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Abstract: This paper discusses the classification of horse gaits for self-coaching using an ensemble
stacked auto-encoder (ESAE) based on wavelet packets from the motion data of the horse rider.
For this purpose, we built an ESAE and used probability values at the end of the softmax classifier.
First, we initialized variables such as hidden nodes, weight, and max epoch using the options
of the auto-encoder (AE). Second, the ESAE model is trained by feedforward, back propagation,
and gradient calculation. Next, the parameters are updated by a gradient descent mechanism as
new parameters. Finally, once the error value is satisfied, the algorithm terminates. The experiments
were performed to classify horse gaits for self-coaching. We constructed the motion data of a horse
rider. For the experiment, an expert horse rider of the national team wore a suit containing 16 inertial
sensors based on a wireless network. To improve and quantify the performance of the classification,
we used three methods (wavelet packet, statistical value, and ensemble model), as well as cross
entropy with mean squared error. The experimental results revealed that the proposed method
showed good performance when compared with conventional algorithms such as the support vector
machine (SVM).

Keywords: motion analysis; auto-encoder; dance classification; deep learning; self-coaching; wavelet
packet; classification of horse gaits

1. Introduction

Riding is an action that includes horse riding or modern equestrian dressage. There are various
kinds of horse riding styles, such as show jumping, horse therapy, and so forth. Normally, horse riding
requires the skills taught by the coach. However, with the development of technology, motion capture
technology has developed and might replace the coach’s role. Motion capture technology is largely
divided into acoustical, mechanical, magnetic, and optical sensor. Speaking of their disadvantages, it is
difficult for us to collect precise motion using an acoustical sensor, and their movement is restricted
because the mechanical type has to wear heavy equipment. Afterwards, optical equipment requires
expensive equipment and has a large influence on ambient lighting. Finally, sensors based on magnetic
sensors are also sensitive to iron, but horse riding is not closely related to iron. For that reason,
magnetic sensors were used.

Normally, horse riding is not taught one-on-one. That is to say, compared with other
popularization sports (swimming, badminton, tennis, health), it is very costly. Therefore, horse-riding
teaching is acknowledged as an aristocratic sport. For the sake of reducing the education cost of horse
riding, a self-coaching system has been designed. In order to do self-coaching system research, the gaits
of a horse are classified into different parts: walk, sitting trot, rising trot, and canter. Posture coaching
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is designed and adjusted according to the gait analysis. In this paper, we do self-coaching research by
the means of analyzing horse gait classification. Then, we collect feedback information and show it in
the form of voice.

In the past, various designs of the developer were required to extract data characteristics, but deep
learning has a positive effect on the developer, because data features can be extracted by themselves.
Also, deep learning technology is classified into five main fields of application including natural
language processing, customer-centric management, image recognition, and speech recognition [1].
An AE is a type of deep learning method applied in many fields such as video, audio, and text mining.
Moreover, an AE is effectively used to develop application services such as motion classification and
action recognition. In addition, an AE can extract high-level features from data to train complex
features in images [2].

There are application categories of an AE that are explained as follows. First, in the field of human
motion on accelerometer with MEMS (Microelectromechanical systems), Fourati [3] studied a viable
quaternion-based complementary observer (CO) that is designed for rigid body attitude estimation.
In particular, the authors used XSENS to analyze human leg, head, and arm movements. Research on
the joints of the human body is necessary when performing posture coaching of horse riding. It can
constitute dynamic coaching for the movement of a person. Fourati [4] proposed a foot-mounted
zero velocity update (ZVU) aided inertial measurement unit (IMU) filtering algorithm for pedestrian
tracking in an indoor environment. In particular, the authors developed a coordinate and navigation
system to visualize foot motion from 0.12 s to 0.72 s. Although the sensor is attached mainly to the top
of the foot, it shows a waveform of a value similar to the data of the sensor attached to the waist of
the rider. Since the inertial sensor requires attachment to the body, the user may feel inconvenience.
The sensor requires attachment to the body. For that reason, there are a number of studies that have
been applied to motion analysis using images through cameras. However, inertia sensors should be
used to achieve precise posture analysis [5–11].

Second, in the field of human motion on deep learning with 2D data, Sarafianos [12] consider the
automated recognition of human actions in surveillance videos. Convolution neural network (CNN)
is mainly used in 2D, but the author suggested CNN, which is also applicable to 3D. We improved
the accuracy of action classification by using frame information in actions. Hasan [13] proposed a
continuous activity learning framework for streaming videos by intricately tying together deep hybrid
feature models and active learning. Hassan allows us to automatically select the most suitable features
and take the advantage of incoming unlabeled instances to improve the existing model incrementally.
The authors extracted the characteristics of the encoder through two types of data, not just one.
Hong [14] proposed a novel feature extractor with deep learning. It is based on denoising AE and
improves traditional methods by adopting locality preserved restriction. The author used data that
combines motion data with silhouette data. In previous studies, the AE has been actively studied to
fuse two or more data [15–23].

In the sports coaching field, Saponara [24] presented a wearable biometric performance
measurement system for combat sports, Dhruv [25] researched new integrated technologies that
allow coaches, physicians, and trainers to better understand the physical demands of athletes in real
time. Extant studies [26] can be a weakness in terms of reliability because of insufficient data. In this
study, we constructed a big database, and it is possible to extract a reasonable performance. As data
increased, adaptive neuro-fuzzy inference system (ANFIS) [26] faced limitations in performance and
time. Therefore, we could solve problems by applying deep learning. Additionally, the ESAE is
used for classifying horse gaits. AE can be converted into an ensemble form, which can have a
synergistic effect on performance enhancement. In this paper, we propose an ESAE based on motion
data of the horse rider. The reason for the classification of horse gaits is that the posture changes
according to the horse gaits. The results showed that the angle of each joint was different about gaits
of the horse. So, the standard of coaching can be different for each gait. In this paper, the goal is to
construct the motion and position database (DB) of the expert rider and compare with the amateur
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to detect false motion for each horse gaits. This paper also aims to provide real-time horse-riding
coaching by providing feedback to the user about posture. The rider’s posture is different for each
of the four types of horse gaits. For this reason, the motion of an expert can serve as an example for
a beginner. This paper is organized as follows. In Section 2, we describe related research on AEs
and SAEs. Algorithms are described in terms of mathematical theorems and concepts. Section 3
describes the proposed method. We describe a feature extraction method using a wavelet packet,
and the methods applying five statistical values (maximum value, minimum value, average, variance,
and standard deviation) are described. Section 4 describes the DB construction method and the outline
of the experiment. In addition, it describes how to build a horse-riding DB. Experiments using the
proposed method and comparison algorithm are shown. Section 5 summarizes the conclusions and
future challenges.

2. Auto-Encoder and Its Variants

2.1. Auto-Encoder

AE belongs to one of the unsupervised learning algorithms. It is a neural network that aims to
produce an output of X’ similar to the input data of X. In other words, AEs are composed of encoding
(compression) and decoding (recovery), so data reconstruction is the purpose of AEs. Figure 1 shows
the simple structure of the AE.
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Table 1. Symbols used in defining the learning operation.

Symbol Definition Symbol Definition

I Size of input layer (= output) J Size of hidden layer

vij The j-th weight of the i-th output layer neuron znj
The output value of the j-th hidden

layer neuron for the n-th learning vector

η Learning rate x′ni
The output value of the i-th output

layer neuron for the n-th learning vector
xni The i-th element of the n-th learning vector θij Bias of the j-th hidden layer neuron
wji The j-th weight of the j-th hidden layer neuron bi Bias of i-th output layer neuron

AE activates the unit z of the hidden layer in the same way as the multi-layer perceptron (weighted
sum). z is described as Equation (1).

z = f (x) = σ(Wx + b) (1)

σ is an active function, mainly a sigmoid function and ReLu function. Next, the auto-encoder decoding
step is a result of projecting the new weight value and summing the bias values with z obtained in
Equation (1). X’ is defined as Equation (2).

X′ = g(y) = σ′
(
W ′z + b′

)
(2)

The difference between the input data X and the output data X’ is minimized through the objective
function L.

L
(
X, X′

)
=

∣∣∣∣X− X′
∣∣∣∣2 =

∣∣∣∣X− σ′(W ′(z) + b′
∣∣∣∣2 (3)

The objective function L is a cross entropy, and it is defined as shown in Equation (4).

LH
(
X, X′

)
= −Xk log X′x + (1− Xk) log

(
1− X′k

]
(4)

Partial differentiation of L into weights is shown in Equation (5) using chain rules.

∂L
∂yi

∂yi
∂xj

∂xi
∂wij

= −
(
Xi − X′i

)
xj (5)

Figure 3 shows process of training AE.
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Equation (6) represents a weight of output layer of learning operation. The weight of output layer
means the connection strength between the hidden layer and the output layer.

vij(t + 1) = vij(t) + η
(
Xni + x′ni

)(
1− x′ni

)
xniznj (6)
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Equation (7) is a learning operation of the hidden layer weight, and the weight of hidden layer
means the connection strength between the input and the hidden layer.

wji(t + 1) = wji(t) + ηxjiznj
(
1− znj

) I

∑
i

δnivij (7)

δni =
(

xni − x′ni
)(

1− x′ni
)
x′ni. (8)

The bias learning operation of the output layer neuron is shown in Equation (9).

bi(t + 1) = bi(t) + η(xni − x′ni)
(
1− x′ni

)
x′ni (9)

Finally, the bias learning operation of the hidden layer neuron is shown in Equation (10).

θj(t + 1) = θj(t) + η
(
1− znj

)
znj

I

∑
i

δniwij (10)

Pseudocode of Auto-Encoder

Procedure Auto-Encoder

1. Reading:
Signal← horse data
← sampling factor
Target signal← signal samples by K

2. Initialization of variable:
Hidden node← select the number of layers of AE
Max epochs← select the number of layers of AE
Weight← select the number of layers of AE
Sparsity regularization← select the number of layers of AE

3. Training the AE network (minimum mean square error sense):

3.1 Feedforward

(a) Calculation of outputs at each layer by feeding signal as input to the network.
(b) Calculation of error at final layer with reference to target signal

3.2 Backpropagation of error

(a) Calculation of error
(b) Back propagating data (error) to previous layers

3.3 Gradients calculation

(a) Calculation of gradients for all weights, biases in all the layers

3.4 Update

(a) Update the parameters using gradient descent mechanism as

New parameters← old parameters—gradients
4. Testing

(a) Test the network using signal against target signal

(b) Calculate the error as error← predicted output—target signal
5. Repeat until convergence

if |error| ≥ tolerance level,
Go to Step.3

else
Finish training
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2.2. Stacked Auto-Encoder

The stacked auto-encoder (SAE) is a neural network consisting of multiple layers of AE, in which
the outputs of each layer are connected to the inputs of the successive layer. SAE requires an
enormous amount of computation and risks falling into the local minimum when learning the
weights as the number of layers and nodes increases. There is also a problem of vanishing gradient
(VG), in which weights are gradually reduced in the process of updating small values continuously.
Therefore, a designer can build a network by stacking AEs according to performance.

The generated network can extract important features from the input data. The parameters of
each layer node compare the output and the input data in the output layer through the hidden layer.
It can be found that the parameters are determined according to the output data; also, the input data
runs in the same way. Once the parameters of a hidden layer are determined, the output layer is
removed, and the output of the trained hidden layer is used as input data to design another AE that
has a hidden layer and an output layer. An SAE is not a deep generative model. The reason is that
RBM depends on probability, and it anticipates test data with input data. However, an SAE trains the
model in a deterministic manner. It trains h = s(Wx + b), not p(h = 0, 1) = s(Wx + b). The advantage
of SAE is that the learning speed is fast, and the properties of the deep neural network can be adjusted.
SAE stacks block structurally. Primarily, the hidden layer is activated by the input data, and then the
active hidden layer reconstructs the input data.

The error between the input data and the reconstructed data is reduced by using the objective
function. The parameters are updated according to activate the hidden layer. In the SAE network,
the labels of the sample are also added into the softmax classifier, and the network parameters are tuned
using the BP algorithm. Figure 4 shows the structure of an SAE. The target function for fine-tuning the
network parameters is as follows:

J(Wk|Mk−1, bk|Mk−1) = argmin
N

∑
i=1
||yi − gn( f n(. . . f1(xi)))||22 (11)
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3. Proposed Method

3.1. Compression Method Using Wavelet Packet

Motion data of a horse rider consists of eight features that are compressed from 49,000 to 12,250
data samples using wavelet packets. The data that pass through the low-frequency filter are extracted
as features, and the data that pass through the high-frequency filter are difficult to classify, because they
are sparse in terms of their characteristics. High performance was obtained by selecting the two-layer
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wavelet feature. The computation for the generation of wavelet packets is simple when using an
orthogonal wavelet. The sequence of functions shown as follows:

Wn(x), n = 0, 1, 2, . . . (12)

We have

W2n(x) =
√

2
2N−1

∑
k=0

h(k)Wn(2x− k) (13)

W2n+1(x) =
√

2
2N−1

∑
k=0

g(k)Wn(2x− k) (14)

in which W0(x) = ϕ(x) is the scaling function and W1(x) = ϕ(x) is the wavelet function. In this
paper, W3,0, W2,0, and W1,0 are used for input. Figure 5 shows the method of decomposition based on
wavelet packets.
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3.2. Feature Extraction Based on Statistical Methods

In the previous study [26], we experimented with the elbow angle and the y-axis coordinate data
of the hip, whereas in this study, we experimented with forty additional features. Feature values are
extracted from 12,000 frames. The feature extraction method gradually extracts five feature values
(average, maximum, minimum, variance, and standard deviation) from 1 to 20 frames like mask filter.
The data are characterized by eight feature values: y-axis coordinates of the hip, backbone angle,
right elbow angle, left elbow angle, right knee angle, left knee angle, elbow distance, and knee
distance. We experimented sequentially with 10–100 frames; however, the best performance was
achieved at 20 frames, and many features were obtained by taking advantage of the big data feature
of AEs. Statistical values are a powerful tool for analyzing time series data. Eight features are
generated from the sensor data, and five features are extracted for every frame based on eight features.
Finally, 40 features are built. As a result, it is better to apply five feature values than to use a single
minimum, a maximum, and an average value. Figure 6 shows a method of constructing statistical data.
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3.3. Ensemble Stacked Auto-Encoder

The softmax classifier provides us with the probabilities for each class label. It is more convenient
for humans to interpret probabilities rather than margin scores of an SVM. The ESAE is constructed
by building multiple SAE. By combining the probability values of the classifiers, an ensemble form is
created. Thus, we could improve the classification performance by changing the structure. The softmax
classifier is defined by Equation (16).

f j(z) =
ezj

∑k ez
k

(15)

The ensemble (sum) in the softmax classifier can be denoted as Equation (17). N is the number
of SAE.

Ensemble (sum) =
∑N

1 f j(z)
N

(16)

The ensemble (product) in the softmax classifier can be denoted as Equation (18).

Ensemble (product) = f1(z)× f2(z)× . . . f j(z) (17)

In ML, ensemble methods use multiple learning algorithms to obtain better predictive
performance than what is obtainable from any of the constituent learning algorithms alone. Unlike ML
in statistical mechanics, which is usually infinite, an ML ensemble consists of only a concrete finite set of
alternative types but typically allows a much more flexible structure to exist among those alternatives.
For this purpose, this paper proposes an ESAE. An ESAE consists of two or more SAEs as feature
extractors and improves the classification performance by averaging and multiplying the probability
values extracted from the softmax classifier using the ensemble (sum) and ensemble (product) values.
The performance of the data can be improved owing to the synergy. In this work, we changed the size
of hidden nodes in (1) and (2) and experimented in ensemble form. Figure 7 shows the structure of
ESAE. The training data is input to SAE (1), SAE (2), and SAE (3) respectively. Learning is performed
in the ensemble form according to the change in the hidden layer. Finally, the probability values are
obtained from the softmax. Performance is improved through sum and product methods are improved
using probability values.
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Pseudocode of Stacked Auto-Encoder

Procedure Ensemble Stacked Auto-Encoder
1. Reading:

Signal← horse data
K← sampling factor
N← number of AE
Target signal← signal samples by K

2. Initialization of variable:
Hidden node← select the number of layers of SAE
Max-epochs← select the number of layers of SAE
Weight← select the number of layers of SAE
Sparsity Regularization← select the number of layers of SAE

3. Training the SAE network (minimum mean square error sense):

(a) Train the AE network of N (2 − N)
(b) Obtain probability from softmax classifier
(c) Fuse probability values for entire softmax classifier using average and product

4. Testing

(a) Test the network using Signal against Target Signal
(b) Calculate the error as error← predicted output—Target Signal

5. Repeat until convergence

if |error| ≥ tolerance level,
Go to Step.3

else
Finish training

4. Experiment and Database

4.1. Sensors of MVN Based Upon Miniature MEMS Inertial Sensor Technology

Sensors of Xsens are a camera-less 3D human motion measurement system. They are based
on state-of-the-art MEMS inertial sensors, biomechanical models, and sensor fusion algorithms.
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Sensors of Xsens are ambulatory and can be used indoors and outdoors regardless of lighting conditions.
The results of the sensor trials require minimal post-processing, as there is no occlusion or lost markers.
Results can easily be exported to other software applications. Figure 8 shows a horse rider with a
motion capture suit.
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4.2. Database

Acceleration sensors were used for data acquisition [26]. In order to obtain the reliability of data,
data was additionally acquired. Accuracy can be trusted, because data is acquired over many days.
There are four types of horse gaits in the database, including walk, sitting trot, rising trot, and canter.
The database consists of 40 feature values with 2400 sizes. To describe the 40 feature values, there are
eight features such as elbow angles (2), knee angles (2), elbow and knee distance (2), a backbone
angle (1), and a hip-y-axis coordinates (1). The 40 features were extracted from 20 frames using mean,
maximum, minimum, variance, and standard deviation with eight features. The size of the database
for classification is 2400 × 40. The motion data of the horse rider is sized 49,500 × 1. It is projected
into each data to obtain the angle data. Owing to the fact that it is an 8-angle value, data of 49,500 × 8
can be constructed. The dimension is reduced through a wavelet packet algorithm. A2 is selected to
reduce the dimension, and statistical feature values are extracted through the reduced-size data.

Several AEs are modeled by using statistical feature values as input to the SAE, and by changing
the hidden node. The average is obtained in an ensemble form through the probability values obtained
from the respective softmax classifier. When all the results are collected, the final probability value can
be obtained. To summarize, there are 4 data. The first data was applied to the AE without preprocessing
the data acquired from the sensor to take advantage of the strength of the deep running. Performance
is relatively low and excluded. The second data is the hip y data obtained from the sensor with the size
2800 × 70. The third is data using wavelet packet, and the size is 2800 × 18. The parameter settings are
as follows. The weights of SAE are set to 0.0001, the max epoch is set to 3000, and the hidden size is 40.
Finally, statistical features are extracted after the wavelet packet. The size is 2400 × 40. Training data
and testing data is divided 50:50. Figure 9 shows the process of horse-riding coaching. Figure 10 shows
hip y data with four kinds of horse gaits [26]. Hip y data with wavelet packet was experimented on in
this paper.
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Figure 10. Hip y data with four kind of horse gaits. (a) Hip y data for walk, (b) hip y data for rising
trot, (c) hip y data for sitting trot, and (d) hip y data for canter.
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4.3. Environment

Motion data is acquired from an expert of horse riding who made one or two revolutions per
gaits (walk, sitting, trot, rising trot, and canter) of an oval horse-riding course 20 m in length and
10 m in breadth while wearing a motion capture suit. Using the 3D motion capture suit based on
Xsens inertial sensors, data were extracted in the order of Jeju (137 cm or less), Thoroughbred (160 cm),
and Warm Blood (150–173 cm). It took 1 to 2 min to measure a file. Figure 11 shows the environment
for data acquisition.
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Figure 11. Environment for data acquisition.

4.4. Coaching for Horse Riding

There are various approaches to coaching horse riding, such as muscle utilization, posture,
and tacit understanding with a horse. We develop a system that allows users to visualize their data
and compare professional posture with amateur posture. Numerically, a range of the maximum value
and the minimum value is visually expressed from each feature value. Self-coaching can be achieved
by comparing feature values for each frame with an expert. Figure 12 shows a coaching system for
horse riding, and Table 2 shows a numerical comparison of walk and canter.
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Table 2. Numerical comparison of walk and canter.

Feature Minimum of
Rising Trot

Maximum of
Rising Trot

Minimum of
Canter

Maximum of
Canter

Hip y 32.08 38.79 31.87 38.31
Backbone 171.39 176.47 170.77 176.34

Angle of elbow 127.59 151.82 124.98 159.24
Angle of knee 123.92 172.20 119.50 135.80

Distance of elbow 23.02 27.02 25.87 25.78
Distance of knee 14.93 16.42 15.52 18.59
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Characteristics of walk and canter are analyzed for the sake of coaching. Generally, the data
value of horse riding has a cycle. By checking the frame-by-frame period, the user’s motion can be
recognized. Figure 13 shows a comparison of two feature values (hip y, an angle of backbone) by gaits.
In the case of Figure 13, the change in the value controls the rider’s hip height range. We can see it
move more significantly in the canter than in the walk. The canter represents greater movement than
the walk regarding elbow angle, knee angle, and backbone angle. Also, the cycle of canter is shorter
than walk. Figure 14 shows a comparison of two feature values (an angle of right elbow, an angle
of left elbow) by gaits. Figure 15 shows comparison of two feature values (an angle of right knee,
an angle of left knee) by gaits. Figure 16 shows a comparison of two feature values (a distance of elbow,
a distance of knee) by gaits.
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Figure 14. Comparison of two feature values (angle of right elbow, angle of left elbow) by gaits.
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Figure 15. Comparison of two feature values (angle of right knee, angle of left knee) by gaits. 

50 100 150 200 250 300 350 400 450 500

110

120

130

140

150 walk(rKnee)
canter(rKnee)

50 100 150 200 250 300 350 400 450 500
number of frames

120

140

160
walk(lKnee)
canter(lKnee)

Figure 15. Comparison of two feature values (angle of right knee, angle of left knee) by gaits.Micromachines 2018, 9, x FOR PEER REVIEW 14 of 17 
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4.5. Experiment and Result

This study focused on employing an ESAE to classify horse riding gaits to facilitate real-time
coaching. To classify the actual horse-riding gaits, an ESAE with a higher classification rate and
real-time posture coaching should be used. In summary, the ESAE exhibited the best performance for
classification. According to classification results and the motion information such as the hip value,
which is the main parameter for motion analysis and coaching, we can apply the proposed method
to the coaching system, for each horse gaits, and for a rider under real or simulated environments.
When three SAEs were used, the hidden size of ESAE was set to 30, 20, and 10, respectively, and when
two SAEs were used, they were set to 46 and 15, respectively. When a single AE was applied,
the average performance was 96.1%, and when a single SAE was applied, the performance was
96.8%. Two kinds of data were used: the hip value and eight characteristic values. The statistical data
exhibited good performance in all algorithms, because it could separate all data characteristics well.
Among them, the ESAE showed the best performance. Table 3 indicates a comparison of performance
using hip y data with wavelet packet. Figure 17 shows the performance of ESAE for 40 feature
data with wavelet packet. Figure 18 shows a comparison of performance using 40 feature data with
wavelet packet.
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Table 3. Comparison of performance using hip y data with wavelet packet.

Method Performance

LDA 87.0
SVM 94.5
TREE 84.1
KNN 94.0

Ensemble Bagging 91.3
ELM (Sin) 91.8
ELM (Sig) 91.1

AE (Hidden Size = 15) 94.1
SAE (Hidden Size = 10, 15) 94.2

ESAE-1 (n = 3, sum) 94.2
ESAE-2 (n = 3, product) 94.3

ESAE-3 (n = 2, sum) 95.3
ESAE-4 (n = 2, product) 95.2
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4.6. Classification Performance

The accuracy Performance of SVM, TREE, KNN, and Ensemble Bagging in Table 3 is used as the
ratio of correct classification to the number of total classified samples. The accuracy can be formulized
as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(18)

TP is the number of correct predictions for positive samples, TN is the number of correct
predictions for negative samples, FN is the number of incorrect predictions for positive samples,
and FP is the number of incorrect predictions for negative samples. The performance of ESAE models
presented in this study is obtained by softmax method described in Section 3.3.

5. Conclusions

This paper proposed the use of an ESAE to classify gaits of horse riding to facilitate real-time
coaching. When the ESAE is used, the classification rate is 98.5%. According to classification results,
and the motion information such as the hip value, which is the main parameter for motion analysis and
coaching, we can apply the proposed method to the coaching system for each horse gait and for a rider
under real or simulated environments. Moreover, ANFIS faced limitations in performance and time.
Therefore, we could solve this problem by applying deep learning. Additionally, the ESAE is used for
classifying horse gaits. AE can be converted into an ensemble form, which can have a synergistic effect
on performance enhancement. As future work in the field of horse riding data analysis, we will study
aspects of coaching in detail. Further, we plan to employ other body signals in the ESAE algorithm.
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