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Abstract: Worm-like locomotion at small scales induced by propagating a series of extensive or
contraction waves has exhibited enormous possibilities in reproducing artificial mobile soft robotics.
However, the optimal relation between locomotion performance and some important parameters,
such as the distance between two adjacent waves, wave width, and body length, is still not clear.
To solve this problem, this paper studies the optimal problem of a worm’s motion induced by two
peristalsis waves in a viscous medium. Inspired by a worm’s motion, we consider that its body
consists of two segments which can perform the respective shape change. Next, a quasi-static model
describing the worm-like locomotion is used to investigate the relationship between its average
velocity over the period and these parameters. Through the analysis of the relationship among these
parameters, we find that there exist four different cases which should be addressed. Correspondingly,
the average velocity in each case can be approximately derived. After that, optimization is carried
out on each case to maximize the average velocity according to the Kuhn–Tucker Conditions. As a
result, the optimal conditions of all of the cases are obtained. Finally, numerical and experimental
verifications are carried out to demonstrate the correctness of the obtained results.
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1. Introduction

Micro-robots, especially worm-like soft robots at a small scale, due to their extensive potential
applications in disaster rescue, military detection, pipeline cleaning, medical treatment, etc., have
attracted the attention of many scholars. As an example of a micro-robot, a continuous worm-like
robot with a one-centimeter diameter, which uses shape memory alloy and a hydrostatic fluid as
return spring, is presented [1]. The movement of fluid induced by the sequential constriction of a
hoop actuator leads to the generation of peristaltic waves. As a result, the motion of the whole body is
naturally caused. However, the optimal design of some parameters, such as body length, wave width,
and the distance between two adjacent waves, is still not clear. To this end, this paper deals with the
optimal problem of worm-like locomotion driven by two square waves.

The research on these worm-like robots is inspired by the locomotion mechanism of some limbless
animals, such as earthworms, snails, caterpillars, and amoeba. Based on the mechanism of the periodic
shape change of their bodies, which is induced by the propagation of a series of peristalsis waves,
these animals can move in various environments. Compared with other animals with legs or wheels,
they are capable of both rapid and dexterous movements in confined complex spaces. In the forward
moving process, animals such as snails [2], earthworms [3–5], slugs [6], and terrestrial planarians [7]
can express multiple peristalsis waves which can be run simultaneously over the length of body.
In fact, the number of waves is regarded as a main factor of motion pattern in peristaltic crawling [8,9].
It has been shown that the simultaneous propagation of multiple waves along a worm’s body is
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possible. However, many researchers have mainly paid attention to the locomotion mechanism of
one wave when a worm-like locomotion system was studied [10–14], and did not consider the case of
multiple waves.

On the other hand, a trend in the development of a worm-like robot is to increase the number
of waves. In fact, a number of waves along the body of a worm-like robot is also possible [1,5,15–19].
A new continuous robot with the exterior braided mesh made of brake cable sheathing was designed.
A technique using this braided mesh to produce smooth waves of motion along the body was
presented [5]. At the end of this robot there is a cam, the length of which can be adjusted to change the
shape of waveform. Additionally, with this style of cam mechanism, any whole number of waves is
feasible. Meanwhile, the simulated model revealed that the one-wave model has more slip loss than
the two-wave one. This result showed that an increase in the number of waves can reduce the slip
backwards. Besides this, a discrete model of a metameric earthworm-like robot has been developed
to study the relationship among gait patterns, physical parameters, and dynamic behavior [15]. It is
worth noting that the number of peristalsis waves corresponds to the number of driving modules,
which are regarded as the locomotion gaits. These gaits can be adjusted to adapt to a changing
environment. However, the relationship between worm-like locomotion induced by multiple waves
and some important parameters, such as the distance between adjacent waves, wave width, and body
length, has rarely been reported.

The average velocity is one of the most important indexes to evaluate the locomotion performance
of a worm-like system. The maximum improvement of the average velocity has been an active subject
of scientific research. The gait parameters [15] and the phase coordination [20] have been used to
study the locomotion of worm-like robots, and the optimal relation of the parameters was obtained to
maximize the average velocity. The result revealed that a driving module is the optimal drive mode
when the best average progression is attained. In addition, the worm could achieve the maximum
crawling velocity by adjusting its tension distribution, and at this time the corresponding wave form
was found [21]. The result showed an advantage in the increase of the number of waves along the
worm body that can reduce the maximum tension of the body when the worm moves on a rough
or sticky surface. Meanwhile, it led to decreases in wave speed and average velocity. However,
the interaction force of the aforementioned studies concerning the maximum average velocity is mainly
dry friction. After a brief review of this literature, it can be seen that very few studies of the optimal
locomotion on parameters such as the distance between adjacent waves and body length have been
considered in a linear viscous environment. Therefore, this paper studies the optimal relation between
average velocity and these parameters so that the locomotion performance of a self-propelled system
can be improved.

In this paper, we consider that worm-like locomotion is simultaneously driven by two square
waves with the same travel speed along its body and assume that the worm is able to freely control
its shape. As a result, we introduce the case in which the worm consists of two segments, each of
which can deform independently [22,23]. Based on the above statement, this paper first explores the
correlation between the average velocity of worm-like locomotion over one period and some important
parameters by using the quasi-static model. After that, we find the optimal conditions under which
the maximum velocity of the locomotion is attained according to the Kuhn–Tucker (KT) Conditions.

The rest of the paper is organized as follows. In Section 2, the reduced dynamic model is
introduced to study worm-like locomotion. The square strain waves are utilized to calculate the
expressions of the relative velocity and the relative displacement in each interval, and the expressions of
average velocities in different cases are calculated by using the reduced model in Section 3. In Section 4,
optimization is carried out to obtain the optimal conditions that correspond to the maximum average
velocities. Then, the verifications of the optimal conditions and discussion are performed in Section 5.
Finally, conclusions are given in Section 6.
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2. The Mathematical Description of Worm-Like Locomotion

This section is devoted to the description of the model under consideration. In the following,
the dynamic model and its reduced model, called the quasi-static model, will be introduced.
To establish the relationship between worm-like locomotion and parameters such as the friction
coefficient, linear density, wave width, and body length of the worm, a dynamic model of the
locomotion [24] has been developed. This model, which describes one-dimensional motion of a
worm along a straight line, is denoted by the following form

..
x1(t) + a(t)

.
x1(t) = b(t) (1)

where

a(t) =
µl(t)
ρ0L

and b(t) = − µ

ρ0L

∫ L

0

.
h(Z, t)h′(Z, t)dZ− 1

L

∫ L

0

..
h(Z, t)dZ (2)

Here, Z denotes the coordinate along the worm’s body (shown in Figure 1); Z1 = 0, Z2 = L
correspond to the rear end and the front end, respectively; L is the body length of the worm in the
reference configuration; x1(t) is the coordinate of the left edge of the worm’s body measured from a
point fixed in the current configuration and denotes the position of the worm; h(Z, t) is the relative
displacement of the point at position Z to the rear end x1(t) and describes the shape of the worm as
freely controllable; and l(t) = h(L, t) is the whole length of the deformed body. Here, the prime and
the dot represent the derivative of h(Z, t) with respect to the position Z and the time t, respectively.
ρ0 is the linear density of the worm’s body; µ is the viscous coefficient of the linear friction. This viscous
friction is employed in this paper and is given as the following form

f (h, t) = −µv(h, t) (3)

where v(h, t) is the absolute velocity of the locomotion.
It is seen from Figure 1 that the motion of the worm induced by shape change is described by

x(Z, t) = x1(t) + h(Z, t) (4)

with h(0, t) = 0, and h′(Z, t) > 0, which implies that the adjacent parts cannot pass through each other
in the deformation. Mathematically, it can be written as

h′(Z, t) = 1 + ε(Z, t) (5)

where ε(Z, t) > −1, and it is the local strain at the time t and the position Z.
Up to now, as seen from Equation (1), the coefficients of the equation related only to ε(z, τ) are

determined by a specific strain wave. In the paper, to further obtain the solution of Equation (1),
we introduce square strain waves (SSW) as a special type of ε(z, τ), which is presented as

ε(Z, t) =

{
ε1(t), Z ∈ [0, L1)

ε2(t), Z ∈ [L1, L]
(6)

where ε1(t) = ε1, ε2(t) = ε2; εi (i = 1, 2) is the amplitude of strain wave; and ε2 = γ ε1 (γ ≥ 0). L1 is
the length of the rear segment of the worm’s body with the strain ε1. In fact, this type of segmented
strain employed has been introduced [22,23].

To simplify Equation (1), the dimensionless variables are given as

z =
Z
L0

, τ =
ct
L0

, λ =
L
L0

, λ1 =
L1

L0
, α =

µL0

cρ0
, κ =

x
L0

(7)

where L0 is the wave width, c the wave speed, and x the interval distance between two waves.
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Given Equation (7), Equation (1) can be reduced to the following form

..
x1(τ) + a1(τ)

.
x1(τ) = b1(τ) (8)

where

a1(τ) =
α

L
l(τ) and b1(τ) = −

α

L

∫ λ

0

.
h(z, τ)h′(z, τ)dz− 1

λ

∫ λ

0

..
h(τ, τ)dz. (9)

Further, it is found that Equation (8) can be reduced to a quasi-static approximation for a large
friction, a low linear density, a long body length or a small wave speed when the locomotion is driven
by the sine-squared strain wave in [24]. Based on the same method, this result can be also obtained by
using the drive mode of the square wave. Therefore, this analysis process is omitted but the numerical
verification in Section 5 will be given. The reduced result is displayed as

dx1

dτ
= − 1

l1(τ)

∫
0

λ .
h(z, τ)h′(z, τ)dz (10)

where l1(τ) = L(1 + ε0q1(τ)) and q1(τ) =
1
λ

∫ λ
0 ε(z, τ)dz.

Equation (10) is called the quasi-static model, meaning that the inertia effect is ignored.
To conveniently analyze the motion of a crawler, this reduced model presented in [12–14] is employed
in this paper.

It follows from Equations (5) and (7) that the dimensionless relation h′(z, τ) can be given by

h′(z, τ) =
L0

π
[1 + ε(z, τ)], (11)

where ε(z, τ) indicate various strain waves to drive the motion of the worm, for example the
sine-squared strain wave [24]. In the following section, we consider ε(z, τ) to be a square strain
wave (SSW).
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Figure 1. A continuously deforming worm. (a) The relaxed body in the reference configuration; (b) The
deformed body caused by the propagation of strain waves in the current configuration.

3. Square Strain Waves (SSW)

The aim of this section is to investigate the relationship between the average velocity of worm-like
locomotion and some parameters concerning the body length, the distance between two strain waves,
and the strain amplitudes. To this end, we first consider the drive mode of worm-like locomotion.

In this section, the motion of a worm caused by the simultaneous propagation of two square
strain waves with the same travelling speed is typically considered. It should be noted that these two
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waves may be different when they locate in different positions of the body. Here, square strain waves
(SSW) are presented in a dimensionless form in terms of Equations (6) and (7), namely

ε(z, τ) =

{
ε1(τ), z ∈ [0, λ1)

ε2(τ), z ∈ [λ1, λ]
(12)

where ε1(τ) = ε1, ε1(τ) = ε2; here z and τ denote the dimensionless position and the dimensionless
time, respectively. Meanwhile, the wave width becomes 1, the body length is λ, the wave speed is c
and the distance between two waves is κ. These two waves travel rightwards along the worm’s body
with the wave speed c and take λ to span the whole body. Because different situations in which these
waves locate in different positions in motion will lead to different results, it is found that there are four
cases (see Figure 2) which can be addressed in the same way.
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Figure 2. Four cases of worm-like locomotion based on the relationship between the dimensionless
body length and the distance of two waves.

Specifically, the first case is that the right wave travels still in the second segment of the worm’s
body with the strain ε2, while the second case corresponds to that only a certain part of the right
wave is located in the second segment of the body when the left wave just passes through the first
segment [0, λ1) at the dimensionless time τ = κ + 1. The third case is that the left wave just reaches
the position z = λ1; meanwhile, one part of the right wave has been out of the interval [λ1, λ) at
τ = κ. However, if the right wave lies outside this interval, this forms the fourth case. In addition,
the constraint condition λ ≥ κ + 2 should be satisfied in all of the above cases because the body length
is greater than the sum of the width of two waves and the distance between them. For brevity, only the



Micromachines 2017, 8, 364 6 of 17

first case is described in detail. The same process for the other three cases is omitted, but these results
will be given.
Case I. For λ ∈ [2κ + 3, +∞)

This case is illustrated in Figure 3. When the square wave travels along the interval [0, λ1],
the strain amplitude of shape change is ε1, while that of another segment is ε2. Six stages take place
from the beginning to end in Figure 3.
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Figure 3. Two square strain waves with a dimensionless unit wave width propagating along the body
axis of the worm at the constant speed c and the distance between two waves κ

According to the expression of h′(z, τ) in each interval, the corresponding expressions of h(z, τ)

and
.
h(z, τ) are yielded. First, the time-dependent stretch along the worm’s body is given as

h′(z, τ) = L0[1 + ε1b11(z, τ)]. (13)

By integrating Equation (13) with respect to z, one has

h(z, τ) = L0z + L0ε1h1(z, τ). (14)
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Then, the derivative of Equation (14) with respect to τ derives

.
h1(z, τ) = ε1L0b12(z, τ). (15)

Using Equation (14), the actual length of the worm is represented as

l1(τ) = L(1 +
ε1

λ
q1(τ)). (16)

Here b11(z, τ) in Equation (13), h1(z, τ) in Equation (14), b12(z, τ) in Equation (15), and q1(τ) in
Equation (16) are given in Appendix A due to those complex forms.

Substituting Equations (13), (15) and (16) into Equation (10) and according to the Taylor’s
expansion of 1/l1(τ) in the neighborhood of ε1 = 0, one has

.
x1(τ) = −

L0

λ

∫ λ

0

[
ε1b12(z, τ) + ε1

2(b11(z, τ)b12(z, τ)− q1(τ)b12(z, τ))
]
dz + O(ε1

3). (17)

Using Equation (17), the velocity of the left end of the worm’s body
.
x1j(τ) for j = 1, 2, . . . , 6 in the

corresponding time interval are calculated and given in Appendix B.
Then, the average velocity of motion over one period can be derived

v1(λ, κ, γ) =
∫ κ

0
.
x11(τ)dτ+

∫ λ1
κ

.
x12(τ)dτ+...+

∫ λ
λ−1

.
x16(τ)dτ

λL0/c

=
cε1

2(12γ2λ2+3(1+4κ+γ(3−4γ(3+κ)))λ−1−22γ+23γ2−3κ−18γκ+21γ2κ)
6λ3

. (18)

Based on the aforementioned method, the average velocities of the other three cases are obtained
and are specifically displayed as follows.
Case II. For λ ∈ [2κ + 2, 2κ + 3].

v2(λ, κ, γ) =
∫ κ

0
.
x21(τ)dτ+

∫ λ−λ1−1
κ

.
x22(τ)dτ+...+

∫ λ
λ−1

.
x26(τ)dτ

λL0/c

= cε1
2

6λ3

 (γ− 1)(2γ + 1)λ3 + 3
(
(−3κ − 1)γ2 + 2γ(2 + κ) + κ + 1

)
λ2

+6
(
γ2κ(5 + 2κ)− 2γ(1 + κ)(3 + κ) + 3κ + 2

)
λ− 4γ2(1 + κ)

(1 + κ(5 + κ)) + 8γ(1 + κ)2(4 + κ)− 4(κ + 1)(κ(5 + κ) + 7)

 (19)

Case III. For λ ∈ [max{2κ + 1, κ + 2}, 2κ + 2].

v3(λ, κ, γ) =

∫ λ−λ1−1
0

.
x31(τ)dτ+

∫ κ
λ−λ1−1

.
x32(τ)dτ+...+

∫ λ
λ−1

.
x36(τ)dτ

λL0/c

= cε1
2

6λ3

( (
−2γ2 + γ + 1

)
λ3 + 3

(
(3κ + 5)γ2 − 2κγ− κ − 1

)
λ2 − 6γ2(2κ2 + 3κ + 4

)
λ

+6
(
2γ
(
κ2 − 1

)
+ 3κ + 2

)
λ + 4(γ− 1)(κ + 1)

(
γ
(
κ2 − κ + 1

)
− κ2 + κ + 5

) ) (20)

Case IV. For λ ∈ [κ + 2, 2κ + 1].

v4(λ, κ, γ) =

∫ λ−λ1−1
0

.
x41(τ)dτ+

∫ λ−λ1
λ−λ1−1

.
x42(τ)dτ+...+

∫ λ
λ−1

.
x46(τ)dτ

λL0/c

= cε1
2

6λ3

(
12γ2λ2 − 3

(
4γ2(2 + κ) + 3γ− 4κ − 3

)
λ + (3κ + 5)γ2 + 2γ(9κ + 7)− 21κ − 19

) (21)

From the Equations (18)–(21), it can be found that the average velocities obtained in the four cases
are quadratic in ε1, which is convenient for the optimization in the next section.

4. Optimization

In the third section, we have calculated the average velocities of all the possible cases according
to the approximate quasi-static model. This section will explore the optimal conditions corresponding
to the maximum values of those average velocities under inequality constraints. As can be seen from
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Equations (18)–(21) and the constraints, the optimized problems in these cases have a uniform form.
Therefore, they can be addressed using the same method. In fact, the Kuhn–Tucker (KT) Conditions
are an effective method to solve these problems. Details about the KT conditions are omitted here and
can be found in [25].

The first case is addressed as follows. The optimized process of this case will be given in detail.
To avoid the complex and similar calculations, the similar processes of the other three cases are omitted
and only the final results will be displayed.

Case I. For λ ∈ [2κ + 3,+∞]

To make full use of the KT Conditions, Equation (18) is denoted as

f1(λ, κ, γ) = −v1(λ, κ, γ) (22)

Then, the maximum value of v1(λ, κ, γ) is equivalent to solving the minimum value of the function
f1(λ, κ, γ) under the constraint conditions. That is,

min f1(λ, κ, γ)

s.t.gi(λ, κ, γ) ≥ 0 for i = 1, 2, 3.
(23)

where g1(λ, κ, γ) = λ− 2κ − 3, g2(λ, κ, γ) = κ, and g3(λ, κ, γ) = γ.
According to the KT Conditions and Equation (23), one has

∇ f1(λ, κ, γ)− µ1∇g1(λ, κ, γ)− µ2∇g2(λ, κ, γ)− µ3∇g3(λ, κ, γ) = 0
µ1g1(λ, κ, γ) = 0, µ1 ≥ 0
µ2g2(λ, κ, γ) = 0, µ2 ≥ 0
µ3g3(λ, κ, γ) = 0, µ3 ≥ 0

(24)

where∇ is the gradient of the corresponding functions. µi for i = 1, 2, 3 are the non-negative constants.
Further, Equation (24) can be reduced to the following form

( f1)λ − µ1 = 0
( f1)κ + 2µ1 − µ2 = 0
( f1)γ − µ3 = 0
µ1(λ− 2κ − 3) = 0
µ2κ = 0 µ3γ = 0

(25)

where ( f1)λ, ( f1)k, and ( f1)γ denote the derivatives of f1 with respect to the variables λ, κ, and γ,
respectively.

Next, Equation (25) is specifically solved to derive the optimal values.
Here, one has

∂ f1(λ, κ, γ)

∂γ
= −cε1

2(
γ(24λ(λ− κ − 3) + 42κ + 46) + (9λ− 18κ − 22)

6λ3 ) < 0 (26)

for γ ≥ 0, λ ≥ 2κ + 3, κ ≥ 0. It is obvious that the function f1(λ, κ, γ) is strictly monotone and
decreases with respect to γ. Thus, any solution of the equation ( f1)γ − µ3 = 0 in Equation (25) does
not exist. Therefore, it is found that the parameters λ and κ can be optimized.

According to Equation (25), one obtains
g1(κ, γ) = 0, λ = 2κ + 3, for 0 < γ < 1;
κ ∈ (0, 0.5), λ = 4, for γ = 1;
κ = 0, λ > 2κ + 3, for γ > 1,

(27)
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where g1(κ, γ) = 23− 10γ− 4κ(1 + 4κ) + γ2(11− 4κ(7 + 4κ)). It can be shown that the optimal body
length and the optimal relation related to γ and κ are obtained when γ ∈ (0, 1), i.e., ε1 > ε2. If γ = 1,
i.e., ε1 = ε2, implying that the whole body of the worm performs the same shape changes in locomotion,
then the optimal condition is that the optimal body length is four times the wave width and the distance
between two waves is less than half a wave width. However, if γ > 1, i.e., ε1 < ε2, at this time the
optimal condition is that the distance between two waves is zero and the body length should be greater
than the sum of two times the distance between two waves and three times the wave width.

Next, the optimized results of the other three cases are given as follows. The explanations of these
results are similar to the ones of the first case and are omitted here. The specific illustration of these
cases will be seen in the later discussion of this section.

Case II. For λ ∈ [2κ + 2, 2κ + 3]
κ = 1, λ = 4, for 0 < γ < 1;
κ ∈ (1/2, 1), λ = 4, for γ = 1;
g2(κ, γ) = 0, λ = 2κ + 3 for γ > 1,

(28)

where g2(κ, γ) = g1(κ, γ).

Case III. For

{
λ ∈ [κ + 2, 2κ + 2], κ ∈ [0, 1]
λ ∈ [2κ + 1, 2κ + 2], κ ∈ [1,+∞)

g3(κ, γ) = 0, λ = 2κ + 1, for 0 < γ < 1;
κ ∈ (1, 3/2), λ = 4, for γ = 1;
κ = 1, λ = 4, for γ > 1,

(29)

where g3(κ, γ) = −23 + 10γ + 4κ(−1 + 4κ) + γ2(−11 + 4κ(−7 + 4κ)).
Case IV. For λ ∈ [κ + 2, 2κ + 1]

g41(κ, γ) = 0, λ = κ + 2, for 0 < γ < 1;
κ ∈ (3/2, 2), λ = 4, for γ = 1;
g42(κ, γ) = 0, λ = 2κ + 1, for γ > 1,

(30)

where g41(κ, γ) = −9 + 4(−2 + κ)κ + γ2(3 + 2κ) + 2γ(−5 + 3κ) and g42(κ, γ) = g3(κ, γ).
The above results reveal that the optimal conditions corresponding to the maximum average

velocities are different when the relation between γ and 1 is varied. Meanwhile, the optimized results
are depicted in another form in Figure 4.
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Next, more comprehensive explanations of these results are given. As can be seen from
Figure 4, the optimal conditions for the best average progression have been obtained. To deepen
the understanding of the above results, the further discussion is made from the viewpoint of the
relationship between λ1 and λ2, where λ2 = λ− λ1. In fact, these two parameters are equivalent to
the length of two body segments of the worm.

When λ1 < λ2. The relation g1(κ, γ) = 0, λ = 2κ + 3 for 0 < γ ≤ 1 in case I and the same one for
γ > 1 in case II are denoted by the blue line in Figure 4. It reveals that the distance between two waves
is inversely proportional to the ratio of body length to wave width such that the maximum average
velocity increases as the distance between two waves decreases along this line. In addition, the other
relation κ = 0, λ > 2κ + 3 for γ > 1 in case I is also in this situation, which is denoted by the purple
line in Figure 4. At this time, the optimal distance between two waves is zero when the maximum
average velocity is achieved.

When λ1 = λ2. The relation κ = 1, λ = 4 for 0 < γ < 1 in case II and the same one for 1 < γ < 3
in case case III are denoted by the horizontal red line in Figure 4. It means that the optimal distance
between two waves is one wave width when the body length is four times the wave width. In addition,
the optimal body length is also four times the wave width when γ = 1, which is depicted by the red
vertical line in Figure 4. However, there is no restriction on the distance between two waves because
their maximum average velocities are actually equal. In other words, the number of waves does not
affect the worm’s motion at this point.

When λ1 > λ2. The relation g3(κ, γ) = 0, λ = 2κ + 1 for 0 < γ < 0.25 in case III and the
one g41(κ, γ) = 0, λ = κ + 2 for 0 < γ < 1 in case IV are denoted by the black line and the green
line in Figure 4, respectively. It is found that an increase in the distance between two waves leads
to a decrease in the maximum average velocity along these two lines. However, the relation for
0.25 ≤ γ ≤ 1 in case III and the same one for γ ≥ 1 in case IV illustrate the opposite result that the
distance between two waves is proportional to the maximum average velocity along the black line in
Figure 4. Furthermore, it is clearly seen that the optimized result of each case corresponding to the
space curve is depicted in Figure 5, which locates in the respective surface obtained by optimizing the
average moving velocities vi(λ, κ, γ) for i = 1, 2, 3, 4 under various constraint conditions with respect
to λ.
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5. Verification and Discussion

The optimal relations among various parameters in the preceding section have been obtained
through the method of KT Conditions. Thereafter, this section will verify the correctness of these
results and the reasonableness of the employed model from two perspectives, one is a numerical
method, the other is based on former experimental results which have been attained by operating an
earthworm-like robot [26].

To carry out the numerical verification, some parameters of worm-like locomotion are chosen as
γ = 0.5, 1, 1.5, ε1 = −0.1, 0.1, and α = 1, 2, 5, 10. Using this verification method and these parameter
values, we find that the results on the verified problems of all of the cases are basically similar.
Hence, in order to avoid unnecessary repetition, we only consider the verified problems of Case I.
Next, the detail explanations on different results in Figure 6 are given. The approximately analytical
predictions, which are denoted by dotted dashed lines, are obtained by optimizing the average velocity
Equation (18) regarding λ under the given values of γ and ε1. Meanwhile, the optimal relation
λ = λ(κ, γ) corresponding to the maximum average velocity is derived. Based on this relation and the
above-mentioned values γ, ε1, and α, the numerical results denoted by dashed lines and solid lines
are depicted through the method of simulating the quasi-static equation and the dynamic equation,
respectively. A comparison of these three results is done to illustrate the correctness of the theory
optimization and the reasonableness of the quasi-static model. More specifically, Figure 6 reveals that
the approximate analytical predictions agree well with the numerical results, and the positions of the
maximum average velocities are almost the same. It means that the optimized results obtained in
Section 4 are correct from this perspective. Additionally, as can be seen from the figure, the average
velocities denoted by the solid lines tend to those denoted by the dashed lines when α is increased
from 1 to 10, which implies that the dynamic model can be reduced to the quasi-static model for a
large friction and a long body length but with a low line density or a small speed.

From another perspective, it is found in [26] that there exist experimental results which can
indirectly illustrate one of the optimized results. Based on the analysis of the optimized results
of all of the cases, we find that the maximum average velocity is constant when γ = 1, λ = 4,
and κ ∈ [0, 2], which means that the distance between two waves does not affect the worm’s motion
when keeping the strain waves along the worm’s body unchanged. At this time, two waves can be
considered as one wave, and the optimal wave width is half the body length. It is interesting that
the existing experiment can reflect this result as well. Inspired by earthworms’ muscular structure
and their locomotion mechanism, Fang et al. firstly developed the general N-segment model of an
earthworm-like robot with K driving modules in [26]. Here, the authors considered that the strain
waves for driving the worm forward were approximately treated as driving modules, each of which
was made up of nA anchoring segments, nR relaxing segments, and nR contracting segments. In fact,
their actually deformed segments are nR and nA, implying that the ratio of the body length of a robot
to the total deformed length of all the driving modules can be denoted by λ = N/(k(nA + nR)).
A group of parameters (K, nA, nR) was considered as one locomotion gait. The result on the gait
optimization corresponding to the maximum average velocity was that: k = 1, nA = 1, nR = [N/2]− 1.
Then, the sum of nR and nA is [N/2], which means that the optimally deformed length of a driving
module is half the body length of the robot. This result is in agreement with the optimal result that
the width of two waves is half the length of the worm when r = 1. After that, the experimental
verification on the optimized results was carried out by designing and operating an eight-segment
earthworm-like robot in a horizontal pipe. All of the admissible gaits for this robot were given and
employed. The average velocity v corresponding to each gait was obtained from a theoretical prediction
and an experimental measurement. To clearly illustrate the correctness of the optimal result from the
viewpoint of the relationship between v and λ, the values of λ corresponding to some representative
gaits are selected on the basis of different driving modules K(see Figure 15b–e in [26]). When K = 1,
we can derive the value λ = λ1i from the corresponding gait (nA, nR)1i for i = 1, 2, . . . , 6, where
λ11 = 8

7 , λ12 = 4
3 , λ13 = 8

5 , λ14 = 2, λ15 = 8
3 , and λ16 = 4 and (nA, nR)11 = (6, 1), (nA, nR)12 = (4, 2),
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(nA, nR)13 = (2, 3), (nA, nR)14 = (1, 3), (nA, nR)15 = (1, 2) and (nA, nR)16 = (1, 1). When K = 2,
similar to two strain waves, the value λ = λ2j corresponding to the gait (nA, nR)2j for j = 1, 2 is also

solved, where λ21 = 2 and λ22 = 4
3 and (nA, nR)21 = (1, 1) and (nA, nR)22 = (1, 2). Based on the

above statement, both the theoretical and experimental values of the average velocity corresponding
to each λkl for k = 1, l = 1, 2, . . . , 6 and k = 2, l = 1, 2 are depicted in Figure 7. As can be seen from
this figure, the maximum average velocities are realized when λ = 2, which means that the robot
can achieve its optimal locomotion performance when the actually deformed length of the driving
modules is half that of the earthworm-like robot. To some extent, this result indirectly illustrates
that the optimal relations obtained in the preceding section are reasonable. However, this work is
still required to be comprehensively verified by designing a continuous worm-like robot from the
qualitative and quantitative aspects in the future because here the experimental verification is only
based on an approximate earthworm-like robot prototype with relatively few segments. In the other
hand, this result can be also verified from the viewpoint of the actual locomotion of the worm [3].
Specifically, it was experimentally observed that the width of a wave of circular contraction is half the
body length when the worm moves forward.

The above statement has shown the reasonableness of the optimized results. Therefore,
these results are used to discuss the effect of both two waves and one wave on locomotion. Here, one
wave is the case that the distance between two waves is zero. As can be seen from Figure 6(a3, b3), one
wave is the optimal drive mode by comparison with two waves. Then, in Figure 6(a2, b2), the distance
between two waves does not change the value of the maximum average velocity when keeping the
body length unchanged. This result shows that the number of waves does not affect the best forward
progression of the worm when the motion is induced by square waves. However, it can be seen from
Figure 6(a1, b1) that there exists an optimal distance between two waves such that the moving velocity
of the worm is improved. For example, in Figure 6(a1), the value of the average velocity at κ = 0.78,
λ = 4.56, γ = 0.5, and ε1 = −0.1 is derived, which corresponds to the motion generated by two
waves. Similarly, the value of the average velocity at κ = 0, λ = 4.56, γ = 0.5, and ε1 = −0.1 is also
calculated, which is the case of one wave. Through a comparison of these two values, the percentage
of the improved velocity is 33.24% when the worm’s motion is driven by two waves. The above
discussion reveals that the number of waves can affect the locomotion of a worm-like system when the
deformation of the worm’s body in locomotion is varied.
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6. Conclusions

This paper studies the optimization problem of worm-like locomotion induced by two square
waves in a linear resistance medium. The relationship between the average velocity and parameters
such as the distance between two waves, body length, and wave width is determined by using the
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reduced dynamic model. Through the optimization of these average locomotion velocities in various
situations, the optimal conditions for the fastest average progression are obtained. In the optimal
locomotion, there is a noticed case that the whole worm’s body performs the same deformation. At this
time, the optimal body length is four times the wave width but the distance between two waves does
not affect the locomotion of the worm-like system. The other similar case is that the optimal body
length is also four times the wave width, and the optimal distance between two waves is one wave
width when the deformation of two segments are different and the length of these two segments
is equal. Two specific cases reveal that the effect of the distance between two adjacent waves on
locomotion is related to the shape change of a worm’s body and the optimal width of two waves is half
the body length. In addition, the results of a numerical simulation and the existing experimental ones
from an earthworm-like robot prototype demonstrate the reasonableness of the optimal conditions.
Meanwhile, the effect of both two waves and one wave on locomotion is discussed. The results
show that the number of waves affects the moving velocity when the shape change of a worm’s
body is varied in locomotion. Finally, we hope that these results aid in the deeper understanding
of worm-locomotion driven by propagating contractive or extensive waves and provide theoretical
support for the design of worm-like soft robots at small scales.

Acknowledgments: This research was supported by the state key program of National Natural Science Foundation
of China under grant 11572224 and the national Natural Science Foundation of China under grant 11772229.

Author Contributions: Ziwang Jiang conceived the problem and wrote the paper. Jian Xu provided critical
advises on the paper and improved the manuscript for final submission.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Expression of b11(z, τ), h1(z, τ), q1(τ) and b12(z, τ)

For convenience, the following time intervals are respectively denoted by Ij for j = 1, 2, 3, . . . , 6.
Namely I1 = [0, κ), I2 = [κ, λ1), I3 = [λ1, λ− λ1− 1), I4 = [λ− λ1− 1, λ− λ1), I5 = [λ− λ1, λ− 1),
I6 = [λ− 1, λ).

b11(z, τ) =



0, z ∈ [0, τ]

1, z ∈ [τ, τ + 1]
0, z ∈ [τ + 1, τ + λ1]

γ, z ∈ [τ + λ1, τ + κ + 2]
0, z ∈ [τ + κ + 2, λ]


if τ ∈ I1

0, z ∈ [0, τ]

1, z ∈ [τ, λ1]

γ, z ∈ [λ1, τ + 1]
0, z ∈ [τ + 1, τ + λ1]

γ, z ∈ [τ + λ1, τ + λ1 + 1]
0, z ∈ [τ + λ1 + 1, λ]


if τ ∈ I2

h1(z, τ) =



0, z ∈ [0, τ]

z− τ, z ∈ [τ, τ + 1]
1, z ∈ [τ + 1, τ + λ1]

γ z− γ(τ + 1 + κ) + 1, z ∈ [τ + λ1, τ + κ + 2]
γ + 1, z ∈ [τ + κ + 2, λ]


if τ ∈ I1

0, z ∈ [0, τ]

z− τ, z ∈ [τ, λ1]

γz− γλ1 + λ1 − τ, z ∈ [λ1, τ + 1]
γ(τ + 1− λ1) + λ1 − τ, z ∈ [τ + 1, τ + λ1]

γz− 2γλ1 + γ + λ1 − τ,
z ∈ [τ + λ1, τ + λ1 + 1]

λ1 − τ + γ(2− λ1 + τ), z ∈ [τ + λ1 + 1, λ]


if τ ∈ I2
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b11(z, τ) =



0, z ∈ [0, τ]

γ, z ∈ [τ, τ + 1]
0, z ∈ [τ + 1, τ + λ1]

γ, z ∈ [τ + λ1, τ + κ + 2]
0, z ∈ [τ + κ + 2, λ]


if τ ∈ I3

1, z ∈ [0, τ + λ1 + 1− λ]

0, z ∈ [τ + λ1 + 1− λ, τ]

γ, z ∈ [τ, τ + 1]
0, z ∈ [τ + 1, τ + λ1]

γ, z ∈ [τ + λ1, λ]


if ∈ I4

0, z ∈ [0, τ + λ1 − λ]

1, z ∈ [τ + λ1 − λ,
τ + λ1 − λ + 1]

0, z ∈ [τ + λ1 − λ + 1, τ]

γ, z ∈ [τ, τ + 1]
0, z ∈ [τ + 1, λ]


if ∈ I5

1, z ∈ [0, τ + 1− λ]

0, z ∈ [τ + 1− λ,
τ + λ1 − λ]

1, z ∈ [τ + λ1 − λ, λ1]

γ, z ∈ [λ1, τ + λ1 + 1− λ]

0, z ∈ [τ + λ1 + 1− λ, τ]

γ, z ∈ [τ, λ]


if ∈ I6

h1(z, τ) =



0, z ∈ [0, τ]

γz− γτ, z ∈ [τ, τ + 1]
γ, z ∈ [τ + 1, τ + λ1]

γz− γ(τ + λ1 − 1), z ∈ [τ + λ1, τ + κ + 2]
2γ, z ∈ [τ + κ + 2, λ]


if τ ∈ I3

z, z ∈ [0, τ + λ1 + 1− λ]

τ + λ1 + 1− λ, z ∈ [τ + λ1 + 1− λ, τ]

γz− γτ+

(τ + λ1 + 1− λ), z ∈ [τ, τ + 1]
γ + (τ + λ1 + 1− λ), z ∈ [τ + 1, τ + λ1]

γ(z− τ − κ)+

(τ + λ1 + 1− λ), z ∈ [τ + λ1, λ]


if ∈ I4

0, z ∈ [0, τ + λ1 − λ]

z− (τ + λ1 − λ), z ∈ [τ + λ1 − λ,
τ + λ1 − λ + 1]

1, z ∈ [τ + λ1 − λ + 1, τ]

γz− γτ + 1, z ∈ [τ, τ + 1]
γ + 1, z ∈ [τ + 1, λ]


if ∈ I5

z, z ∈ [0, τ + 1− λ]

τ + 1− λ, z ∈ [τ + 1− λ, τ + λ1 − λ]

z− κ, z ∈ [τ + λ1 − λ, λ1]

γz− γλ1 + λ1 − κ, z ∈ [λ1, τ + λ1 + 1− λ]

γ(τ + 1− λ)+

λ1 − κ, z ∈ [τ + λ1 + 1− λ, τ]

γ(z + 1− λ) + λ1 − κ, z ∈ [τ, λ]


if τ ∈ I6

b12(z, τ) =



0, z ∈ [0, τ]

−1, z ∈ [τ, τ + 1]
0, z ∈ [τ + 1, τ + λ1]

−γ, z ∈ [τ + λ1, τ + κ + 2]
0, z ∈ [τ + κ + 2, λ]


if τ ∈ I1

0, z ∈ [0, τ]

−1, z ∈ [τ, λ1]

−1, z ∈ [λ1, τ + 1]
γ− 1, z ∈ [τ + 1, τ + λ1]

−1, z ∈ [τ + λ1,
τ + λ1 + 1]

γ− 1, z ∈ [τ + λ1 + 1, λ]


if τ ∈ I2

0, z ∈ [0, τ]

−γ, z ∈ [τ, τ + 1]
0, z ∈ [τ + 1, τ + λ1]

−γ, z ∈ [τ + λ1, τ + κ + 2]
0, z ∈ [τ + κ + 2, λ]


if τ ∈ I3

b12(z, τ) =



0, z ∈ [0, τ + λ1 + 1− λ]

1, z ∈ [τ + λ1 + 1− λ, τ]

1− γ, z ∈ [τ, τ + 1]
1, z ∈ [τ + 1, τ + λ1]

1− γ, z ∈ [τ + λ1, λ]


if ∈ I4

0, z ∈ [0, τ + λ1 − λ]

−1, z ∈ [τ + λ1 − λ, τ + λ1 − λ + 1]
0, z ∈ [τ + λ1 − λ + 1, τ]

−γ, z ∈ [τ, τ + 1]
0, z ∈ [τ + 1, λ]


if ∈ I5

0, z ∈ [0, τ + 1− λ]

1, z ∈ [τ + 1− λ, τ + λ1 − λ]

0, z ∈ [τ + λ1 − λ, λ1]

0, z ∈ [λ1, τ + λ1 + 1− λ]

γ, z ∈ [τ + λ1 + 1− λ, τ]

0, z ∈ [τ, λ]


if τ ∈ I6

q1(τ) =



γ + 1, if τ ∈ I1

λ1 − τ + γ(2− λ1 + τ), if τ ∈ I2

2γ, if τ ∈ I3

γ(λ− τ − λ1 + 1) + τ

+λ1 + 1− λ, if τ ∈ I4

γ + 1, if τ ∈ I5

γ− κ + λ1, if τ ∈ I6

Appendix B. Expression of
.
x1j(τ) for j = 1, 2, . . . , 5, 6

(1) When τ ∈ [0, κ]

.
x11(τ) =

L0

λ2

((
1 + γ + ε1 + γ2ε1

)
λ− ε1κ

(
(1 + γ)2ε1

))
(31)

When τ ∈ [κ, λ1]

.
x12(τ) =

L0
λ2 (ε1(λ(λ− τ + γ(2− λ + τ)) + ε1(γ(λ− τ − 2) + τ)(2γ + (γ− 1)(τ − λ1)))) (32)
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(2) When τ ∈ [λ1, λ− λ1 − 1]

.
x13(τ) =

L0

λ2 (2γε1(λ + γ(λ− 2)ε1)) (33)

(3) When τ ∈ [λ− λ1 − 1, λ− λ1]

.
x14(τ) =

L0ε1
λ2

(
λ(1− 2λ + τ + γ(1 + λ− τ − λ1) + λ1) + γ2ε1(1 + λ− τ − λ1)(τ + λ1 − 1)−

ε1

(
2λ2 − 3λ(1 + τ + λ1) + (1 + τ + λ1)

2 − 2γ
(
(τ + λ1 − λ)2 − 1

)) )
(34)

(4) When τ ∈ [λ− λ1, λ− 1]

.
x15(τ) =

L0ε1

λ2

(
λ
(

1 + γ + ε1 + γ2ε1

)
− (1 + γ)2ε1

)
(35)

(5) When τ ∈ [λ− 1, λ]

.
x16(τ) =

L0

λ2 (ε1(κ + γ(λ− λ1 − 1))(ε1(γ− κ + λ1)− λ)) (36)
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