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Abstract: We report on the radio frequency (RF) sputtering of c-axis oriented ZnO thin films on top
of epitaxial 3C-SiC-on-Si (111) substrates, which were then subjected to post-annealing treatment at
400, 600 and 800 ◦C. Grazing incident X-ray Diffraction (XRD) data show that the Full Width Half
Maximum (FWHM) values for O2/Ar ratios between 30% and 60% are consistent, with a mean of
0.325◦ and a standard deviation of 0.03◦. This is largely attributed to the smaller lattice mismatch
of 5% between the ZnO (002) and SiC (111) films. The quality of the ZnO films deteriorated at the
post-annealing treatment of 800 ◦C, as demonstrated by the increasing value of FWHM diffraction
peaks, the reducing value of the peak intensity, the reducing percentage of (002) oriented area under
the curve, and the increasing value of biaxial stress. We propose a simple growth model to explain
the result.
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1. Introduction

Zinc oxide (ZnO) is a group II-IV semiconductors, which is suitable for a wide range of scientific
and technological applications. It has a wide band gap of 3.3 eV and an excitation binding energy of
60 meV at room temperature [1]. ZnO can potentially be used in solar cells, gas sensors and optical
wave guides because of its excellent electrical and optoelectronic properties [2]. It can also be used
in the fabrication of surface acoustic wave (SAW) devices, piezoelectric transducers and film bulk
acoustic resonators [3]. ZnO is commonly deposited via a sputtering system because this requires a
relatively simple apparatus, low substrate temperature, high deposition rate, good surface flatness,
high transparency and dense layer formation [4].

ZnO thin films are normally deposited on silicon (Si) substrates because of the ease in fabrication
and the low cost per unit surface area. However, the large difference of 39% in lattice mismatch and
68% in thermal expansion coefficients (CTE) generates cracks, dislocations and stresses in deposited
films that ultimately results in the deterioration of ZnO crystal quality [5]. Therefore, ZnO films
have been deposited on various substrates with lower CTE and lattice mismatches e.g., α-Al2O3 [6],
GaN [7], AlN [8], 3C-SiC [9], 4H-SiC [10] and 6H-SiC [11]. There were two groups that have performed
radio frequency (RF) sputtering of ZnO (002) on top of 3C-SiC-on-Si substrates, similar to our work.
Sha et al. compared the Full Wave Half Maximum (FWHM) values of the diffraction peaks of ZnO
(002) that were RF sputtered on top of Si (111) and 3C-SiC-on-Si (111) substrates [12]. They observed
FWHM values of 0.65◦ to 0.55◦ on both substrates, respectively. They further annealed the samples
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at 1000 ◦C, and demonstrated the reduction in the FWHM values of both samples down to 0.19◦ and
0.25◦, respectively. However, all of their samples were polycrystalline with no preferred orientation.
Phan et al. compared the crystal quality of ZnO (002) deposited on top of 3C-SiC (111)/Si (100)
substrates using RF sputtering and sol-gel [5]. The 3C-SiC buffer layer was a polycrystalline with
(111) orientation. They observed a dominant (002) orientation using RF sputtering. They reported
FWHM diffraction peak values of 0.2107◦ and 0.3498◦, respectively, for both methods at the annealing
temperature of 800 ◦C. In a subsequent work from the same group [13], they fabricated ZnO-based
SAW resonators on top of Si (100) and 3C-SiC/Si (100) substrates. They reported improved insertion
loss and temperature stability of the resonator made on top of the 3C-SiC (111) buffer layer. Both
Sha et al. and Phan et al. demonstrated that ZnO thin film with dominant (002) orientation could be
sputtered on top of Si substrate with a polycrystalline 3C-SiC buffer layer.

In this paper, we performed RF sputtering to obtain c-axis oriented ZnO films on top of Si (111)
substrates with 3C-SiC (111) epitaxial buffer layer. Specifically, we studied the effect of varying the
O2/Ar ratios on the ZnO (002) crystal orientation, and found that the FWHM values are consistent
between 30% to 60% O2/Ar ratios. We illustrated the effect of 5% lattice mismatch between ZnO
(002) and 3C-SiC (111) buffer layer that contributed to this interesting result. We further subjected the
samples to post-annealing treatment at three temperatures, and proposed the growth model for the
optimized annealing temperature of 600 ◦C. It must be noted that the samples for this article were
batch-fabricated and batch-tested together with ZnO (002) films on top of 3C-SiC-on-Si (100) substrates.
The results for the latter were recently reported in [14].

2. Experimental Methods

The deposition of ZnO films was performed on top of a 3C-SiC-on-Si substrate using an RF
sputterer (Denton Vacuum, Moorestown, NJ, USA) operating at 450 W. It is a common sputtering
technique to employ the maximum available power to obtain the highest deposition rate and best
crystal quality. Since the maximum power of the RF sputterer is 500 W, we chose 450 W with a 50 W
gap from the maximum power to avoid damaging the equipment. Prior to this work, the 3C-SiC (111)
thin film with a thickness of 300 nm was epitaxially grown on top of Si (111) wafer with a diameter of
150 mm using a custom-made hot-wall horizontal low pressure chemical vapour deposition (LPCVD)
system at Queensland Micro- and Nanotechnology Centre of Griffith University [15]. Our center has
been producing epitaxial 3C-SiC/Si wafers of different 3C-SiC thicknesses (ranging from 50 nm to
2 µm) and wafer sizes (ranging from 2 to 12 inches in diameter). The 300-nm thick 3C-SiC layer was
arbitrarily chosen during the time of this experiment. In the first experiment, the samples were cut in
a size of 15 × 15 mm2 using a wafer dicer (Disco Corp., Tokyo, Japan) and cleaned via the standard
piranha cleaning process to remove organic substances. The sputtering system was turbo-pumped
for 15 min to the base pressure of 5 × 10−5 Torr to reduce residual gasses in the chamber and hence
eliminate unwanted reactions. The sputtering pressure of 4 mTorr was used for all the depositions.
The substrate temperature of 200 ◦C was chosen to follow industry practice. The Zinc (Zn) target of
100 mm in diameter and 6.35 mm in thickness with 99.999% purity was employed. Argon gas was
pumped to the chamber for 6 min with the substrate’s shutter closed in order to clean the Zn target
from previous reactions. The distance from the target to the substrate was 76 mm, which is a default
distance of the RF sputterer. The O2/Ar ratio was increased from 30% to 60% in a step of 10% with a
total gas flow of 34 sccm to evaluate the effect of O2 concentration on the crystal orientation. The poison
mode for the ZnO was determined by measuring the conductivity of the films, since ZnO is highly
insulative. The deposition time was 30 min. After the deposition, it took 90 min for the substrate
temperature to cool down to 50 ◦C before the samples were taken out of the chamber. The deposition
rate was determined by measuring the thickness of the ZnO films using a step profiler (Dektak stylus
profilometer, Bruker, Billerica, MA, USA) over the total deposition time.

The second experiment was to subject the samples to post-annealing treatment. This step was
needed to improve the crystal quality of ZnO (002) as demonstrated by the systematic studies of
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annealing ZnO films on Si substrates conducted by Fang et al. [16]. Our samples were placed into the
annealing chamber (custom-made glass tube). Nitrogen gas was pumped into the chamber with a flow
of 1700 cc/min. We annealed our samples at three different temperatures i.e., 400, 600 and 800 ◦C.
The samples were then cooled down to 50 ◦C before removing them from the chamber. The cooling rate
is non-linear and the duration depends on the highest temperature in the chamber. For the annealing
temperature of 400 ◦C, it took 60 min to cool down to 50 ◦C. Therefore, the average cooling rate is
6 ◦C/min.

The deposited ZnO films were characterized by the following parameters (equipment): X-ray
diffraction (D8 Advance X-Ray diffraction tool using monochromatorized Cu Kα1 beam with
λ = 1.5405980 Å, Bruker), surface roughness (tapping-mode Cypher Atomic Force Microscopy with
etalon cantilever, Asylum Research, Santa Barbara, CA, USA) and film thickness (Dektak stylus
profilometer, Bruker).

3. Results and Discussion

The deposition rate at different O2/Ar ratios is shown in Figure 1. The general trend is that the
deposition rate decreases with the increase in O2 concentration. The increase in O2 atoms decreases
the concentration of the heavier Ar atoms that negatively affect the deposition rate. The only anomaly
is the increasing deposition rate from 30% to 40% O2/Ar ratio. It seems that a rapid oxidation of the
target took place between these two O2 concentrations. The oxide targets have a higher secondary
electron yield compared to the metal targets, which causes more ionization of the sputtering gas and
an increase in the deposition rate. A further increase in the oxygen concentration forms a surface layer
of adsorbed oxygen, which prevents the sputtering of the atoms and thus reduces the deposition rate.
Also, the concentration of the heavier Ar atoms decreases with an increase in O2, so the net deposition
rate decreases afterwards [17].
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Figure 1. Deposition rate versus O2/Ar ratio.

The crystallinity of the deposited films depends on the quality of the nucleation layer and the
nature of the bonding between the substrate and deposited film [18]. The crystal structure of the c-axis
oriented ZnO superimposed over the 3C-SiC (100) and 3C-SiC (111) crystal structure [19] is shown in
Figure 2a,b respectively. The 3C-SiC (111) has a six-fold atomic arrangement (three-fold symmetry)
that provides a better template and lattice matching for the c-axis oriented ZnO. Also, the smaller
lattice mismatch (5.5%) between 3C-SiC (111) and ZnO (002), as opposed to the 33.8% lattice mismatch
between 3C-SiC (100) and ZnO (002), provides a better template for c-axis oriented ZnO film growth.
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At the beginning of sputtering, the ZnO seed layer is grown along the (002) orientation via the
creation of bonds with the three-fold symmetrical hexagonal 3C-SiC (111) substrate. The ZnO layer
follows the seed layer for the rest of sputtering and grows in well-aligned manner on the seed layer
in a close-packed (002) orientation. It will be demonstrated later that this resulted in the consistent
crystal quality of ZnO (002) across a wide range of O2/Ar ratios.

Table 1 shows the summary of the obtained data, which can be divided into three parts. The first
part shows the characteristics of the two samples at 40% and 60% O2/Ar ratios, which were not
subjected to the post-annealing treatment. The second part summarizes the characteristics of the
samples that were subjected to the post-annealing treatment at three different temperatures. The third
part details the characteristics of the annealed samples of 600 ◦C at four different O2/Ar ratios.
The following parameters, namely, peak position for (002) orientation, percentage of the area under
the curve for (002) orientation, FWHM of the diffraction peak of (002), and peak intensity (002) are
extracted from the XRD plots of the samples. We extracted the values of the FWHM of the diffraction
peaks using Gaussian fitting. The grazing incident X-ray diffraction (GIXRD) measurement was
employed due to the smaller thickness of the ZnO films compared to the substrates. The grain size
was calculated from the FWHM of (002) the diffraction peak by the Sherrer equation [20]. The biaxial
stress (σ) was calculated using the following equation: σ = −453.6 × 109((c − c0)/c0), where c0 is the
strain-free lattice parameter (c0 = 5.205 Å) measured from a ZnO powder sample [21]. The value of c
was extracted from the experimental data as follows: c = 2d, where d = λ/2 × sin θ from Bragg’s law,
where λ = 1.5405980 Å, and θ is the diffraction angle from the XRD 2θ plot.

Table 1. Summary of data for ZnO (002).

Experiment
Sample

ID

O2/Ar
Ratio
(%)

Annealing
Temperature

(◦C)

Peak
Position
(002)

Area for
(002) (%)

Thickness
(nm)

FWHM of
Diffraction
Curve (◦)

Peak
Intensity
(cps)

Grain
Size
(nm)

Biaxial
Stress
(GPa)

No annealing V10 40 - 34.23 60 960 0.465 540 18.8 2.58
V9 60 - 34.26 98 540 0.59 780 14.63 2.194

Effect of
Annealing

Temperature

C7 40 400 34.63 70 960 0.31 1750 28.04 2.178
VA3 40 600 34.62 71 960 0.32 1836 27.16 2.52
C3 40 800 34.64 53.6 960 0.33 484 26.18 2.788

Effect of O2
Ratio

(annealed)

VA1 30 600 34.6 73.7 810 0.32 578 27.1 2.655
VA3 40 600 34.62 71 960 0.32 1836 27.16 2.52
VA5 50 600 34.65 22 720 0.37 506 23.5 2.78

VA10 60 600 34.55 68 540 0.29 561 29.98 1.51
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Several important observations can be deduced from Table 1. First, the effect of post-annealing
on the FWHM of the diffraction peaks and the grain size are highly visible. For example, the FWHM
value of the samples that were sputtered using a 40% O2/Ar ratio is reduced from 0.465◦ to 0.31◦.
Their grain size increases from 18.8 to 28.04 nm. A similar trend can be seen for the samples at a 60%
O2/Ar ratio. Annealing increased the energy of film atoms thus enhancing the adatoms’ mobility,
which in turn decreased the defects in the ZnO films and improved the quality of films. The small
crystallites coalesced together at a high temperature to form larger crystallites when they are annealed,
which increases the grain size, corroborating the reduction in the FWHM of the diffraction peaks [16].

The second observation is in terms of the effect of different O2/Ar ratios on the (002) crystal
orientation, after annealing the samples at 600 ◦C. The (002) orientation dominates between 30% to
60% O2/Ar ratio. The only exception is at a 50% ratio, where the quality of ZnO (002) film may have
been influenced by the lower quality of the specific substrate that was diced from the 3C-SiC (111)/Si
(111) wafer. Figure 3 shows the θ-2θ scan for the samples prepared at 30%, 40%, 50% and 60% O2/Ar
ratios. The GIXRD measurement had the following parameters. The voltage and current used for
all measurements was 40 kV and 40 mA. The 2θ range was ~25 to 60 degrees and the glancing angle
was 1◦. The step size was 0.04◦, and the time per step was 0.9999 s. The GIXRD spectra shows three
major diffraction peaks at 2θ = 32, 34 and 37◦, which correspond to (100), (002) and (101) crystal
orientations of ZnO (JCPDS card number 01-089-1397), respectively. Two minor diffraction peaks
are also observed at 2θ = 47 and 57◦, which correspond to (102) and (110) ZnO crystal orientations,
respectively. We extracted the FWHM of the diffraction peak of (002) from Figure 2. The FWHM values
and the area of (002) under the curve for these different O2/Ar ratios were very similar, with a mean of
0.325◦ and a standard deviation of 0.03◦. Previously, we reported that we had been unsuccessful in
depositing ZnO (002) films on top of 3C-SiC (100)/Si (100) substrates at 60% O2/Ar ratios [14]. The fact
that we have been able to do that for this experiment can be attributed to the smaller lattice mismatch
of 5% between ZnO and SiC (111) [9]. Similar observations for AlN (002) film depositions have been
reported by Lim et al. [22]. It is evidenced from these data that the ZnO (002) orientation can be formed
on top of Si substrates with 3C-SiC buffer layer in the range of 30% to 60% O2/Ar ratios.
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The third observation is in terms of the effect of different annealing temperatures (400, 600 and
800 ◦C) on the (002) crystal orientation at a 40% O2/Ar ratio. Figure 4 shows the GIXRD spectra for
these samples. The major diffraction peak depicting (002) orientation is prominent in all the samples.
The FWHM of the diffraction peaks of (002) orientation were calculated as 0.33◦, 0.31◦ and 0.35◦ at 400,
600 and 800 ◦C, respectively.
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It is evident from Figure 4 that 600 ◦C is the optimized annealing temperature, that provides
the optimum adatoms mobility to orient themselves along the c-axis for the deposition of ZnO (002)
orientation on top of 3C-Si (111) substrates. The GIXRD scan reveals that the crystal quality seems
to deteriorate at 800 ◦C, as demonstrated by the FWHM values, as well as the reducing value of the
peak intensity, the reducing percentage of (002) oriented area under the curve, and the increasing
value of biaxial stress. Fang et al. [16] noticed the same trend for the annealing of ZnO (002) on
top of Si (100) and attributed it to the presence of porosity. Since the grain sizes remain consistent
at different annealing temperatures, as shown in Table 1, this theory is not applicable in our case.
Singh et al. offered another hypothesis [23], that is, that the quality of ZnO film deteriorates at higher
annealing temperatures due to the breakage of bonds and/or reaction with the substrate. We explore
the breakage bond theory and illustrate its effect in Figure 5. The film that was annealed at 600 ◦C has
optimized kinetic energy to orient the adatoms along the (002) orientation. In the case of the film that
was annealed at 800 ◦C, the adatoms had higher kinetic energy and surface mobility that could have
broken the bonds. As a result, in addition to (002) orientation, the highly energetic adatoms also orient
themselves along other crystal orientations, such as (100), (101), (102) and (110).
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The Atomic Force Microscopy (AFM) scan of the un-annealed and annealed (at 600 ◦C) samples
prepared at a 40% O2/Ar ratio are shown in Figure 6. The root mean square (rms) roughness of
both deposited films was measured in a 5µm × 5 µm area using tapping mode Atomic Force
Microscopy (Cypher AFM) with an etalon cantilever. The rms value is calculated using Igor software.
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temperature, in which small crystallites coalesce together to make larger crystallites [24].
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4. Conclusions

We have demonstrated the RF sputtering of c-axis oriented ZnO thin films on top of epitaxial
3C-SiC-on-Si (111) substrates. Four key results are highlighted. First, the value of the FWHM of the
(002) diffraction peak was reduced by a factor of 50% after post-annealing, illustrating its effectiveness.
Second, after the post-annealing treatment, the FWHM values of ZnO (002) for the samples from 30%
to 60% O2/Ar ratios showed minimal changes, with the mean of 0.325◦ and standard deviation of
0.03◦. Third, the post-annealing temperature of 600 ◦C was found to be the most optimized range for
the ZnO (002) deposition. This is supported by the data from the extracted FWHM and the value of
the biaxial stress. We have also proposed a growth model to explain the effect of the post-annealing
treatment on the crystal quality of the ZnO films. Fourth, the surface roughness of the ZnO film
increased after annealing due to the coalescence of small crystallites. This observation is supported by
the AFM measurement and is corroborated by the calculation of the grain size.
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