
micromachines

Article

Utilization of 2:1 Internal Resonance in Microsystems

Navid Noori , Atabak Sarrafan, Farid Golnaraghi and Behraad Bahreyni *

School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, BC V5A 1S6, Canada;
nnoori@sfu.ca (N.N.); asarrafa@sfu.ca (A.S.); mfgolnar@sfu.ca (F.G.)
* Correspondence: behraad@ieee.org; Tel.: +1-778-782-8694

Received: 3 August 2018; Accepted: 6 September 2018; Published: 8 September 2018
����������
�������

Abstract: In this paper, the nonlinear mode coupling at 2:1 internal resonance has been studied both
analytically and experimentally. A modified micro T-beam structure is proposed, and the equations
of motion are developed using Lagrange’s energy method. A two-variable expansion perturbation
method is used to describe the nonlinear behavior of the system. It is shown that in a microresonator
with 2:1 internal resonance, the low-frequency mode is autoparametrically excited after the excitation
amplitude reaches a certain threshold. The effect of damping on the performance of the system is
also investigated.

Keywords: 2:1 internal resonance; energy transfer; micromachined resonators; nonlinear modal
interactions; perturbation method

1. Introduction

Microresonators are microfabricated devices that can be operated at their resonance. These
microdevices are used in a variety of applications including timing references, filters, sensors, actuators,
etc. [1]. Microresonators are typically used within their linear range of operation. Nevertheless, there
has been an increasing interest in operating the microresonators at the nonlinear mode of operation to
enhance their performance [2–5]. Unavoidable nonlinearities can be found in many micro or macro
systems. They can cause severe impact on performance of high quality-factor (Q) MEMS devices.
In some cases, neglecting the presence of nonlinearities can lead to erroneous predictions of system’s
dynamic [6]. It is not always the case that engineers avoid the nonlinearities because of the degradation
in the system’s performance and the unwanted outcomes. MEMS designers can also beneficially
exploit nonlinearities, e.g., mechanical or electrical nonlinearities, in the design of microdevices for
various purposes, e.g., sensing, actuation, timing, and signal processing [7].

Nonlinear mode coupling is one of the outcomes of the presence of nonlinearities in the system.
Nonlinear mode coupling results in transfer of energy from an intentionally excited mode to other
modes of vibration. One of the mechanisms of nonlinear mode coupling is internal resonance.
Internal resonance (also known as autoparametric excitation) refers to the transfer of energy from one
vibrational mode to another mode where the resonance frequencies of these vibrational modes are
commensurable or nearly commensurable. Internal resonance can be used in various applications
including mass sensing, inertial sensing [8], energy harvesting [9], and noise suppression [10].

In a system with nonlinear 2:1 internal resonance: (1) there exists a frequency ratio of 2:1 between
the natural frequencies of two resonant modes, and (2) quadratic nonlinearities couple the vibrational
modes [11]. Due to this nonlinear mode coupling, energy can be channelled from one mode to another
mode. There is an interesting nonlinear phenomenon in the systems with 2:1 internal resonance,
which is known as saturation. When the system is excited at its primary mode, the amplitude of
this mode increases linearly with an increase in the excitation amplitude until the modal amplitude
reaches a specific threshold. After this point, the amplitude of the primary mode remains at a constant
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value and the excessive energy acquired by the increase in the excitation amplitude channels to
the secondary mode. One of the simplest examples of a system with 2:1 internal resonance is a
spring-pendulum system where energy is being exchanged between spring mode and pendulum
mode [12–14]. A similar study to investigate the internal resonance in a micro H-shaped microdevice
has been done by Sarrafan et al. [15].

In this paper, a microresonator with 2:1 internal resonance is introduced. The mathematical model
of the system is developed and solved by using a perturbation method. Reduced-order analysis of
the structure in CoventorWare© software (ver. 2012, Coventor, Inc., Cary, NC, USA) is also explained.
Finally, fabricated microdevice is characterized, and the experimental results showing nonlinear mode
coupling are thoroughly discussed.

2. Materials and Methods

A modified micro T-beam structure is designed to operate based on the principle of nonlinear 2:1
internal resonance. The schematic of the microdevice is shown in Figure 1. This design idea originated
from the T-beam design in [16]. The modified T-beam structure consists of three beams: (1) the drive
beam (bottom beam) which is anchored to the substrate and used for actuating the structure, (2) the
narrowed beam which is connected to the center of the drive beam and has a relatively low stiffness,
and (3) the sense beam which is connected to the narrowed beam and is used for sensing the response
of the system.
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Figure 1. Schematic view of the modified micro T-beam.

Figure 2 shows the desired mode shapes of the structure from finite element method (FEM)
simulations in ANSYS® software. The structure is designed to have a frequency ratio of 2:1 between
its first and second structural modes. It is expected that exciting the system at its second resonance
frequency excites the first vibrational mode autoparametrically.
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To better understand the nonlinear mode coupling and energy transfer between vibrational
modes, the equations of motion of the system can be solved by perturbation method. The first step in
this process is to model the system mathematically. The modified T-beam structure can be described by
using lumped elements, shown in Figure 3. In this model, m1 and m2 represent the effective mass of the
drive beam and the sense beam, respectively. Similarly, ci and ki are the effective damping coefficient
and the spring constant of the beams, respectively. By using Lagrange’s energy method, the equations
of motion can be written as:
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These equations will then be non-dimensionalized and scaled. A perturbation method named as
two-variable expansion method is used to study the nonlinear behaviour of the system. Due to the
lengthy nature of the perturbation method, only the final solution of the system is provided here, with
additional details about each step in the perturbation method provided in [5]. The final perturbation
solution of the modified T-beam structure for ρ and θ, the non-dimensionalized amplitudes of the
drive beam and the sense beam, respectively, are found from [5]:
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Parameters in Equation (2) are defined in Table 1.
Figure 4 shows the simulated nonlinear frequency response of the system from perturbation

solution. As it can be seen, as the energy starts to transfer between the modes, the amplitude of the
drive mode drops and the amplitude in sense mode grows. It can also be seen that a nearly flat region
is formed in the frequency response of the sense mode. Figure 5 illustrates the saturation phenomenon.
It can be seen that the system behaves linearly before the amplitude of the drive mode reaches a certain
point and there is no energy transfer between vibrational modes. However, the system starts to behave
nonlinearly as the amplitude in the drive mode reaches the threshold.
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Table 1. Definition of nondimensionlized parameters for Equation (2).

Nondimensionalized Parameters Symbol

Drive mode frequency ω1
Sense mode frequency ω2
Perturbation parameter ε

Detuning frequency (Ω1 = ω1 + εσ1) σ1
Detuning frequency (ω1 = 2ω2 + εσ2) σ2

Drive beam damping γ1
Sense beam damping γ2

Excitation force amplitude f 1
Excitation force frequency Ω1
ω2[4σ1(σ1 + σ2)− 2µ1µ2] Λ1
ω2[2µ1(σ1 + σ2) + 4σ1µ2] Λ2

Micromachines 2018, 9, x FOR PEER REVIEW  4 of 10 

 

Table 1. Definition of nondimensionlized parameters for Equation (2). 

Nondimensionalized Parameters Symbol 
Drive mode frequency ω1 

Sense mode frequency ω2 
Perturbation parameter ε 

Detuning frequency (
1 1 1    ) σ1 

Detuning frequency (
1 2 22    ) σ2 

Drive beam damping γ1 

Sense beam damping γ2 

Excitation force amplitude f1 

Excitation force frequency Ω1 

 2 1 1 2 1 24 ( ) 2        Λ1 

 2 1 1 2 1 22 ( ) 4        Λ2 

 
Figure 4. Simulated Nonlinear frequency sweep achieved from two-variable perturbation solution. 

 
Figure 5. Simulated saturation curve by two-variable perturbation solution. 

Numerical simulation in CoventorWare© to model the dynamical behaviour can be helpful for 
the proper design of the system. FEM analysis is also an essential step in the design process of the 
system to ensure that resonance frequencies of the two desired structural modes are close to the 2:1 
ratio (ω2 = 2ω1). Dimensional adjustments are done based on these results from FEM analysis to 
ensure the target 2:1 frequency ratio. Architect module in CoventorWare© is being used to perform 
a reduced-order modelling and simulation of the system. Figure 6 shows the schematic view of the 
modelled system in the CoventorWare© Architect. 

Figure 4. Simulated Nonlinear frequency sweep achieved from two-variable perturbation solution.

Micromachines 2018, 9, x FOR PEER REVIEW  4 of 10 

 

Table 1. Definition of nondimensionlized parameters for Equation (2). 

Nondimensionalized Parameters Symbol 
Drive mode frequency ω1 

Sense mode frequency ω2 
Perturbation parameter ε 

Detuning frequency (
1 1 1    ) σ1 

Detuning frequency (
1 2 22    ) σ2 

Drive beam damping γ1 

Sense beam damping γ2 

Excitation force amplitude f1 

Excitation force frequency Ω1 

 2 1 1 2 1 24 ( ) 2        Λ1 

 2 1 1 2 1 22 ( ) 4        Λ2 

 
Figure 4. Simulated Nonlinear frequency sweep achieved from two-variable perturbation solution. 

 
Figure 5. Simulated saturation curve by two-variable perturbation solution. 

Numerical simulation in CoventorWare© to model the dynamical behaviour can be helpful for 
the proper design of the system. FEM analysis is also an essential step in the design process of the 
system to ensure that resonance frequencies of the two desired structural modes are close to the 2:1 
ratio (ω2 = 2ω1). Dimensional adjustments are done based on these results from FEM analysis to 
ensure the target 2:1 frequency ratio. Architect module in CoventorWare© is being used to perform 
a reduced-order modelling and simulation of the system. Figure 6 shows the schematic view of the 
modelled system in the CoventorWare© Architect. 

Figure 5. Simulated saturation curve by two-variable perturbation solution.

Numerical simulation in CoventorWare© to model the dynamical behaviour can be helpful for
the proper design of the system. FEM analysis is also an essential step in the design process of the
system to ensure that resonance frequencies of the two desired structural modes are close to the 2:1
ratio (ω2 = 2ω1). Dimensional adjustments are done based on these results from FEM analysis to
ensure the target 2:1 frequency ratio. Architect module in CoventorWare© is being used to perform
a reduced-order modelling and simulation of the system. Figure 6 shows the schematic view of the
modelled system in the CoventorWare© Architect.
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The electrostatic excitation is used in the simulations. A 40 V DC voltage is applied to the
electrodes, and the drive beam is excited to reach its resonance by applying appropriate AC voltage
to the drive electrode. Figure 7 shows the time response of the system with energy transfer between
vibrational modes. As it can be seen in the time response-similar to results from perturbation solution,
when internal resonance begins to happen, energy starts to exchange between vibrational modes.
The drive mode amplitude starts to drop, and the amplitude of the sense mode simultaneously starts
to grow exponentially until the system reaches to the steady state. The exponential growth of the sense
mode amplitude reveals the absence of damping during the transfer of energy between modes.
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It is also expected that by increasing the excitation amplitude, the coupling between vibrational
modes becomes stronger. Therefore, the higher amplitudes can be observed in both the drive and
sense modes. Figure 8 demonstrates the nonlinear frequency response of the system for different
excitation amplitudes.
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Figure 8. Nonlinear frequency curves in CoventorWare© showing the nonlinear mode coupling
between the drive and sense modes.

With the help of the perturbation solution and the CoventorWare© simulations, the modified
micro T-beam structure is designed. The microdevice is fabricated by Silicon-on-Insulator Multi-User
MEMS Processes (SOIMUMPS). SOIMUMPS is a general purpose microfabrication process introduced
by MEMSCAP for micromachining of devices with highly planar surfaces in a SOI framework. This
process is a simple 4-mask level SOI patterning and etching. It is a great choice of fabrication for proof
of concept purpose. This process has a minimum feature size of 2 µm and the minimum gap between
any two silicon parts is also 2 µm. More details about this process can be found in [17]. Figure 9 shows
the final fabricated structure.
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Processes) process.

The next step is to perform experimental tests to investigate the nonlinear response of the
fabricated structure. Figure 10 depicts the test setup used for the nonlinear frequency sweep test.
The experimental setup used to conduct the frequency sweep tests consists of (1) the fabricated
modified micro T-beam, (2) vacuum chamber, (3) a DC voltage source, (4) a function generator for
excitation, (5) a signal amplifier, (6) spectrum analyzer to monitor the output signal. As it can be
seen, the system is being excited to reach its resonance by exciting the drive beam electrostatically.
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The response of the system is being sensed through the electrostatic electrodes beside the sense beam
and is then being amplified before reaching the spectrum analyzer for monitoring.Micromachines 2018, 9, x FOR PEER REVIEW  7 of 10 
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Figure 10. Experimental setup for frequency sweep. Both excitation and sensing are done by
electrostatic transduction.

Resonance frequencies of the fabricated structure are also measured by a network analyzer and
specified to be 361.135 kHz (first mode) and 722.590 kHz (second mode). These measurements imply a
nearly ideal frequency ratio of 2.001. In the next section, the experimental frequency sweeps and also
the effect of damping on the performance of the system are discussed.

3. Results and Discussion

The drive beam is actuated by an AC signal with a frequency near its resonance frequency in the
range of 714 kHz and 724 kHz. Both forward and backward frequency sweeps are acomplished to
investigate the nonlinear performance of the structure. Figure 11 shows the sense beam’s response
in forward and backward frequency sweeps. It can also be observed in this figure that there is an
overlapping region between forward and backward frequency sweeps. This region relates to the
frequency range that response of the system is not dependent on the direction of the sweep.
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The next step is to investigate the effect of damping on the nonlinear response of the system.
Damping of a resonator can be represented by the quality factor of the system (Q-factor). Quality factor
is one of the most important parameters of microresonators which directly relates to the resonance
amplitude of the microresonator. In a linear microresonator, a linear relation is expected between
Q-factor and amplitude at resonance. Figure 12 shows quality factor of the sense mode of the system
within its linear range of operation at different operating pressures. As can be seen, viscous damping
dominates the energy loss at pressures above ~100 mTorr. At lower pressures, other sources of energy
loss, such as support losses or thermoelastic damping, dominate. As these loss mechanisms are
independent of pressure, the quality factor plateaus at pressures less than ~70 mTorr.
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Figure 12. Quality factor of the sense mode of the structure while operating in its linear region.

This figure also shows that the quality factor of the system operating in the linear region varies
between 4500 and 2200 in the operating pressure of nearly zero (10 mTorr) to 1.6 Torr. A set
of experiment is conducted to investigate the effect of operating pressure on the response of the
microresonator in the presence of the 2:1 internal resonance. To conduct this test, the vacuum chamber’s
pressure is being changed slowly from near vacuum condition (here 10 mTorr) to 1.6 mTorr. After
fixing the pressure, frequency sweeps are performed to show the internal resonance phenomenon.
Figures 13 and 14 show the nonlinear response of the system in different operating pressures for both
backward and forward frequency sweeps.
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4. Conclusions 
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These figures reveal that unlike the linear case, the amplitude of response in the presence of
2:1 internal resonance does not change significantly for pressures below 1600 mTorr. However,
the bandwidth of the response becomes smaller as the operating pressure increases. These results
show that microresonators working under internal resonance do not need to be necessarily packaged
in near vacuum which can significantly reduce the packaging costs of these MEMS devices.

4. Conclusions

A modified micro T-beam with the 2:1 internal resonance was proposed and designed with the
help of perturbation solutions and the nonlinear analysis in CoventorWare© Architect. The designed
structure was then fabricated by a SOIMUMPS process. Experimental tests on the fabricated structure
with a nearly perfect frequency ratio of 2:1 verified the simulation results qualitatively. A significant
response enhancement in both forward and backward frequency sweeps were also observed in these
results. The response of the system in different operating pressures was studied. It showed that
unlike the linear response of the system, response amplitude under the 2:1 internal resonance does not
depend significantly on the operating pressure.
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