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Abstract: Acceleration sensitivity in silicon bulk-extensional mode oscillators is studied in this
work, and a correlation between the resonator alignment to different crystalline planes of silicon
and the observed acceleration sensitivity is established. It is shown that the oscillator sensitivity
to the applied vibration is significantly lower when the silicon-based lateral-extensional mode
resonator is aligned to the <110> plane compared to when the same resonator is aligned to <100>.
A finite element model is developed that is capable of predicting the resonance frequency variation
when a distributed load (i.e., acceleration) is applied to the resonator. Using this model, the
orientation-dependent nature of acceleration sensitivity is confirmed, and the effect of material
nonlinearity on the acceleration sensitivity is also verified. A thin-film piezoelectric-on-substrate
platform is chosen for the implementation of resonators. Approximately, one order of magnitude
higher acceleration sensitivity is measured for oscillators built with a resonator aligned to the <100>
plane versus those with a resonator aligned to the <110> plane (an average of ~5.66 × 10−8 (1/g) vs.
~3.66 × 10−9 (1/g), respectively, for resonators on a degenerately n-type doped silicon layer).

Keywords: MEMS resonators; acceleration sensitivity; vibration sensitivity; nonlinearity

1. Introduction

In recent years, the application of micro-machined, silicon-based resonators in timing has been
growing steadily [1–3]. Internet of things, mobile and wearable, automotive, and smart infrastructure
monitoring are some examples of applications where extremely small and ultra-stable MEMS-based
oscillators could play an important role in the system performance. The stability of these oscillators
is affected by environmental conditions such as temperature, humidity, pressure, magnetic field,
acceleration/vibration, etc. A change in one or more of these environmental conditions can either
vary the resonance frequency of the resonator or the oscillator loop phase [4]. In the former case, any
change in the resonance frequency of the resonator will directly impact the oscillator frequency, as
other electronic components are assumed to be broadband. In the latter case, change in the phase of
the oscillator loop is compensated for by a shift in the oscillation frequency, so that the loop phase is
maintained at 360◦, which is a required condition for oscillation [4].

A significant mechanical vibration could exist in the typical operating environment of the
electronics utilized in certain applications such as cell-phone towers, aircrafts, automotives, aerospace
vehicles, and radar towers. Such vibration results in frequency instability and performance
deterioration of the oscillators onboard. Applied acceleration to the oscillator can induce a change in
the resonance frequency of the mechanical resonator, as the stress applied to the resonator through the
suspension tethers will change the instantaneous resonance frequency of the device. Alternatively, the
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stray capacitance and inductance of the circuit could change as the circuit board is deformed due to
the applied vibration, resulting in variation of the oscillator loop phase [4].

In order to characterize the shift in resonance frequency of a mechanical resonator due to
the applied stress, a parameter defined as a stress-frequency coefficient is typically used. The
stress-frequency coefficient is shown to depend on the combination of two factors: the geometrical
deformation and the nonlinear elastic properties of the material used in the resonator [5]. In quartz
crystal resonators, this coefficient is extensively studied and proven to be dependent on the crystal
cut [6–11]. Several methods have been used for reducing the vibration sensitivity of quartz-based
oscillators. For example, it is suggested that compensation of the acceleration-induced shift in
oscillation frequency is possible by applying an appropriately phase-shifted electrical signal to the
crystal’s electrodes that is proportional to the mechanical vibration [12]. Active compensation of
acceleration sensitivity has also been studied in recent years. In [13–15], authors have achieved low
vibration-sensitive oscillators through electrical compensation of the oscillator output using sensors
that are strategically mounted to accurately measure the applied acceleration. A similar method of
electronic vibration-induced noise cancelation has been used for optoelectronic oscillators as well [16].
In a different approach, two crystals with anti-parallel acceleration-sensitivity characteristics have
been used in an oscillator circuit so that the net acceleration sensitivity vector can be adjusted to
zero [11,17,18]. Similar compensation methods using discrete or stacked crystals are represented
in [19]. Choosing an appropriate shape and place for mounting supports in order to reduce stress, and
also employing precise fabrication techniques to accurately locate and shape the designed mounting
structures, are other important factors considered in previous works [20]. The type of the material
used in the oscillator is also another degree of freedom that could be utilized for reducing acceleration
sensitivity. As explained in [21], experimental results obtained from two different air-dielectric cavity
oscillators made from two different materials, ceramic and aluminum, showed almost one sixth
times lower acceleration sensitivity for the one made of ceramic. Optical oscillators also showed low
acceleration sensitivities due to their small size [22]. Other interesting improvements are reported in
the field of optical cavity resonators. The acceleration sensitivity of a cavity-stabilized laser is decreased
significantly using the feedforward correction of acceleration [23]. In addition, recent research
on the acceleration sensitivity of optical cavity resonators shows that performance deterioration
due to the external mechanical vibration can be minimized by the appropriate design of the cavity
structure [24–26].

As mentioned above, material nonlinearity is an important factor affecting the sensitivity of
the resonators to mechanical vibration [4,8,27,28]. Since nonlinear elastic constants in crystalline
material are anisotropic, the orientation-dependency of the vibration sensitivity due to this
nonlinearity is potentially predictable. It has been shown that the stress-frequency coefficient of
stress-compensated (SC)-cut quartz is nearly zero. Therefore, the cuts near SC-cut quartz are known to
exhibit enhanced performance metrics in terms of force-frequency, resonance amplitude-frequency,
acceleration-frequency, intermodulation, and dynamic thermal-frequency stability [5,29,30].

The oscillator market has recently begun to accept silicon-based MEMS resonators as an alternative
for the long-stablished quartz resonators [31,32]. In theory, MEMS resonators should exhibit lower
sensitivity to acceleration compared with quartz resonators because of their smaller size and mass. It is
of great importance to study the physics of vibration sensitivity in silicon-based resonators in order to
understand the limits and to develop proper design guidelines to reduce vibration induced instability
in silicon-MEMS oscillators. Several factors such as shape, position, and number of suspension
tethers, aspect ratio of the resonator dimensions, device layer thickness, and mode shape can affect
the acceleration sensitivity of a MEMS resonator. Different studies have been performed to analyze
the acceleration sensitivity of these resonators. In [33], the acceleration sensitivity of a lame-mode
resonator supported with four anchors located at four corners of the square-shape structure is studied.
In this work, it is shown that adding an extra anchor at the center of the resonator is effective at
reducing the acceleration sensitivity. The acceleration sensitivity of a small-gap capacitive MEMS
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oscillator is studied in [34]. In capacitive resonators, the vibration-induced variation of the gap size and
the transducer capacitance overlap area results in nonlinear changes in electrostatic stiffness, which
results in a shift in resonance frequency.

This paper focuses on the acceleration sensitivity of silicon-based MEMS resonators. It is
shown that the acceleration sensitivity of silicon-based resonators is orientation-dependent and
has a correlation with the elastic properties of silicon including the Poisson ratio and nonlinear
elastic coefficients. A finite element model in COMSOL is developed that predicts the hypothesized
orientation-dependent acceleration sensitivity, and presented experimental results agree with the
hypothesis as well. Recently, the preliminary results suggesting the orientation-dependency of the
vibration sensitivity for silicon-based MEMS resonators was presented by the authors [35]. This work
is an extension of the work that confirms the earlier results with a novel finite element model (FEM)
and an observation of the same trends on more resonator samples.

This paper is organized as follows. The theory of acceleration sensitivity is presented in Section 2.
In Section 3, the resonators used in this work are introduced and characterized. The finite element
model for simulating acceleration sensitivity is explained in Section 4. Experimental results for both
nonlinearity and vibration sensitivity measurements are demonstrated in Section 5. Finally, the study
is summed up in Section 6.

2. Theory of Acceleration Sensitivity

Acceleration sensitivity can be defined as frequency instability of a resonator due to the mechanical
vibration introduced by the environment. Applied acceleration will act on the resonator mass to
produce a force, and it consequently induces stress and strain within the resonant body. There are
two main causes of vibration sensitivity: geometric nonlinearity and material nonlinearity. If the
applied strain due to the acceleration is large enough, the device dimensions/geometry will change
(i.e., geometric nonlinearity) and consequently the resonance frequency will be affected. In addition, if
the elastic stiffness coefficients of the material are strain-dependent (i.e., material elastic nonlinearity),
the effective stiffness of the resonator changes due to the applied vibration and the natural resonance
frequency will change as a result.

The change in the natural resonance frequency of device as a function of the applied acceleration
can be represented as follows [8]:

f
(→

a
)
= f0

(
1 +

→
Γ ·→a

)
(1)

in which f 0 is the natural resonance frequency when there is no acceleration,
→
Γ is the acceleration

sensitivity vector, and
→
a is the applied acceleration in a certain direction.

Using Equation (1),
→
Γ can be found by

→
Γ ·→a = ∆ f / f0 (2)

in which ∆f is the shift in resonance frequency due to the applied vibration. If the applied acceleration
is a constant DC vibration, a constant shift will happen at resonance frequency. However, a sinusoidal
acceleration will result in a frequency modulation, and the resonance frequency will change periodically
from f 0 − ∆f to f 0 + ∆f at a rate equal to the vibration frequency. Since ∆f is normally a very small
value, it is not easily detectable. Hence, to measure acceleration sensitivity, the resonator should be
employed in an oscillator circuit. Once the output power spectrum of the oscillator is analyzed, the
sidebands that appear at an offset equal to the vibration frequency of the carrier power are detectable.
Let us assume the output voltage of the oscillator is given by

V(t) = V0 cos(φ(t)) (3)
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in which φ(t) is the phase of the oscillator, which can be found by integrating the frequency

φ(t) = 2π

t∫
t0

f
(
t′
)
dt′ (4)

in which f(t) is the frequency of the oscillator under applied vibration. Considering a sinusoidal
acceleration Equation (5), resonance frequency will be modified as shown in Equation (6)

→
a =

→
A cos(2π fvt) (5)

f
(→

a
)
= f0

(
1 +

→
Γ ·
→
A cos(2π fvt)

)
(6)

Therefore, the phase is calculated as

φ(t) = 2π f0t +
(

∆ f
fv

)
sin(2π fvt), ∆ f = f0(

→
Γ ·
→
A) (7)

By substituting Equation (7) in Equation (3) the output voltage of the oscillator is calculated
as follows:

V(t) = V0 cos
(

2π f0t +
(

∆ f
fv

)
sin(2π fvt)

)
(8)

As seen in Equation (8), the output of the oscillator under a sinusoidal vibration is a
frequency-modulated signal that can be expanded using a series of Bessel functions as follows:

V(t) = V0[J0(β) cos(2π f0t) + J1(β) cos(2π( f0 + fv)t) + J1(β) cos(2π( f0 − fv)t) + . . .] (9)

in which β = ∆f /fv = (
→
Γ ·
→
A) f 0/fv is the modulation index. For β < 0.1, J0(β) = 1, J1(β) = β/2, and

Jn(β) = 0 for n > 2. Hence, for small modulation indices, the output spectrum of the oscillator only
contains the main resonance frequency and two sidelobes at f 0 ± f v. As seen from Equation (9), the
magnitude of these sidelobes (β/2) depends on the acceleration amplitude and frequency, resonance
frequency of the resonator, and the acceleration sensitivity vector. The ratio of the power in these two
sidelobes to the power of the carrier is derived through the following equation

Lv =

(
J1(β)

J0(β)

)2
(10)

or equivalently in decibels notation

Lv,dB = 20 log
(

J1(β)

J0(β)

)
= 20 log

(
β

2

)
= 20 log


(→

Γ ·
→
A
)

f0

2 fv

 (11)

So, acceleration sensitivity in ith direction,
→
Γ , can be found as follows:

Γi = (2 fv/Ai f0)10Lv/20 (12)

in which fv is the vibration frequency, Ai is the amplitude of vibration in ith direction, and Lv is the
difference between the carrier signal power and sidebands power in dB.

The amplitude of total acceleration sensitivity along x, y, and z direction is calculated as follows:

Γt =
√

Γx2 + Γy2 + Γz2 (13)
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3. Resonator Design and Characterization

Thin-film piezoelectric-on-substrate (TPoS) platform is chosen in this work for prototyping the
silicon-based resonators as they offer high quality factor and low insertion loss [36]. The schematic of
a typical TPoS resonator used in this work is shown in Figure 1, in which a thin sputtered piezoelectric
AlN layer, sandwiched between top and bottom electrodes made of Molybdenum, is stacked on top of a
<100> silicon layer. The top electrode is patterned on the resonant structure to enable two-port operation
of the resonator. The specific interdigitated configuration could be used to excite higher harmonic
lateral-extensional resonance modes [37,38]. However, in this work the first harmonic resonance is used
in the oscillator, and the top electrodes are connected to each other for the resonator to be operated in a
one-port configuration. In order to study the effect of orientation on acceleration sensitivity, resonators
with identical design are rotated to align to different crystalline orientations. The stack layers of the
resonators used in this work include 8 µm silicon, 1 µm AlN, and 100 nm Molybdenum used as
electrodes. The substrate for all resonators is a phosphorus-doped silicon-on-insulator (SOI) wafer
with a device layer doped at a concentration of ~5 × 1019 cm−3.
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Figure 1. The schematic of a typical TPoS resonator used in this work.

A schematic representing the relative position of the resonators aligned to <100> and <110>
orientations on the [100] SOI wafer is shown in Figure 2. The fundamental lateral extensional
mode-shape of the resonant structure used in this work is also shown in this figure.
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The frequency response (S21 amplitude) and the scanning electron micrograph (SEM) of the
resonators used in this study are also shown in Figure 3.
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4. Finite Element Simulation

A theoretical or simulation model that could be used to predict and improve acceleration
sensitivity of resonators is very desirable for design purposes. Due to the nonlinear nature of vibration
sensitivity, developing such tools is not straightforward. Complicated equations have been developed
for vibration sensitivity of bulk mode resonators, indicating dependency of vibration sensitivity to a
complex function of linear and nonlinear elastic constants [39]. However, a finite element model can
be more useful, as numerical solutions have recently found popularity due to the great progress made
in computational speed and capacity.

In order to develop a finite element model for this purpose, geometric and material nonlinearities
should be both included. Geometric nonlinearity is already predefined in commercial FEM software
packages such as COMSOL, but capturing material nonlinearity of silicon is more challenging.

4.1. Geometric Nonlinearity

When there is relatively large deformation and rotation, the approximations typically used in
linear elastic equations break apart, and it is necessary to identify the distinction between deformed
and undeformed configuration, and the nonlinear definitions of stress and strain should be utilized as
opposed to the simplified engineering definitions.

The definition of linear engineering stain is shown in Equation (14), which needs to be replaced by
Equation (15), the nonlinear Green–Lagrangian strain, in case of having rotation or large deformation.

eX =
∂u
∂X

(14)

SX =
∂u
∂X

+
1
2

(
∂u
∂X

)2
+

1
2

(
∂V
∂X

)2
+

1
2

(
∂w
∂X

)2
(15)

Therefore, it is required to modify the equations of the FEM simulator in order to consider
nonlinear definitions of strain. COMSOL software will provide the option to consider geometric
nonlinearity in the model, and, once selected, the Green–Lagrangian strain will be utilized in
all calculations.
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4.2. Material Nonlinearity

In general, there is a nonlinear relationship between stress and strain for any arbitrary material.
Normally, for small strain values, one could use a linear approximate instead of the nonlinear relation.
However, for large values of strain, the nonlinear equation should be considered. In the case of
simulating acceleration sensitivity, we are dealing with small values of resonance frequency shift, in
the range of ppb. Thus, considering nonlinear terms is critical in accurately predicting very small
changes in resonance frequency, even though the applied acceleration and the resulted strain are small.
Equation (16) shows the nonlinear relationship between second Piola–Kirchhoff (2nd PK) stress and
Green–Lagrangian strain for silicon [40,41]

Tij(X) = CijklSkl +
1
2

CijklmnSklSmn (16)

in which Cijkl, Cijklmn, Tij, and Skl are linear and nonlinear elastic stiffness coefficients, 2nd PK stress,
and Green–Lagrangian strain, respectively. In order to capture acceleration sensitivity of the resonators
correctly, we propose to define this nonlinear stress-strain relation in COMSOL as follows. First,
Equation (16) will be rewritten as

Tij(X) = (Cijkl +
1
2

CijklmnSmn)Skl (17)

Next, the expression in parenthesis could be defined as an elastic stiffness tensor:

Cijkl
′ = Cijkl +

1
2

CijklmnSmn, i, j, k, l = 1, 2, 3 (18)

With this new definition, the linear second-order elastic stiffness tensor can be modified so that
it is strain-dependent using the coefficients of nonlinear elasticity. Since working with tensors is not
straight forward, Voigt notation should be used to convert tensorial format to matrix format. The same
concept presented above is shown below in matrix format:

Ti(X) = (Cij +
1
2

CijkSk)Sj (19)

Cij
′ = Cij +

1
2

CijkSk i, j, k = 1, 2, 3, 4, 5, 6

Now using Einstein notation and considering cubic symmetry for silicon structure, the equation
above can be expanded to find all of the 36 components of the new modified stiffness matrix Cij

′.
The structure used in this work for modeling is shown in Figure 4, which includes the lateral

extensional resonator connected to the substrate. It should be noted that in the proposed FEM model,
only the silicon layer is considered. Utilizing such simplified model is justified as, firstly, the thickness
of the AlN layer is 1/8th of the thickness of the silicon layer, and, secondly, the sputtered AlN used in
these resonators is isotropic in x-y plane. Therefore, it is concluded that the orientation dependency of
acceleration sensitivity in resonators is mainly dominated by their structural silicon body.

To study vibration sensitivity using COMSOL, a prestressed analysis is performed on the discussed
structure as follows: first, a stationary study is performed to obtain the final strain values due to
the applied acceleration followed by a second step of eigenfrequency study to predict the modified
natural resonance frequency while the initial strains calculated in the first step are applied to the

structure. It should be noted that acceleration is applied as a body load equal to
→
F = ρ

→
a (N/m3)

to the whole structure including the frame, in which ρ is effective density. It is worth mentioning
that COMSOL uses a perturbation model to calculate the eigenfrequencies of the pre-stressed system.
Although it is possible to directly solve a set of differential equations to find the resonance frequency
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under acceleration but as described in [39], it has been shown that calculating the first eigenvalue
perturbation is considerably more efficient.

Acceleration sensitivity is calculated as normalized resonance frequency shift due to the applied
acceleration using Equation (2). The resulted vibration sensitivity in x, y, and z direction as a function
of acceleration amplitude is shown in Figure 5 for a resonator aligned to <100> orientation. As seen,
the acceleration sensitivity in z direction is the dominant component of the Γvector, which is expected,
as in this case vibration is applied normally to the resonator plane, introducing an out-of-plane
bending moment with a relatively low effective stiffness in the structure. Hence, only acceleration
sensitivity in z direction is demonstrated in the following figures for simplicity. Material nonlinearity
for <100> orientation is defined in COMSOL, as explained before. In order to consider nonlinearity
in <110> orientation, a 45◦ rotated coordinate system in the resonator plane is used. The simulated
acceleration sensitivity for both resonators aligned to <100> and <110> orientations considering linear
and nonlinear material properties is demonstrated in Figure 6.
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As seen, acceleration sensitivity of the <100> resonator is larger than the <110> resonator, even
for the case of linear material properties. One possible reason is that the Young’s modulus in <100>
silicon is smaller and the Poisson ratio is larger than that of the <110> orientation [42]. Hence, when
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a load is applied in <100> direction normal to the plane of the resonator, larger bending results,
and the in-plane deformation of the resonator would be larger for the resonator aligned to <100>
plane compared with the resonator aligned to <110> plane. The resulting in-plane strain will directly
affect the resonance frequency, as the frequency is a function of the resonator’s in-plane dimensions.
Therefore, it appears that the dominant factor in the acceleration sensitivity of the resonator studied in
this work is the Poisson ratio of silicon. However, it should be noted that material nonlinearity also
affects the absolute value of acceleration sensitivity significantly. As seen, when material nonlinearity
is considered, acceleration sensitivity is increased in both <100> and <110> cases. When silicon is
defined as a linear material, the ratio of vibration sensitivity of resonator aligned with <100> to that
aligned with <110> is 4.7, while this ratio increases to 18.5 when the material nonlinearity of silicon is
considered. Therefore, material nonlinearity significantly affects both the value and the orientation
dependency of the acceleration sensitivity.

It is worth mentioning that this simulation only considers the resonator and part of the substrate
that is simplified compared to the experimental setups. In addition, elastic constants used in this
simulation are for n-type silicon with doping concentration of 2 × 1019 cm−3 [43], which is the closest
available data to the doping level for the devices fabricated in this work (~5× 1019 cm−3). Furthermore,
defining material nonlinearity for other layers of the device including AlN may affect the absolute value
of acceleration sensitivity. However, in this study, the goal is to investigate the effect of orientation on
acceleration sensitivity of n-type highly doped silicon-based resonators and understand the effect of
material nonlinearity on that. Thus, predicting the relative sensitivity in different orientations is the
most important aim of this simulation, which can be achieved with this simplified model.Micromachines 2017, 8, x FOR PEER REVIEW  10 of 19 
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From the above simulation, it is concluded that by increasing material nonlinearity, acceleration
sensitivity will increase. To confirm this conclusion, nonlinear elastic coefficients of <100> silicon are
intentionally modified so that a larger amplitude frequency, A-f, coefficient is obtained. This coefficient,
k, is a measure of nonlinearity, which will be explained in more detail in Section 5. In order to calculate
k as a function of nonlinear stiffness constants, first, the nonlinear Young’s modulus is calculated based
on the closed form equations presented in [40]. Then, amplitude-frequency coefficient k is calculated
using equations presented in [44] for lateral extensional mode-shape aligned with <100> orientation.
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The simulated acceleration sensitivity using the modified elastic constants is shown in Figure 7. As
seen, by increasing k (i.e., nonlinearity), acceleration sensitivity also increases, which confirms the
correlation between acceleration sensitivity and nonlinearity.
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5. Measurements and Results

As explained in Section 1, we hypothesized that acceleration sensitivity of silicon-based MEMS
resonators is orientation-dependent and affected by the elastic properties of the resonator material.
In order to study this hypothesize, both nonlinearity and acceleration sensitivity of above resonators
need to be measured.

5.1. Nonlinearity Measurements

Amplitude-frequency (A-f ) coefficient k is a measure of nonlinearity in resonators. This coefficient
determines the relation between normalized resonance frequency shift of the resonator and the
amplitude of vibration (x) as presented by (20).

f = f0

(
1 + kx2

)
(20)

We will use backbone curve plots obtained through the ringdown response measurement in order
to evaluate nonlinearity of the resonators. A backbone curve is the plot of normalized frequency shift
versus amplitude of vibration. In order to find the shift of resonance frequency in nonlinear regime,
two methods can be used: forced or unforced oscillation. In former, the input excitation power is
increased gradually, and the shift in resonance frequency is read using a network analyzer while the
resonator is under forced excitation. However, in the latter, ringdown response of the resonator is
measured, and by analyzing the decaying signal, shift in natural resonance frequency of the unforced
device vibration can be calculated [45]. In this study, second method is used.

Each resonator is forced by a large enough input that guarantees a detectable shift in resonance
frequency. After exciting the resonator for a period of time, the input power is ceased, and the unforced
ringdown response of the device is captured. The time domain behavior of the output voltage signal for
one of the resonators used in this study captured by a digital oscilloscope is demonstrated in Figure 8.
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Figure 8. The ringdown response of the resonator and the FFT plots for different sections of the
decaying signal to find the backbone curve. fxmax and fxmin are the resonance frequencies of the device
corresponding to largest and smallest amplitudes of vibration, respectively.

The decaying signal is then spilt into several bins, and a fast Fourier transform (FFT) is used for
the data in each bin to find the natural resonance frequency of the resonator corresponding to the
varying output voltage (vibration amplitude) during the ringdown signal (Figure 8). Equivalently,
instead of using FFT over one decaying signal, the resonator can be excited separately with different
input powers. Then, for each input power FFT is taken over the first bin of decaying signal. Figure 9
shows the ringdown response for different input powers.
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Now, in order to plot the backbone curve, the output voltage needs to be converted to the
amplitude of vibration. For capacitive resonators, there already are closed form equations developed
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to perform this conversion [45]. However, for piezoelectric resonators such equations are not available
in literature. So to find the amplitude of vibration for each input power, the S parameters of the
resonators are collected for each case. Then, energy stored in resonator in each case is calculated using
the method proposed in [46]. In this approach, the magnitude and phase of the input and output
current and voltage of the resonator are calculated using a model developed in the advanced design
system (ADS) software and the S-parameters of the device. The energy stored in resonator is then
obtained using those calculated parameters [46]. This energy can be approximated by

E =
1
2

k0x2 (21)

in which x is the amplitude of vibration and k0 is the linear spring stiffness constant of the resonator,
which for lateral-extensional mode-shape can be calculated by [44]

k0 =
π2EA

2L
(22)

in which E is the effective Young’s modulus, and A and L are the cross section area and length of the
resonator, respectively. Using Equation (21), amplitude of vibration for each input power is calculated,
and the backbone curves are plotted. The plot is then fitted with Equation (23) in order to find A-f
coefficient k.

∆ f / f0 = kx2 (23)

The backbone curve and the fitted plot for both <100> and <110> resonators in set 1 is shown in
Figure 10. As seen, the absolute value of k for <100> resonator (4.803) is more than 3× larger than that
calculated for the <110> resonator (1.411). This confirms a larger nonlinearity for the <100> resonator.
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Figure 10. The backbone curve for <110> (left) and <100> (right) resonators and the associated
amplitude-frequency (k) coefficients calculated based on the curves, indicating higher nonlinearity in
the <100> resonator.

Hence, this resonator is expected to be more sensitive to acceleration, as simulation predicts more
sensitivity by increasing nonlinearity.

5.2. Acceleration Sensitivity Measurements

In order to measure acceleration sensitivity, the resonator must be employed in an oscillator circuit.
To minimize the number of components, a commercial oscillator IC, CF5027 is used. The printed
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circuit board (PCB) and the schematic of the oscillator used in this study are shown in Figure 11a,b.
The connections XT and XTN denoted on the IC are the amplifier input and output, into which the
MEMS resonator should be connected. Details of the oscillator IC specifications can be found in the
data sheet [47].
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Figure 11. (a) The oscillator PCB containing the commercial oscillator IC (CF5027) and (b) the schematic
of the oscillator IC connected to the TPoS resonator [47].

The typical phase noise measured from the assembled oscillators is shown in Figure 12. As seen,
both oscillators exhibit excellent phase noise performance, which enables accurate measurement of the
acceleration sensitivity.
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Figure 12. The phase noise performance of the oscillator circuits containing the <100> and
<110> resonators.

A closed loop magnetic shaker system from Vibration Research Group Inc. is used to simulate the
actual vibration coming from environment (Figure 13). The acceleration applied to the board is measured
by a DYTRAN 3055D1T accelerometer. The sensed acceleration is then fed back to the controller to be
compared with the desired acceleration set by the operator. A control signal is afterward sent to the
amplifier, which determines the power generated by the amplifier that feeds the magnetic motor.
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Figure 13. The acceleration-sensitivity measurement setup.

The phase noise and the output spectrum of the two resonators aligned with <100> and <110>
orientations are shown in Figure 14 when a 14 g, 800 Hz sinusoidal acceleration is applied in z
direction. As seen, two sidebands appear at an offset frequency of 800 Hz from the carrier in the
oscillator output spectrum for both resonators, as expected from theoretical explanations provided
in Section 2. The amplitude of these sidebands is proportional to the acceleration sensitivity of
resonator. Hence, it is obvious that resonator aligned to <100> plane is significantly more sensitive to
the acceleration compared with the one aligned to the <110> plane. Acceleration sensitivity of these
devices is 3.1 × 10−9 and 4.8 × 10−8 1/g for resonators aligned with <110> and <100> orientations,
respectively. Spurious signals will also appear on the phase noise plot at an offset frequency equal to
the vibration frequency. In fact, the sidebands on the output spectrum are considered as noise, and
hence the corresponding spurs on the phase noise are expected. It should be noted that the amplitude
of the spurs on the phase noise is almost equal to the difference between amplitude of the carrier and
sidebands in the spectrum, which corresponds to how the phase noise is calculated.
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Figure 14. The oscillator output spectrum and the phase noise under 14 g, 800 Hz vibration for set 1 of
resonators. Larger amplitude of the sidebands that appeared at 800 Hz offset frequency from the carrier
in the output frequency spectrum of the oscillator with <100> resonator shows higher acceleration
sensitivity of this device. More theoretical details are provided in Section 2.
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It is worth mentioning that, in this study, the phase noise and frequency spectrum measurements
are done with a Rohde & Schwarz signal source analyzer. However, one can configure a platform to
do the same measurement, such as those presented in [48,49].

Acceleration sensitivity of all resonators has been measured by sweeping both acceleration
amplitude and frequency. The results for first set of resonators are shown in Figure 15. By averaging
total acceleration sensitivity over vibration frequency range of 0–3 kHz, ~5.66× 10−8 and ~3.66 × 10−9

are obtained for resonators aligned to <100> and <110> orientations, respectively.
It is worth mentioning that, contrary to the measurement, the acceleration sensitivity is not

expected to vary with acceleration frequency. This is because the induced strain in the resonant
structure should not be a function of the acceleration frequency, as no resonance modes of the device
are within the range of applied frequency. However, the acceleration is not directly applied to the
device, and, rather, it is being applied to a board to which the resonator die is attached. It is suspected
that there are numerous resonance modes for the entirety of the board and the components it contains
including the wirebonds, cables, and connectors. Therefore, the effective force applied to the resonator
will end up varying with the frequency. In addition, other sources of acceleration sensitivity such as a
shift in the phase can play a role that is frequency-dependent.

The same measurement has been repeated for the second set of devices, and the same trend as for
the first is obtained, confirming our hypothesis on orientation-dependency of acceleration sensitivity.
Acceleration sensitivity of both sets of resonators for a 7 g, 2800 Hz sinusoidal vibration is reported in
Table 1.
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Table 1. Acceleration sensitivity for both sets of devices for a 7 g, 2800 Hz sinusoidal vibration.

Orientation Гx Гy Гz Гtotal

Set 1
<100> 3.73 × 10−9 1.2 × 10−8 3.3 × 10−8 3.6 × 10−8

<110> 4.9 × 10−10 4.1 × 10−10 4 × 10−9 4.1 × 10−9

Set 2
<100> 8.5 × 10−9 2.5 × 10−8 8.1 × 10−8 8.5 × 10−8

<110> 3.1 × 10−10 6.4 × 10−9 4.8 × 10−9 8 × 10−9

6. Conclusions

The acceleration sensitivity of n-type, highly-doped, silicon-based extensional resonators aligned
with different crystalline orientations is studied. Experimental results suggest that a resonator aligned
with the <110> plane direction is much less sensitive to applied acceleration compared with a similar
resonator aligned with <100> plane. A finite element model is presented to simulate the acceleration
sensitivity of the resonators used in this study. Simulation results also confirm less sensitivity for the
<110> resonator. In addition, it was shown that material nonlinearity is an important factor affecting
the acceleration sensitivity of these type of resonators.

Author Contributions: B.K. developed the idea, generated the simulation results, collected the experimental
data, and wrote the paper; J.G. fabricated the resonators; R.A. contributed in developing the idea and revised the
manuscript; R.A. and B.K. analyzed the results.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Ng, E.; Yang, Y.; Hong, V.A.; Ahn, C.H.; Heinz, D.B.; Flader, I.; Chen, Y.; Everhart, C.L.M.; Kim, B.;
Melamud, R.; et al. The long path from MEMS resonators to timing products. In Proceedings of the
28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, Portugal, 18–22
January 2015; pp. 1–2.

2. Abdolvand, R.; Bahreyni, B.; Lee, J.E.; Nabki, F. Micromachined resonators: A review. Micromachines 2016, 7.
[CrossRef]

3. Beek, J.T.M.V.; Puers, R. A review of MEMS oscillators for frequency reference and timing applications.
J. Micromech. Microeng. 2011, 22, 013001. [CrossRef]

4. Walls, F.L.; Gagnepain, J.-J. Environmental sensitivities of quartz oscillators. IEEE Trans. Ultrasonics Ferroelectr.
Freq. Control 1992, 392, 241–249. [CrossRef] [PubMed]

5. Ballato, A.; Mizan, M. Simplified expressions for the stress-frequency coefficients of quartz plates. IEEE Trans.
Ultrasonics Ferroelectr. Freq. Control 1984, 311, 11–17. [CrossRef]

6. Anderson, C.L.; Bagby, J.S.; Barrett, R.L.; Ungvichian, V. Acceleration charge sensitivity in AT-quartz
resonators. In Proceedings of the IEEE International Frequency Control Symposium, San Francisco, CA,
USA, 31 May–2 June 1995.

7. Yong, Y.K.; Chen, J. Effects of initial nonlinear strains and nonlinear elastic constants in force-frequency and
acceleration sensitivity of quartz resonators. In Proceedings of the IEEE International Frequency Control
Symposium (IFCS), New Orleans, LA, USA, 9–12 May 2016; pp. 1–2.

8. Filler, R.L. The acceleration sensitivity of quartz crystal oscillators: A review. IEEE Trans. Ultrasonics
Ferroelectr. Freq. Control 1988, 35, 297–305. [CrossRef] [PubMed]

9. Chen, J.; Yong, Y.K.; Kubena, R.; Kirby, D.; Chang, D. On the acceleration sensitivity and its active reduction
by edge electrodes in at-cut Quartz resonators. IEEE Trans. Ultrasonics Ferroelectr. Freq. Control 2015, 626,
1104–1113. [CrossRef] [PubMed]

10. Chen, J.; Yong, Y.K.; Kubena, R.; Kirby, D.; Chang, D. Nonlinear acceleration sensitivity of quartz resonators.
In Proceedings of the Joint Conference of the IEEE International Frequency Control Symposium & the
European Frequency and Time Forum, Denver, CO, USA, 12–16 April 2015; pp. 11–16.

http://dx.doi.org/10.3390/mi7090160
http://dx.doi.org/10.1088/0960-1317/22/1/013001
http://dx.doi.org/10.1109/58.139120
http://www.ncbi.nlm.nih.gov/pubmed/18263142
http://dx.doi.org/10.1109/T-SU.1984.31455
http://dx.doi.org/10.1109/58.20450
http://www.ncbi.nlm.nih.gov/pubmed/18290155
http://dx.doi.org/10.1109/TUFFC.2014.006895
http://www.ncbi.nlm.nih.gov/pubmed/26067045


Micromachines 2018, 9, 233 17 of 18

11. Fry, S.J.; Burnett, G.A. Reducing the acceleration sensitivity of AT-strip quartz crystal oscillators.
In Proceedings of the International Frequency Control Symposium, Newport Beach, CA, USA, 1–4 June 2010;
pp. 25–30.

12. Rosati, V.R.; Filler, R.L. Reduction of the effects of vibration on SC-cut quartz crystal oscillators.
In Proceedings of the IEEE 35th Annual Frequency Control Symposium, Philadelphia, PA, USA, 27–29
May 1981.

13. Fruehauf, H. “g”- Compensated, Miniature, High Performance Quartz Crystal Oscillators; Frequency Electronics
Inc.: New York, NY, USA, 2007.

14. Bloch, M.; Mancini, O.; McClelland, T.; Terracciano, L. Acceleration “G” Compensated Quartz Crystal Oscillators;
Frequency Electronics, Inc.: New York, NY, USA, 2009.

15. Bhaskar, S.; Curran, J.T.; Lachapelle, G. Improving GNSS carrier-phase tracking via oscillator g-sensitivity
compensation. IEEE Trans. Aerosp. Electron. Syst. 2015, 514, 2641–2654. [CrossRef]

16. Hati, A.; Nelson, C.W.; Taylor, J.; Ashby, N.; Howe, D.A. Cancellation of Vibration Induced Phase Noise in
Optical Fibers. IEEE Photonics Technol. Lett. 2008, 20, 1842–1844. [CrossRef]

17. Walls, F.L.; Vig, J.R. Acceleration Insensitive Oscillator. U.S. Patent 4.575.690, 1985.
18. Fry, S.; Bolton, W.; Esterline, J. Crystal Oscillator with Reduced Acceleration Sensitivity. U.S. Grant

US8525607B2, 2008.
19. Ballato, A. Resonators compensated for acceleration fields. In Proceedings of the IEEE 33rd Annual

Symposium on Frequency Control, Atlantic City, NJ, USA, 30 May–1 June 1979.
20. Besson, R.J.; Peier, U.R. Further advances on BVA quartz resonators. In Proceedings of the IEEE 34th Annual

Symposium on Frequency Control, Philadelphia, PA, USA, 28–30 May 1980.
21. Hati, A.; Nelson, C.; Howe, D. Vibration-induced PM Noise in Oscillators and its Suppression; National Institute

of Standards and Technology: Gaithersburg, MD, USA, 2009.
22. Maleki, L. High Performance Optical Oscillators for Microwave and mm-wave Applications. Microw. J. 2013,

56, 106.
23. Leibrandt, D.R.; Bergquist, J.C.; Rosenband, T. Cavity-stabilized laser with acceleration sensitivity below

10−12/g−1. Phys. Rev. A 2013, 87, 023829. [CrossRef]
24. Ludlow, A.D.; Hung, X.; Notcutt, M.; Zanon-Willette, T.; Foreman, S.M.; Boyd, M.M.; Blatt, S.; Ye, J. Compact,

thermal-noise-limited optical cavity for diode laser stabilization at 1 × 10−15. Opt. Lett. 2007, 32, 641–643.
[CrossRef] [PubMed]

25. Millo, J.; Dawkins, S.; Chicireanu, R.; Magalhaes, D.V.; Mandache, C.; Holleville, D.; Lours, M.;
Bize, S.; Lemonde, P.; Santarelli, G. Ultra-stable optical cavities: Design and experiments at LNE-SYRTE.
In Proceedings of the IEEE International Frequency Control Symposium, Honolulu, HI, USA, 19–21 May
2008; pp. 110–114.

26. Webster, S.A.; Oxborrow, M.; Gill, P. Vibration insensitive optical cavity. Phys. Rev. A 2007, 75. [CrossRef]
27. Kosinski, J.A.; Ballato, A. Designing for low acceleration sensitivity. IEEE Trans. Ultrasonics Ferroelectr.

Freq. Control 1993, 405, 532–537. [CrossRef] [PubMed]
28. Kosinski, J.A.; Pastore, R.A. Theory and design of piezoelectric resonators immune to acceleration: Present

state of the art. IEEE Trans. Ultrasonics Ferroelectr. Freq. Control 2001, 485, 1426–1437. [CrossRef]
29. Ballato, A.; Eernisse, E.P.; Lukaszek, T.J. Force-Frequency Effect in Doubly Rotated Quartz Resonators; Sandia

Labs: Albuquerque, NM, USA, 1977.
30. Eernisse, E.P.; Lukaszek, T.J.; Ballato, A. Variational calculation of force-frequency constants of doubly

rotated quartz resonators. IEEE Trans. Sonics Ultrasonics 1978, 253, 132–137. [CrossRef]
31. SiTime corporation. MEMS Oscillators: Enabling Smaller, Lower Power IoT & Wearables. Available

online: https://www.sitime.com/api/gated/SiTime-MEMS-Enable-Small-Low-Power-IoT-Wearables.pdf
(accessed on 11 May 2018).

32. SiTime corporation. Increase Automotive Reliability and Performance with High-temperature, Ultra Robust
MEMS Oscillators. Available online: https://www.sitime.com/api/gated/SiTime-MEMS-Oscillators-for-
Automotive-Applications.pdf (accessed on 11 May 2018).

33. Kim, B.; Olsson, R.H.; Smart, K.; Wojciechowski, K.E. MEMS Resonators with Extremely Low Vibration and
Shock Sensitivity. In Proceedings of the IEEE Sensors, Limerick, Ireland, 28–31 October 2011.

http://dx.doi.org/10.1109/TAES.2015.130197
http://dx.doi.org/10.1109/LPT.2008.2004697
http://dx.doi.org/10.1103/PhysRevA.87.023829
http://dx.doi.org/10.1364/OL.32.000641
http://www.ncbi.nlm.nih.gov/pubmed/17308587
http://dx.doi.org/10.1103/PhysRevA.75.011801
http://dx.doi.org/10.1109/58.238106
http://www.ncbi.nlm.nih.gov/pubmed/18263217
http://dx.doi.org/10.1109/58.949753
http://dx.doi.org/10.1109/T-SU.1978.31003
https://www.sitime.com/api/gated/SiTime-MEMS-Enable-Small-Low-Power-IoT-Wearables.pdf
https://www.sitime.com/api/gated/SiTime-MEMS-Oscillators-for-Automotive-Applications.pdf
https://www.sitime.com/api/gated/SiTime-MEMS-Oscillators-for-Automotive-Applications.pdf


Micromachines 2018, 9, 233 18 of 18

34. Kim, B.; Akgul, M.; Lin, Y.; Li, We.; Ren, Z.; Nguyen, C.T.-C. Acceleration sensitivity of small-gap
capacitive micromechanical resonator oscillators. In Proceedings of the IEEE International Frequency
Control Symposium (FCS), Newport Beach, CA, USA, 1–4 June 2010.

35. Khazaeili, B.; Abdolvand, R. Orientation-dependent acceleration sensitivity of silicon-based MEMS
resonators. In Proceedings of the IEEE International Frequency Control Symposium (IFCS), New Orleans,
LA, USA, 9–12 May 2016; pp. 1–5.

36. Harrington, B.P.; Shahmohammadi, M.; Abdolvand, R. Toward ultimate performance in GHz MEMS
resonators: Low impedance and high Q. In Proceedings of the IEEE International Conference on Micro
Electro Mechanical Systems (MEMS), Hong Kong, China, 24–28 January 2010; pp. 707–710.

37. Fatemi, H.; Shahmohammadi, M.; Abdolvand, R. Ultra-stable nonlinear thin-film piezoelectric-on-substrate
oscillators operating at bifurcation. In Proceedings of the IEEE 27th International Conference on Micro
Electro Mechanical Systems (MEMS), San Francisco, CA, USA, 26–30 January 2014; pp. 1285–1288.

38. Shahmohammadi, M.; Fatemi, H.; Abdolvand, R. Nonlinearity reduction in silicon resonators by doping
and re-orientation. In Proceedings of the IEEE 26th International Conference on Micro Electro Mechanical
Systems (MEMS), Taipei, Taiwan, 20–24 January 2013; pp. 793–796.

39. Kosinski, J.A. The fundamental nature of acceleration sensitivity. In Proceedings of the IEEE International
Frequency Control Symposium, Honolulu, HI, USA, 5–7 June 1996; pp. 439–448.

40. Kim, K.Y.; Sachse, W. Nonlinear elastic equation of state of solids subjected to uniaxial homogeneous loading.
J. Mater. Sci. 2000, 3513, 3197–3205. [CrossRef]

41. Kaajakari, V.; Mattila, T.; Lipsanen, A.; Oja, A. Nonlinear Mechanical Effects in Silicon Longitudinal Mode
Beam Resonators. Sens. Actuators A Phys. 2005, 120, 64–70. [CrossRef]

42. Wortman, J.; Evans, R. Young’s modulus, shear modulus, and Poisson’s ratio in silicon and germanium.
J. Appl. Phys. 1965, 361, 153–156. [CrossRef]

43. Hall, J.J. Electronic Effects in the Elastic Constants of n-Type Silicon. Phys. Rev. 1967, 161. [CrossRef]
44. Yang, Y.; Ng, E.J.; Hong, V.A.; Ahn, C.H.; Chen, Y.; Ahadi, E.; Dykman, M.; Kenny, T.W. Measurement of

the nonlinear elasticity of doped bulk-mode MEMS resonators. In Proceedings of the Solid-State Sensors,
Actuators and Microsystems Workshop, Hilton Head Island, SC, USA, 8–12 June 2014.

45. Yang, Y.; Ng, E.J.; Polunin, P.M.; Chen, Y.; Flader, I.B.; Shaw, S.W.; Dykman, M.I.; Kenny, T.W. Nonlinearity
of Degenerately Doped Bulk-Mode Silicon MEMS Resonators. J. Microelectromech. Syst. 2016, 255, 859–869.
[CrossRef]

46. Fatemi, H.; Abdolvand, R. Fracture Limit in Thin-Film Piezoelectric-on-Substrate Resonators: Silicon vs.
Diamond. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems
(MEMS), Taipei, Taiwan, 20–24 January 2013; pp. 461–464.

47. Crystal Oscillator Module ICs; MSDS No. CF5027; SEIKO NPC Corporation: Tokyo, Japan, February 2010.
Available online: http://www.npc.co.jp/en/products/xtal/clock-oscillator/5027-series/ (accessed on
11 May 2018).

48. Meyer, D.G. A Test Set for the Accurate Measurement of Phase Noise on High-Quality Signal Sources.
IEEE Trans. Instrum. Meas. 1970, 19, 215–227. [CrossRef]

49. Barnes, J.A.; Mockler, R.C. The Power Spectrum and Its Importance in Precise Frequency Measurements.
IRE Trans. Instrum. 1960, I-9, 149–155. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1023/A:1004890314757
http://dx.doi.org/10.1016/j.sna.2004.11.010
http://dx.doi.org/10.1063/1.1713863
http://dx.doi.org/10.1103/PhysRev.161.756
http://dx.doi.org/10.1109/JMEMS.2016.2586099
http://www.npc.co.jp/en/products/xtal/clock-oscillator/5027-series/
http://dx.doi.org/10.1109/TIM.1970.4313904
http://dx.doi.org/10.1109/IRE-I.1960.5006906
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Theory of Acceleration Sensitivity 
	Resonator Design and Characterization 
	Finite Element Simulation 
	Geometric Nonlinearity 
	Material Nonlinearity 

	Measurements and Results 
	Nonlinearity Measurements 
	Acceleration Sensitivity Measurements 

	Conclusions 
	References

