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Abstract: Single point incremental forming is used for rapid prototyping of sheet metal parts. This
forming technology was applied to the fabrication of thin shell micropyramids of aluminum, stainless
steel, and titanium foils. A single point tool used had a tip radius of 0.1 mm or 0.01 mm. An ultrasonic
spindle with axial vibration was implemented for improving the shape accuracy of micropyramids
formed on 5–12 micrometers-thick aluminum, stainless steel, and titanium foils. The formability
was also investigated by comparing the forming limits of micropyramids of aluminum foil formed
with and without ultrasonic vibration. The shapes of pyramids incrementally formed were truncated
pyramids, twisted pyramids, stepwise pyramids, and star pyramids about 1 mm in size. A much
smaller truncated pyramid was formed only for titanium foil for qualitative investigation of the
size reduction on forming accuracy. It was found that the ultrasonic vibration improved the shape
accuracy of the formed pyramids. In addition, laser heating increased the forming limit of aluminum
foil and it is more effective when both the ultrasonic vibration and laser heating are applied.

Keywords: incremental microforming; ultrasonic spindle; shin shell micropyramid; metallic foil;
forming limit; shape accuracy

1. Introduction

Functional miniaturized structures of various materials will be widely applied to sensors,
filters, biotesters, bioscaffold, etc. in the near future. For this purpose, efficient microprocessing
technologies with high accuracy and high surface quality are required to meet the demand for their
production. Microcutting [1], micro-laser-machining [2], micro-electric discharge machining [3,4], and
microforming [5] have been intensively studied, and recently, micro-additive-manufacturing combined
with other microprocessing [6] is more and more important in tailor-made manufacturing or high-mix
low-volume production of complex parts.

Incremental forming with a single point tool is regarded as a rapid prototyping process for
sheet metal forming because no die is needed and parts of free-form surfaces can be fabricated
incrementally [7]. The forming limit is much larger for this technology than for other forming
methods [8]. Therefore, this technology can be applied to the fabrication of various shapes of sheet
metal parts [9]. It also can be applied to microforming of the miniature shell structures of aluminium,
gold, and stainless steel foils [10–14]. The preparation of backing plates of various shapes, which are
used as a support in ordinary incremental forming, is not easy for incremental forming of microparts.
For this reason, no backing plate is needed for the developed microforming technologies. However,
the accuracy of microshell structures formed without using a backing plate is not so high, and thus, it
should be improved without reducing the forming limit.

Micromachines 2017, 8, 142; doi:10.3390/mi8050142 www.mdpi.com/journal/micromachines

http://www.mdpi.com/journal/micromachines
http://www.mdpi.com
http://www.mdpi.com/journal/micromachines


Micromachines 2017, 8, 142 2 of 10

In this paper, ultrasonic assisted incremental microforming technology has been developed using
an ultrasonic spindle for improving the accuracy of microshell structures of aluminium, stainless steel,
and titanium foils. Laser heating was also applied to the ultrasonic assisted incremental microforming
for softening and increasing formability of aluminum foil under deformation. The forming limit and
forming accuracy of micropyramids were investigated under the conditions of with and without
ultrasonic vibration and laser heating. Only for a foil of titanium—a difficult-to-work material—a
micropyramid in a size of 283 µm was also formed under the conditions of ultrasonic vibration for
qualitatively investigating the size reduction on forming accuracy.

2. Materials and Methods

An incremental microforming machine with an ultrasonic spindle is shown in Figure 1. It is
placed on a vibration-free table for insulating external disturbances. It is composed of an x-y table,
z stage, ultrasonic spindle with a Langevin ultrasonic transducer, forming tool, blank holder, base,
column, and laser source and its optical system. An ordinary motor spindle used in the original and
improved forming machines [10–13] has been replaced with an ultrasonic spindle and laser source
and its optical system has been newly installed. The ultrasonic spindle causes vibration in the axial
direction of the spindle. The vibration frequency is 42.5 kHz and its amplitude is set to be 0.5 µm,
the minimum amplitude of the spindle. The x-y table and z-stage are controlled with a personal
computer numerically. Their resolutions of motion are 0.01 µm, which is small enough to fabricate a
shell structure of the order of one millimeter.
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Figure 1. Desktop microforming machine.

Aluminum foil of type 8021 used for the experiments is 6.5 and 12 µm-thick, while stainless steel
foil of type 304 is 8 µm-thick and titanium foil is 5 µm-thick. The 8021 foil has a chemical composition
listed in Table 1 and a crystal grain size of 5–10 µm [15]. The elongation of metallic foils decreases with
decreasing thickness. It is about five percent for the aluminum foils [15] and about one percent for
stainless foil [16]. A blank sheet is put on matte side up between the tensioner and O-ring, and then,
it was clamped in a blank holder as shown in Figure 2. The holder can apply an appropriate size of
tension to a blank by adjusting the sizes of a tensioner and O-ring [10–12]. This method for applying
tension to a blank was also adopted in reference [14]. As described elsewhere [10–12] in details, no
backing plate supporting a blank is used because miniaturization of a backing plate is not easy.
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Table 1. Chemical composition of 8021 aluminum foil [wt %].

Si Fe Cu Mn Mg Zn Others Al

<0.15 >1.2, <1.7 <0.05 <0.05 <0.05 <0.05 <0.05 Remainder

A single point forming tool of ultra-fine grain cemented carbide with a tip radius of R = 100 µm
or 10 µm is used in this study (Figure 3). Before starting microforming, z-position of the top surface
of a blank was determined accurately by detecting the contact between the tool and blank. n-propyl
alcohol is used as a lubricant for avoiding adhesion and abrasion between the forming tool and blank.
High speed rotation of the tool generates the hydrodynamic pressure between the rotating tool and
blank being formed. Under this condition, the alcohol may penetrate into the interface between them
if the contact stress is low.
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Figure 3. Microtool for incremental microforming: (a) R = 100 µm; (b) R = 10 µm.

Incremental microforming process of a triangular pyramid, for example, is shown in Figure 4,
where D is the diameter of a circumscribed circle of a base of a pyramid, α is a half apex angle defined
as an angle between a lateral edge and a vertical line through an apex, θ is a half apex angle defined as
an angle between a triangular lateral face and the vertical line, t is the thickness of a blank, ω is the
tool rotational speed, and ∆z is the axial feed per a planar tool path. The side length of a triangular
tool path on a plane shrinks step by step. The tool rotational speed ω and table speed vt were set to be
5000 min−1 and 200 µm/s, respectively, except that ω = 10,000 min−1 and vt = 150 µm/s for a titanium
micropyramid of D = 283 µm. The axial feed ∆z was 5 and 12 µm for 6.5 and 12 µm-thick aluminum
foils, respectively, 5 µm for 8 µm-thick stainless steel foil, and 2 and 1 µm for titanium pyramids of
D = 1.41 mm and D = 283 µm, respectively. When the forming was conducted under the condition of
laser heating, the forming area of the foil was irradiated from the top of a pyramid (from the below of
a pyramid) using a semiconductor laser of 130 mW; the laser beam was reflected using a prism under
the blank holder.
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Figure 4. Schematic diagram of tool path and foil deformation during forming of a triangular pyramid.

The triangular lateral faces of a square pyramid elongates from h0 to h1 by single point incremental
forming as shown in Figure 5. Its elongation e in percent is given by

e = 100(h1/h0 − 1) = 100(cosec θ − 1) (1)

while the logarithmic strain ε corresponding to the elongation e is

ε = ln(h1/h0) = ln(cosec θ) (2)

Both the elongation and strain increase with decreasing half apex angle. Equations (1) and (2) are
applied for truncated pyramids with the same half apex angle θ.
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Figure 5. Forming of a square pyramid: (a) square blank to be formed; (b) tool path; (c) formed
pyramid; (d) development view of a square pyramid.

3. Results and Discussion

The influence of ultrasonic vibration on the forming limit of a truncated pyramid of 6.5 µm-thick
aluminum foil is shown in Figure 6, whereas, those of ultrasonic vibration and laser heating on the
forming limit is shown in Figure 7. The diameter of a circumscribed circle of a square pyramid base
D was 1.41 mm. Forming conditions of with and without ultrasonic vibration are denoted as V and
NV, respectively and those of with and without laser heating are denoted as H and NH, respectively.
In these figures, the values of half apex angle θ and corresponding strain ε are written in rows above
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micrographs of the top views of formed pyramids. The value of θ is changed step by step so that the
value of ε increases by about 0.05.
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It is seen in Figure 6 that square pyramids of θ = 39.5◦ were formed without cracks under the
conditions of with and without ultrasonic vibration, but cracks grew especially along the lateral edges
of pyramids of θ = 37.4◦ formed under both the conditions. Thus, the forming limit εc was 0.45 for the
condition of without laser heating and the ultrasonic vibration increased the forming limit marginally.
The fact that the forming limit obtained above is less than those obtained in the previous research
works [11,12] is partly because n-propyl alcohol is a poor lubricant compared with pure water used in
the previous research and partly because the thickness of aluminium foil was reduced from 12 µm to
6.5 µm.

In the case of laser heating, it is found from Figure 7 that εc was 0.55 and 0.50 for the conditions of
with and without ultrasonic vibration, respectively. This indicates that the laser heating can increase
the forming limit of the aluminum foil and it is more effective when the ultrasonic vibration is applied.
Because only a pinhole was found on a pyramid of θ = 32.9◦ under the conditions of with both
ultrasonic vibration and laser heating, optimization of forming parameters may increase the forming
limit under these conditions. It should be noted that elongation for θ = 35.2◦, which is calculated to be
73.4% from Equation (1), is more than 10 times as large as that of about 5% obtained for tensile test.

In addition to the formability, it is confirmed that almost all the cracks appeared on the lateral
edges of formed pyramids. This fact is consistent with the results obtained in reference [13], that a
crack nucleated on a pyramid edge in the microforming of aluminum foil, whereas it nucleated on a
triangular pyramid face in the microforming of stainless steel foil.

The effect of ultrasonic vibration assistance on the shape accuracy in incremental microforming
was investigated by forming a twisted pyramid of 6.5 µm-thick aluminum foil and a star pyramid
of 12 µm-thick aluminum foil with and without ultrasonic vibration. Diameter D was 1.41 mm for
the twisted pyramid and 1.60 mm for the star pyramid. Figure 8 shows the top views of the twisted
pyramids incrementally formed. The surfaces and edges of the pyramid made by ultrasonic assisted
microforming are much smoother and not wavier than those by ordinary microforming without
ultrasonic vibration. The top and bottom views of star pyramids formed with and without ultrasonic
vibration are shown in Figures 9 and 10, respectively. It is seen that not only the convex parts but also
the concave parts are formed well, much better than expected. According to the top views, there does
not seem to be a significant difference in the shape accuracy between the two pyramids formed with
and without ultrasonic vibration. However, it is confirmed from the bottom views and more clearly
from the magnified center of the bottom views that the traces of the tool path near the center of pyramid
on the bottom surface is a nearly regular pentagon for ultrasonic assisted microforming, whilst it is
heavily distorted for the ordinary microforming. Results in Figures 8–10 prove that the ultrasonic
vibration can improve the shape accuracy of the formed pyramids. Other pyramids formed in this
study using aluminum foil are a pyramid-like sunflower of D = 1.72 mm and a stepwise pyramid of
D = 1.41 mm shown in Figure 11. They were formed well using ultrasonic incremental microforming.
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Figure 11. Other pyramids formed by ultrasonic incremental microforming: (a) pyramid like sunflower;
(b) stepwise pyramid.

As described above, the ultrasonic vibration was effective in improving the shape accuracy of
rather complicated pyramids such as a twisted pyramid and a star pyramid, whilst the ultrasonic
vibration and laser heating were not so effective for truncated pyramids. In contrast, they were able to
improve the shape accuracy of a truncated pyramid of 8 µm-thick stainless steel foil, which is much
stiffer than 6.5 µm-thick aluminum foil. Two pyramids of stainless steel foil of D = 1.0 mm and θ = 45◦

were formed under NV and NH conditions and under V and H conditions. Their profiles measured
with a confocal laser displacement meter along line AB of an attached figure are shown in Figure 12b,c.
It is seen that the line of lateral face is connected with the base line via a curved line with a small radius
under V and H conditions.
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The forming accuracy was evaluated based on distance δ from point C to the pyramid profile as
shown in Figure 13. The value of δ was 43 µm and 26 µm for NV and NH conditions and V and H
conditions, respectively. The theoretical value of the distance δth for perfect forming is given by

δth = R

[√
1 + tan2

(
π− 2θ

4

)
− 1

]
(3)

and hence, the forming error can be defined by δ − δth. Because the value of δth is calculated to be
8.2 µm for R = 100 µm and θ = 45◦, the ultrasonic vibration and laser heating reduced the forming error
by half. However, neither the ultrasonic vibration nor the laser heating increased the forming limit
of a square pyramid of stainless steel foil: εc was 0.38 for (NV & NH) and (V & NH); it was slightly
reduced to 0.35 for (NV & H) and (V & H). This is probably because it is difficult to heat the forming
area uniformly due to very low heat conductivity of stainless steel.
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Thin shell pyramids of titanium foil of D = 1.41 mm and θ = 50◦ formed with and without
ultrasonic vibration are shown in Figures 14 and 15, respectively. It was seen that wrinkles were
caused on the lateral faces by incremental microforming when ultrasonic vibration was not applied. In
contrast, they almost disappeared and feed marks of a single point tool were seen only on the back
surface of a pyramid when ultrasonic vibration was applied. It should be noted that the ultrasonic
vibration effectively removed the wrinkles in a difficult forming process of the twisted pyramid in
Figure 8 as described above.
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A truncated micropyramid of D = 283 µm formed with ultrasonic vibration is shown in Figure 16.
Although the tool rotational speed ω was increased and table speed vt and axial feed ∆z were decreased
for forming a smaller pyramid, its shape accuracy was not good, and partially distorted. It is seen that
the radius of lateral edges was much larger than that of the forming tool and the feed marks of the tool
on the back surface of the pyramid were disturbed. The size of a pyramid was reduced by a factor of
five, but the foil thickness was not reduced. Hence, the bending stiffness relatively increased. This is a
main reason that it was difficult to form a smaller micropyramid of titanium.
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4. Conclusions

Single point incremental microforming of thin shell pyramids of aluminum, stainless steel, and
titanium foils was conducted under the conditions of with and without ultrasonic vibration and with
and without laser heating. It was found that the laser heating can improve the forming limit of a
square pyramid of 6.5 µm-thick aluminum foil and it was more effective when ultrasonic vibration
was applied in addition to laser heating. The elongation obtained under the assistance of ultrasonic
vibration and laser heating was 73.4%, more than 10 times as large as that obtained by tensile test. It is
confirmed that the assistance of ultrasonic vibration can improve the accuracy of rather complicated
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shape of pyramids such as a twisted pyramid and a star pyramid. It is also found that ultrasonic
vibration improves the forming accuracy of stiff materials or difficult-to-work materials even if the
shapes of micropyramids are simple.
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