΓL2S22ΓL3S33 + S2
12ΓL2 − S2

12ΓL2ΓL3S33

+S2
13ΓL3 − S2

13ΓL2ΓL3S22

N = E1(θ,ϕ)(1 − ΓL2S22 − ΓL3S33 + ΓL3S33ΓL2S22)

+E2(θ,ϕ)S12ΓL2(1 − ΓL3S33)

+E3(θ,ϕ)S13ΓL3(1 − ΓL2S22)

P = 1 + S11ΓL1[ΓL3S33 + ΓL2S22 − ΓL2S22ΓL3S33] + ΓL2S22ΓL3S33

−ΓL2S2
12ΓL1 − ΓL3S2

13ΓL1 − S2
12ΓL2ΓL3S13ΓL1

−ΓL2S22 − ΓL3S33 + S2
13ΓL3ΓL1ΓL2S22 + S2

12ΓL2ΓL1ΓL3S33

. (7)

The Γi (i = 1, 2, 3) is the reflection coefficient of each port, which is given by

Γi =
ZL,i − Z0,i

ZL,i + Z0,i
(8)

where ZL,i (i = 1, 2, 3) is the load impedance of each port, and Z0,i (i = 1, 2, 3) is the characteristic
impedance of each port. In this paper, the impedance of Port 1 is matched, i.e., 50 Ω. Therefore, Γ1 = 0.
ZL,2 and ZL,3 are Z2 and Z3, as shown in Figure 3a, respectively. The characteristic impedance of Port 2
or Port 3 is equal to 87.5 Ω.

The simulation results show that the input impedance of Port 2 or Port 3 is always inductive and
the real part of the input impedance is so small that it can been neglected. The return loss and the gain
at φ = 90◦, θ = −20◦ of the proposed pattern reconfigurable antenna are shown in the contour maps
(Figure 4a,b, respectively). In Figure 4, the horizontal axis and the vertical axis are the reactance value
of load Z2 and load Z3. In order to alleviate the contradiction between the return loss and the gain,
the two points in Figure 4 are selected to reconfigure the radiation pattern of the proposed antenna.
In these two points, the return loss of the proposed antenna is approximately 10 dB, and the gain
reaches approximately 5 dB.
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The value of load Z2 and Z3 can be reconfigured among Point 1 and Point 2 shown in Figure 4 by 
changing the operating modes. Each RF MEMS switch has two states, i.e., an up state (0) and a down 
state (1). The input impedance of the Part 2/Part 3 is (0.0808 + j1.1140) × 87.5 Ω ≈ (7 + j98) Ω in the “0” 
state, and (0.05 + j0.3503) × 87.5 Ω ≈ (4 + j31) Ω in the “1” state according to the simulated results, the 
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The value of load Z2 and Z3 can be reconfigured among Point 1 and Point 2 shown in Figure 4 by
changing the operating modes. Each RF MEMS switch has two states, i.e., an up state (0) and a down
state (1). The input impedance of the Part 2/Part 3 is (0.0808 + j1.1140) × 87.5 Ω ≈ (7 + j98) Ω in the
“0” state, and (0.05 + j0.3503) × 87.5 Ω ≈ (4 + j31) Ω in the “1” state according to the simulated results,
the value of the 87.5 Ω is the characteristic impedance of the port. Thus, the load conditions of the
driven patch have four kinds of combination, as shown in Table 4. Fortunately, if the real part of the
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input impedance (in RF MEMS switch “0” or “1” states) is neglected, the reactance value of the two
points in Figure 4 will be reached by changing the RF MEMS switch operating modes among (1,0)
and (0,1), i.e., Point 1 corresponding to RF MEMS switch state (1,0) and Point 2 corresponding to (0,1).
Therefore, the main lobe direction of the proposed pattern reconfigurable antenna can be steered by
changing the RF MEMS switch operating modes. The simulated gain results of the proposed RF MEMS
pattern reconfigurable antenna are shown in Figure 5.

Table 4. The four kinds of combination for driven patch load conditions.

Switch State (0,0) (0,1) (1,0) (1,1)

(Z2, Z3) Ω (j98, j98) (j97.5, j30.7) (j30.7, j97.5) (j30.7, j30.7)
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layer with a thickness of 1500 Å is patterned on the top of the electrode and bias lines by a 
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4. Fabrication, Measurement, and Results

4.1. Fabrication

The overall structure of the proposed pattern reconfigurable antenna and RF MEMS switches was
fabricated on a high resistivity silicon substrate with a thickness of 400 µm and a dielectric constant
of 11.9. The SiO2 layer, which acts as an insulating layer, with a thickness of 0.3 µm is formed by
thermal oxidation. Then, a 0.2-µm-thick layer of Al is deposited and patterned to define DC bias pads
afterward and to form coplanar waveguide (CPW) transmission lines. Next, thin SiAl (approximately
0.05 µm) is patterned by lifting off to form the bias lines after deposition. A Si3N4 layer with a thickness
of 1500 Å is patterned on the top of the electrode and bias lines by a plasma-enhanced chemical vapor
deposition (PECVD) process. A 1.5-µm-thick layer of Al, which acts as an anchor, is evaporated.
Polyimide as the sacrificial layer was cut down by a chemical mechanical polishing (CMP) process.
The beam uses 0.6 µm of SiAl. Finally, the wafer is released in a plasma dryer to avoid the collapse of
the membrane. The photographs of the proposed antenna and its close-up are shown in Figure 6.
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4.2. Measurement and Results

Input impedance of all operating modes at the desired frequency of 35 GHz is essential.
The return loss of the proposed antenna was measured with the network analyzer Agilent PAN
N5442A. The antenna was fed with a 50 Ω microstrip line, and the input impedance of the antenna
was transformed by a transformer. The measured return losses of all modes were approximately
10 dB at the desired frequency of 35 GHz, as shown in Figure 7. Thus, the manufactured antenna has
acceptable return loss performance.
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Figure 7. The measured return loss of the proposed pattern reconfigurable antenna in all states of the
RF MEMS switches.

The radiating patterns of the proposed antenna are measured in the microwave chamber.
As shown in Figure 8, the proposed pattern reconfigurable antenna can switch the radiating pattern
among four operating modes by changing two RF MEMS switches states, and it can obtain three
reconfigurable radiating patterns, i.e., left (approximately −20◦), middle (approximately 0◦), and right
(approximately 20◦), respectively.
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Comparing the measured results, the calculated results, and the simulated results shown in 
Figures 4 and 5, good agreement is achieved. The measured results in Figure 8 have a back lobe 
because of the coupling between the antenna patches and the testing holder. The error in fabrication, 
such as the resolution of lithography, the residual polyimide, the thickness inhomogeneity, the 
asymmetry between the left RF MEMS switch and the right RF MEMS switch, and the conductor loss 
are the other primary causes for the discrepancies observed in the measurements. If the 
manufacturing process is high quality, these discrepancies will be alleviated. 
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5. Conclusions 

This paper proposes a pattern reconfigurable antenna by employing two RF MEMS switches. 
By changing the two RF MEMS operating modes, the proposed antenna can switch among three 
kinds of reconfigurable patterns, namely middle (approximately 0°), left (approximately −20°), and 
right (approximately 20°). The proposed pattern reconfigurable antenna was analyzed using an 
active element pattern method and a signal flow diagram. Comparing the measured results with the 
calculated and simulated results, good agreement was obtained. The proposed pattern 
reconfigurable antenna can be applied to a 5th-generation (5G) mobile communication and satellite 
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Comparing the measured results, the calculated results, and the simulated results shown in
Figures 4 and 5, good agreement is achieved. The measured results in Figure 8 have a back lobe because
of the coupling between the antenna patches and the testing holder. The error in fabrication, such as
the resolution of lithography, the residual polyimide, the thickness inhomogeneity, the asymmetry
between the left RF MEMS switch and the right RF MEMS switch, and the conductor loss are the other
primary causes for the discrepancies observed in the measurements. If the manufacturing process is
high quality, these discrepancies will be alleviated.

A comparison between the proposed pattern reconfigurable antenna and the available literatures
was made, and the comparison results are shown in Table 5. The proposed antenna possesses a
compact architecture structure and an acceptable reconfigurable angle range. It can be applied to a
5th-generation (5G) mobile communication and satellite communication system.

Table 5. Performance comparison of the proposed pattern reconfigurable antenna with the literature.

Available Literatures [4] [5] [2] [18] This Study

Reconfigurable means MEMS switches MEMS switches PIN diodes Tunable Graphene
Superstrate MEMS switches

Antenna type patch slot-array Double Layer patch Double Layer patch

Operating frequency
(GHz) 34.8 30 27.5 30 35

Reconfigurable
angles (◦) 60 13 45 About 30 40

Block volume (mm3) About
500 × 500 × 2

About
7.112 × 3.556 × 40 5.1 × 5.1 × 1.274 16 × 16 × 10.3 3.7 × 4.4 × 0.4

5. Conclusions

This paper proposes a pattern reconfigurable antenna by employing two RF MEMS switches.
By changing the two RF MEMS operating modes, the proposed antenna can switch among three
kinds of reconfigurable patterns, namely middle (approximately 0◦), left (approximately −20◦),
and right (approximately 20◦). The proposed pattern reconfigurable antenna was analyzed using an
active element pattern method and a signal flow diagram. Comparing the measured results with the
calculated and simulated results, good agreement was obtained. The proposed pattern reconfigurable
antenna can be applied to a 5th-generation (5G) mobile communication and satellite communication
system because of its excellent performance.
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