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Abstract: A WiFi-received signal strength index (RSSI) fingerprinting-based indoor positioning
system (WiFi-RSSI IPS) is widely studied due to advantages of low cost and high accuracy, especially
in a complex indoor environment where performance of the ranging method is limited. The key
drawback that limits the large-scale deployment of WiFi-RSSI IPS is time-consuming offline site
surveys. To solve this problem, we developed a method using multi-mounted devices to construct
a lightweight site-survey radio map (LSS-RM) for WiFi positioning. A smartphone was mounted on
the foot (Phone-F) and another on the waist (Phone-W) to scan WiFi-RSSI and simultaneously sample
microelectromechanical system inertial measurement-unit (MEMS-IMU) readings, including triaxial
accelerometer, gyroscope, and magnetometer measurements. The offline site-survey phase in LSS-RM
is a client–server model of a data collection and preprocessing process, and a post calibration process.
Reference-point (RP) coordinates were estimated using the pedestrian dead-reckoning algorithm.
The heading was calculated with a corner detected by Phone-W and the preassigned site-survey
trajectory. Step number and stride length were estimated using Phone-F based on the stance-phase
detection algorithm. Finally, the WiFi-RSSI radio map was constructed with the RP coordinates and
timestamps of each stance phase. Experimental results show that our LSS-RM method can reduce the
time consumption of constructing a WiFi-RSSI radio map from 54 min to 7.6 min compared with the
manual site-survey method. The average positioning error was below 2.5 m with three rounds along
the preassigned site-survey trajectory. LSS-RM aims to reduce offline site-survey time consumption,
which would cut down on manpower. It can be used in the large-scale implementation of WiFi-RSSI
IPS, such as shopping malls, hospitals, and parking lots.

Keywords: indoor positioning; WiFi-RSSI radio map; MEMS-IMU accelerometer; zero-velocity
update; step detection; stride length estimation

1. Introduction

The positioning method is a basic component of location-based services (LBSs) such as navigating
a customer to the nearest restaurant in a shopping mall, finding your car in an underground parking
lot, guiding tourists in a museum, or aiding during a fire emergency [1]. As to positioning outdoors,
global navigation satellite systems (GNSSs) can provide global services and users can get an accurate
position, velocity, and time (PVT) in open air [2,3]. However, in an indoor environment and urban
canyons, GNSS signal availability is limited, and indoor-positioning systems (IPSs) need to be studied [4].

IPSs can be classified roughly into two kinds: the infrastructure-free system and the
infrastructure-based system [5]. A typical infrastructure-free system is the inertial navigation
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system (INS) [6]. Pedestrian dead-reckoning (PDR)-based INS (PDR-INS) utilizes the pedestrian kinetic
model to do step detection, stride-length estimation, and heading estimation [7–10]. Considering
the drift of gyroscope readings and the fluctuation of indoor magnetic fields, an accurate heading
estimation is difficult, and map information, including walls, corridors, and rooms, can be fused using
a particle filter to get more accurate heading estimation [11]. The positioning accuracy of PDR-INS
is easily influenced by the carry mode of devices, and the stride-length model needs parameters like
height, leg length, or walking frequency, which should be tuned according to different users [12].
In some other pedestrian inertial navigation systems, especially for fire-emergency applications,
microelectromechanical system inertial-measurement units (MEMS-IMU) are mounted on the foot.
With the triaxial accelerometer and gyroscope readings, a zero-velocity update (ZUPT) algorithm is
developed to measure velocity errors in the stance phase of a gait cycle [13,14]. ZUPT estimates pseudo
measurements into the extended Kalman filter (EKF) navigation-error corrector, which allows the EKF
to correct velocity errors during each gait cycle, breaking the cubic-in-time error growth and replacing
it with an error accumulation that is linear with the number of steps [15–17]. This kind of foot-mounted
inertial navigation system is called IEZ-INS and IEZ is short for the first letters of INS, EKF, and ZUPT.
Foot-mounted MEMS-IMU can be used to get more accurate stride-length estimation [18–20]. There is
no clear boundary between PDR-INS and IEZ-INS. The principle of method choice depends on the
accuracy of MEMS-IMU and the specific application.

Unlike infrastructure-free IPSs, infrastructure-based ones need preinstalled transmitters such
as WiFi [9,21,22], Bluetooth [23,24], near-field communication [25], RFID [26], ultrawide band
(UWB) [27,28], LED [29,30], or ultrasound [31]. These methods can provide sufficient positioning
accuracy for LBSs in different applications. Widely deployed private- or public-access points (APs) in
large-scale buildings can provide free and dense signals for WiFi-based IPS. Furthermore, smartphones
are embedded with WiFi chips that can easily obtain a received signal-strength index (RSSI).
The methods used in WiFi-based IPS can be classified by time of arrival (TOA) [32], time difference of
arrival (TDOA) [33], angle of arrival (AOA) [34], and RSSI fingerprinting [35], CSI-fingerprinting [36],
and round-trip time (RTT) [37]. Each of these methods has shortcomings and limitations. TOA, TDOA,
and AOA are easily influenced by indoor environments. Channel state information (CSI) fingerprinting
needs an Intel 5300 wireless local area networks (WLAN) card that is not available for smartphones.
Similar with CSI fingerprinting, the AP of the RTT method must support IEEE 802.11 mc, which is
brand-new and not in the commercial market yet. Therefore, considering the complex multipath effect
and the available hardware, RSSI fingerprinting is widely researched.

The WiFi-fingerprinting method consists of two phases, the offline site-survey phase and the
online positioning phase [38]. In the offline phase, the WiFi-RSSI of selected APs is collected from
each reference point (RP), and a radio map is built up. In the online phase, the collected WiFi-RSSI
samples are compared with the radio map using matching algorithms such as k-nearest neighbor
(KNN) to get the position estimation [39]. One of the most important reasons that limit the large-scale
implementation of WiFi-based IPS is that site surveys are very time-consuming and labor-intensive [40].
For example, if we wanted to deploy the WiFi-IPS in a 10 m × 10 m room with a one-meter interval of
each RP, and the WiFi-RSSI sampling time was 2 min of each RP, it would take 200 min to build the
WiFi-RSSI radio map of this room in total. Time consumption would rise rapidly with the area of the
place deploying WiFi-IPS [41].

To make WiFi-based IPS more practical, many researchers have focused on how to build the radio
map in an energy-efficient way. The most common format of a WiFi-RSSI radio map is {RP coordinates,
WiFi-RSSI vectors}. The offline WiFi-RSSI radio-training phase is very time-consuming because
volunteers must stand still for a while to collect WiFi-RSSI from every RP [42]. Therefore, methods
aiming to reduce the manpower of building a WiFi-RSSI radio map either research the model of
WiFi-RSSI or add extra devices and sensors to help estimate RP coordinates [38,40]. According
to Reference [43], methods that try to replace the construction of the radio map by using indoor
radio-propagation models cannot capture all the details of the indoor structure and dynamics.
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These methods either achieve a very unsatisfactory performance or rectify model inaccuracies through
extensive calibration and exhaustive postprocessing to obtain a map that can achieve more acceptable
localization accuracy. In Reference [44], a WiFi-enabled laptop and an attached GPS device were
used to scan the WiFi-RSSI in the metropolitan-scale area. RP coordinates were provided by the
GPS device recording the latitude–longitude coordinates of the war driver when the WiFi-RSSI scan
was performed. However, this method is limited indoors, and large GPS positioning is not accurate
enough for calculating RP coordinates. In Reference [45], nanoscale unmanned aerial vehicles (UAVs)
were used to automate the WiFi-RSSI collection process. RP coordinates were calculated through
a UWB-based localization subsystem. This method can build a 3D WiFi-RSSI radio map with low
manpower. With the high accuracy of UWB-based IPS, the performance of an automatically built
WiFi-RSSI radio map is similar with the manually built one. However, it needs extra equipment, like
UAVs and UWB anchors that increase the cost.

With the rapid development of the electronic industry, a state-of-the-art smartphone is a good
platform embedded with multiple sensors like accelerometers, gyroscopes, and magnetometers to
measure pedestrian movement, and WiFi chips to scan WiFi-RSSI. In Reference [46], a method called
crowdsourcing and multisource fusion-based fingerprint sensing (CMFS) was presented. Based on
the floor plan, RSSI is collected uniformly by WiFi scanner at fixed time intervals. Simultaneously,
stride length, step number, and heading direction of volunteers were estimated using PDR-INS
method. The drawback of this method is the drawback of PDR-INS. Stride-length parameters like
pedestrian height and step frequency must be tuned according to different volunteers. In addition,
heading direction is calculated using magnetic-field strength that may have non-negligible bias
indoors. In Reference [47], a WiFi-RSSI radio map was built using an inertial navigation solution
from a Trusted Portable Navigator (T-PN) with handheld smartphones. The method of calculating RP
coordinates was T-PN, which improves the accuracy of RP coordinates with absolute measurements
like A-GPS, magnetometer, or barometer as filter updates. However, the accuracy of T-PN decreases
indoors. In Reference [48], a zero-effort crowdsourcing method (Zee) was developed. Zee used inertial
sensors of smartphones and detailed map information to count steps and estimate heading offset.
An augmented particle filter was utilized to estimate stride length with map information. Then,
WiFi-RSSI was recorded to the radio map with RP coordinates through the same timestamps. However,
Zee needs detailed map information that is not always available.

In this paper, we proposed a method called LSS-RM, short for Lightweight Site-Survey Radio
Map, to construct the WiFi-RSSI radio map. This method, which can scan WiFi-RSSI, can significantly
reduce the time consumption of offline WiFi-RSSI radio-map construction. Similar with other
WiFi fingerprinting-based systems, our method also consists of an offline site-survey phase and
online-positioning phase. The offline phase of LSS-RM is divided into the data collection and
preprocessing process, and the post calibration process. The site survey is a client–server model
in which the WiFi-based IPS service provider hires some volunteers to participate in site-survey
work. To attract more volunteers to a boring site survey, the incentive mechanisms developed in
Reference [49] can be applied.

The remainder of this paper is organized as follows: Section 2 is the overview of our WiFi-RSSI
LSS-RM. In Section 3, the data collection and preprocessing processes are described. In Section 4,
the post calibration process is described. In Section 5, experiments were performed, and the
performance of the WiFi-RSSI radio map built with our method was evaluated. Finally, Section 6
concludes this work and offers future research suggestions.

2. Overview of LSS-RM

The WiFi-RSSI radio map consists of RP coordinates and a WiFi-RSSI vector. In the traditional
manual site survey, a floor plan with detailed RP coordinates is provided to trained persons who
are familiar with the site-survey process, usually from the service-provider group. Then, site-survey
participants stand on each RP to scan WiFi-RSSI using smartphones. The most time-consuming part of
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the site survey is the manual WiFi-RSSI scan process. In this paper, site-survey participants did not
need to stand still at each RP, instead walking along the preassigned site-survey trajectory, and the
WiFi-RSSI radio map was automatically constructed.

The structure of LSS-RM is shown in Figure 1. The preassigned site-survey trajectory was told to
volunteers, and then two smartphones were mounted on the waist (Phone-W) and the foot (Phone-F),
respectively. The movement of the volunteer was recorded using a smartphone-embedded MEMS
accelerometer, gyroscope, and magnetometer. WiFi-RSSI was also scanned by Phone-W and Phone-F
at the same time. Volunteers did not need to take care of their walking frequency or step stride, but
just took two smartphones to walk along the preassigned site-survey trajectory, and the WiFi-RSSI
radio map was built up automatically. Phone-F could detect zero velocity and the IEZ-PDR algorithm
was implemented to calculate the position of volunteers. The angular rate energy-detection algorithm
using Phone-W motion data was applied to detect corners of the preassigned site-survey trajectory.
Positioning results, stance phase estimation results, and WiFi-RSSI were transferred to the server in
real time through the public 4G long term evolution (LTE) network for the post calibration process.
In this process, a stance-phase detection-based algorithm is used to count steps and to estimate stride
length. With accurate corner detection and preassigned site-survey trajectory information, we could
calculate the accurate heading of the volunteers. Finally, with accurate step numbers, stride length, and
heading, precise RP coordinates were calculated. The bridge between RP coordinates and WiFi-RSSI in
LSS-RM is the start and end timestamp of each stance phase. After the two processes of the offline
site-survey phase, a WiFi-RSSI radio map was built up. In the online-positioning phase, when a user
sent a demand for the position service, real-time WiFi-RSSI was collected from the user’s smartphone,
and a matching algorithm like k-nearest neighbor (KNN) was used to obtain the user’s position. Finally,
the real-time localization results were sent back to the user’s smartphone.

Micromachines 2018, 9, x FOR PEER REVIEW  4 of 23 

 

participants stand on each RP to scan WiFi-RSSI using smartphones. The most time-consuming part 
of the site survey is the manual WiFi-RSSI scan process. In this paper, site-survey participants did 
not need to stand still at each RP, instead walking along the preassigned site-survey trajectory, and 
the WiFi-RSSI radio map was automatically constructed. 

The structure of LSS-RM is shown in Figure 1. The preassigned site-survey trajectory was told 
to volunteers, and then two smartphones were mounted on the waist (Phone-W) and the foot 
(Phone-F), respectively. The movement of the volunteer was recorded using a 
smartphone-embedded MEMS accelerometer, gyroscope, and magnetometer. WiFi-RSSI was also 
scanned by Phone-W and Phone-F at the same time. Volunteers did not need to take care of their 
walking frequency or step stride, but just took two smartphones to walk along the preassigned 
site-survey trajectory, and the WiFi-RSSI radio map was built up automatically. Phone-F could 
detect zero velocity and the IEZ-PDR algorithm was implemented to calculate the position of 
volunteers. The angular rate energy-detection algorithm using Phone-W motion data was applied 
to detect corners of the preassigned site-survey trajectory. Positioning results, stance phase 
estimation results, and WiFi-RSSI were transferred to the server in real time through the public 4G 
long term evolution (LTE) network for the post calibration process. In this process, a stance-phase 
detection-based algorithm is used to count steps and to estimate stride length. With accurate corner 
detection and preassigned site-survey trajectory information, we could calculate the accurate 
heading of the volunteers. Finally, with accurate step numbers, stride length, and heading, precise 
RP coordinates were calculated. The bridge between RP coordinates and WiFi-RSSI in LSS-RM is 
the start and end timestamp of each stance phase. After the two processes of the offline site-survey 
phase, a WiFi-RSSI radio map was built up. In the online-positioning phase, when a user sent a 
demand for the position service, real-time WiFi-RSSI was collected from the user’s smartphone, and 
a matching algorithm like k-nearest neighbor (KNN) was used to obtain the user’s position. Finally, 
the real-time localization results were sent back to the user’s smartphone. 

 
Figure 1. Structure of our WiFi-received signal strength index (WiFi-RSSI) radio map construction 
method with a lightweight site survey (LSS-RM). It consists of an offline site-survey phase and 
online-positioning phase. The offline site survey in LSS-RM has two processes: data collection and 
preprocessing process, and the post calibration processes. A WiFi-RSSI radio map is constructed in 
the offline phase. In the online-positioning phase, real-time WIF-RSSI is sent to the server to match 
the radio map and the user’s position is then calculated. 

The flowchart of LSS-RM is shown in Figure 2. It has the following nine steps. Steps (1) to (5) 
happen in the data collection and preprocessing process, and Steps (6) to (9) happen in the post 
calibration process. 

(1) The volunteer is told they should walk along the preassigned site-survey. The server analyzes 
whether the volunteer walks in the right way. 

(2) Two smartphones are mounted on the foot (Phone-F) and waist (Phone-W) of the volunteer, 
respectively. Motion data of the volunteer, such as accelerometer readings, gyroscope readings, 
and magnetometer readings are recorded in a format {Timestamp, Triaxial Accelerations, 
Triaxial Angular Rates, Triaxial Magnetic Field Strength}. Simultaneously, WiFi-RSSI data are 
recorded by both smartphones in a format {Timestamp, WiFi-RSSI Vector}. The timestamp can 
be used as a medium to connect the two different kinds of data. 

Figure 1. Structure of our WiFi-received signal strength index (WiFi-RSSI) radio map construction
method with a lightweight site survey (LSS-RM). It consists of an offline site-survey phase and
online-positioning phase. The offline site survey in LSS-RM has two processes: data collection and
preprocessing process, and the post calibration processes. A WiFi-RSSI radio map is constructed in the
offline phase. In the online-positioning phase, real-time WIF-RSSI is sent to the server to match the
radio map and the user’s position is then calculated.

The flowchart of LSS-RM is shown in Figure 2. It has the following nine steps. Steps (1) to
(5) happen in the data collection and preprocessing process, and Steps (6) to (9) happen in the post
calibration process.

(1) The volunteer is told they should walk along the preassigned site-survey. The server analyzes
whether the volunteer walks in the right way.

(2) Two smartphones are mounted on the foot (Phone-F) and waist (Phone-W) of the volunteer,
respectively. Motion data of the volunteer, such as accelerometer readings, gyroscope readings,
and magnetometer readings are recorded in a format {Timestamp, Triaxial Accelerations, Triaxial
Angular Rates, Triaxial Magnetic Field Strength}. Simultaneously, WiFi-RSSI data are recorded
by both smartphones in a format {Timestamp, WiFi-RSSI Vector}. The timestamp can be used as
a medium to connect the two different kinds of data.
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(3) The timestamp difference of Phone-F and Phone-W is measured. Then, a timestamp-
synchronization process is taken to align data from the two smartphones.

(4) The position of the volunteer is calculated using the IEZ-INS method based on the
accelerometer readings, gyroscope readings, and magnetometer readings of Phone-F. In this step,
the stance-phase result of ZUPT is very important and will be used in the post calibration process.

(5) The angular-rate energy detector (ARE) is used to detect the corner based on gyroscope readings
of Phone-W. The corner-detection result can be used to calculate the heading with the preassigned
site-survey trajectory in the post calibration process.

(6) Step number and stride length are estimated based on stance-phase detection from Phone-F.
(7) Heading of the volunteer is calculated based on preassigned site-survey estimation and

corner-detection result from Phone-W.
(8) RP coordinates are calculated using the post calibrated step number, stride length, and heading

based on the PDR-INS method.
(9) A radio map is built up with RP coordinates and WiFi-RSSI vectors in a traditional radio map

format {RP coordinates, WiFi-RSSI vectors}. The bridge between RP coordinates and WiFi-RSSI
vectors in the LSS-RM method is the start and end timestamp of each stance phase.
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The offline site-survey phase of WiFi-fingerprinting-based IPS is a trade-off between manpower
and radio-map accuracy. Like other methods, our LSS-RM method also aims to find a balance in the
trade-off. Comparing with other methods, the advantage of LSS-RM is that no extra devices except
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for smartphones are needed, and volunteers don't need to take care of their step frequency or stride
length to reduce the time-consumption of the offline site survey.

However, LSS-RM still has some drawbacks. Firstly, the system is more complex.
Two smartphones are needed in LSS-RM. Despite the advantage of better RP coordinates and denser
WiFi-RSSI, the system is more complicated than the traditional one. Secondly, the preassigned
site-survey trajectory is needed, and the volunteer must walk along it. Thirdly, considering that the
scanning time of LSS-RM on each RP is shorter than in manual site surveys, initial positioning accuracy
will be lower. However, with more volunteers joining in the offline phase, positioning accuracy
increases. Fourthly, the reliability of LSS-RM depends on the accuracy of RP-coordinate estimation,
which can be influenced by many factors like the drift of the MEMS-IMU, the timestamp-alignment
accuracy of the two smartphones, and the accuracy of the preassigned site-survey trajectory. With the
post calibration process, reliability can be improved. In conclusion, there is still a long way to realize
the complete site-survey free WiFi-RSSI radio-map construction method.

3. Data Collection and Preprocessing Process

3.1. Timestamp Alignment

Timestamp alignment is the first step of all multidevice-model systems. In our Android APP,
timestamps are recorded along with the data. Each timestamp is an index to mark the time when data
collected. The timestamp of Android platforms is Unix time that starts from 00:00:00 Coordinated
Universal Time (UTC), Thursday, 1 January, 1970. Therefore, in principle, timestamps of different
smartphones can be easily aligned because they are under the same time system. However, there are
still differences between different smartphones. We performed an experiment, and the result is shown
in Figure 3. To simplify X-axis of the figures in this paper, the timestamp sequence has been subtracted
by the first timestamp. Two smartphones are tied together and move along the vertical direction.
If their timestamps are synchronous, the first peak of acceleration waveform of Z-axis should has
the same timestamp, but there exists a difference, ∆t. Therefore, timestamps should be synchronized
between different smartphones.Micromachines 2018, 9, x FOR PEER REVIEW  7 of 23 
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Figure 3. Timestamp comparison of the two smartphones. We tied together two smartphones and shook
them along the vertical direction. If their timestamps were synchronous, the timestamp of the first peak
of acceleration waveform of Z-axis should have been nearly the same, but there existed a timestamp
difference ∆t and the timestamp should have been synchronized between different smartphones.

The timestamp-synchronization algorithm is simple in LSS-RM. Firstly, the two-norm of the
triaxial accelerations of Phone-F and Phone-W is calculated:

Acc f (k) =
√

Accx
f (k) + Accy

f (k) + Accz
f (k) (1)
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Accw(k) =
√

Accx
w(k) + Accy

w(k) + Accz
w(k) (2)

where k is the timestamp. Acc f and Accw are the two-norm of triaxial accelerations of Phone-F and
Phone-W, respectively. Accx

f , Accy
f , Accz

f , Accx
w, Accy

w, Accz
w, are X-axis, Y-axis, and Z-axis acceleration

of Phone-F and Phone-W, respectively. The timestamp difference is calculated using the difference of
the first acceleration peak between Phone-W and Phone-F:

∆t = timestamp1
f − timestamp1

w + ε1 + ε2 (3)

where ∆t is the timestamp difference between Phone-W and Phone-F; timestamp1
f is the timestamp of

the 1st peak of Acc f ; and timestamp1
w is the timestamp of the 1st peak of Accw. ε1 is the timestamp

alignment error caused by the sampling process. ε2 is the timestamp alignment error caused by the
asynchronous motion of different parts of the body. Finally, timestamps of the two smartphones are
aligned with a translation using ∆t.

Three tests were performed to test the timestamp-alignment method. The results shown in Table 1
reveal that the ∆t of different smartphones is not a constant. It can even reach 1189 ms, which means
the positioning result of two smartphones could be over 2 m with a normal walking speed of 2 m/s.
The timestamp alignment algorithm of LSS-RM can estimate the timestamp difference of Phone-W
and Phone-F.

Table 1. Tests of timestamp difference of two smartphones.

Test Number Timestamp of First Peak
of Smartphone 1 (ms)

Timestamp of First Peak
of Smartphone 2 (ms) Timestamp Difference (ms)

1 1532703421657 1532703421312 345
2 1532705867200 1532705866011 1189
3 1532706440599 1532706439882 717

We want to discuss the influence of ε1 and ε2 in this section. The maximum of ε1 is two times the
sampling time. The sampling frequency of MEMS-IMU of our APP was set to 30 Hz, which means the
timestamp alignment error was within (–66 ms, 66 ms). The positioning error caused by ε1 was 13.2 cm
if the walking speed were 2 m/s. It is quite a small error considering that the positioning accuracy of
WiFi-fingerprinting-based IPS is 1–5 m.

Although Phone-F and Phone-W were mounted on different parts of the body, the motion of the
body was almost coordinated. To reduce ε2, the volunteer could have a jump at the beginning of the
walk. A test was taken to show a time trace of the two mounted smartphones. The volunteer jumped
at the beginning and stood still for several seconds before walking. The result is shown in Figure 4. It is
obvious that the jump peaks are more distinguishable than the walk peaks. The timestamp difference
calculated using jump peaks was 563 ms (regarded as the reference timestamp error) compared with
473 ms of walk peaks. ε2 was 90 ms for this test. The positioning error caused by ε2 was 18 cm if the
walking speed were 2 m/s. Similar with ε1, it is a small error and has little influence on LSS-RM.
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Figure 4. Timestamp comparison of Phone-F and Phone-W. The volunteer jumped at the beginning
and stood still for several seconds before walking. The jump peaks are more distinguishable than the
walk peaks.

3.2. Foot-Mounted Inertial Navigation Using Zero-Velocity Update-Aided Extended Kalman Filter (IEZ-INS)

The outputs of Phone-F-embedded MEMS-IMU are in the sensor body coordinate frame (b-frame)
and should be transferred to the navigation coordinate frame (n-frame) using a rotation matrix Cn

b .
The definition of b-frame and n-frame are shown in Figure 5.
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Figure 5. Sketch map of transformation between different coordinate frames. The coordinate frame
of the smartphone (b-frame) is fixed, Y-axis directs to the head of the phone, Z-axis directs up
perpendicular to the screen, and the X-axis was determined according to the right-hand screw rule.
The navigation-coordinate frame (n-frame) used in our method is the east–north–up (ENU) coordinate
system. Cn

b was used to transfer the data from b-frame to n-frame and Cb
n is from n-frame to b-frame.

The b-frame is determined by the smartphone and usually defined as a right-handed Cartesian
coordinate system. Y-axis, directs to the head of the phone, Z-axis, directs up perpendicular to the screen,
and the X-axis, was determined according to the right-hand screw rule. Considering the convenience
of usage, the n-frame applied in our system is the local east–north–up (ENU) Cartesian coordinate
system whose origin is the same as b-frame. The east was labelled X-axis, the north Y-axis, and the up
Z-axis. The MEMS-IMU readings, including acceleration, angular rate, and magnetic-field strength
are in b-frame and should be transferred to ENU to derive velocity and position. The two different
coordinate systems are transferred through the rotation matrix Cn

b . Details of how to use accelerometer
and magnetometer readings to calculate the rotation matrix can be found in Reference [17].

After MEMS-IMU readings transferred from the b-frame to the n-frame using Cn
b ,

the accelerometer, gyroscope, and magnetometer readings of Phone-F could be used in the INS
mechanization equations to calculate the volunteer’s position. Firstly, gravity should be subtracted
from accelerometer readings in n-frame. Then, the position is calculated with the gravity-free
acceleration value. At last, the orientation of the MEMS-IMU is updated with the gyroscope readings.
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These equations take slightly different forms in different navigation frames. The basic equation
utilizing accelerometers and gyroscopes to calculate position is [50]: vk

pk
qk

 =

 vk−1 + (qk−1akq−1
k−1 − g)dtk

pk−1 + vk−1dtk
Ω(ωkdtk)qk−1

 (4)

where k is a timestamp, g is the gravity, vk is the velocity of the pedestrian, ak is the accelerometer
readings, pk is the position of the person, qk is the quaternion describing the orientation frame, dt is
the time differential, and Ω(·) is the quaternion update matrix.

Considering the drift of the low-cost smartphone-embedded MEMS-IMU, accumulative error
would rise rapidly only by using Equation (4). To solve this problem, the velocity of the stance
phase was used as the measurement of the Extended Kalman Filter. This INS with the ZUPT-aided
EKF method is called IEZ [16]. The error-state vector of this system is a 15-element vector,
δx = [δr, δv, δϕ, δa, δω], where δr is the position error, δv is the velocity bias, δϕ is the attitude error,
δa is the accelerometer bias, and δω is the gyroscope error. In addition, δr, δv, δϕ, δa, δω are all
three-dimensional vectors. The state-transition matrix F is:

F =


I I · ∆t O O O
O I St · ∆t Cn

b · ∆t O
O O I O −Cn

b · ∆t
O O O I O
O O O O I

 (5)

where ∆t is the sample interval, and O and I are the three-dimensional null matrix and unit matrix,
respectively. St(k) is the skew-symmetric matrix of acceleration:

St(k) =

 0 −az(k) ay(k)
az(k) 0 −ax(k)
−ay(k) ax(k) 0

 (6)

The measurement model is:
z(k) = Hδx(k) + n(k) (7)

where z(k) is the measurement, δx is the error-state vector at timestamp k, n(k) is the
measurement-noise vector at the timestamp k, and H is the measurement matrix:

H =
[

O I O O O
]

(8)

Steps of IEZ can be found in References [16,17]. An experiment was conducted to validate the
IEZ-INS algorithm. A volunteer walked along a rectangular corridor and walked back to the start
point. The experimental setup is summarised in Table 2. The MI6 smartphone was mounted on the left
foot, and the sampling frequency was 30 Hz.

Table 2. Experimental setup.

Setup Content Description

Experiment site A rectangular corridor

Total length of the corridor 128 m
Mounting place of the smartphone Left foot

Smartphone used MI6 from Xiaomi
Sensors used Triaxial accelerometer, gyroscope, and magnetometer

Sampling frequency 30 Hz
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The positioning result is shown in Figure 6. It is obvious that the positioning result is badly
influenced by the heading error. Therefore, the post calibration process was needed to get accurate
RP coordinates.
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Figure 6. Positioning result of Foot-Mounted Inertial Navigation Using Zero-Velocity Update-Aided
Extended Kalman Filter (IEZ-INS).

3.3. Stance-Phase Detection Using Phone-F-Embedded MEMS-IMU

The velocity error estimated during the stance phase is the measurement vector in IEZ.
Considering that positioning errors will accumulate fast due to sensor drift, zero-velocity information
is efficient in error correction. Furthermore, in our LSS-RM method, the stance phase is used to count
steps and estimate stride length in the post calibration process.

To get more robust stance detection, three ZUPT detectors were fused; stance phase occurs when
the results of all three detectors were in the stance phase. These three detectors used in this paper
are from Reference [13]: the acceleration moving-variance detector (MV), the acceleration magnitude
detector (MAG), and the ARE.

Tmv(k) =
1

W

k+W−1

∑
n=k

1
σ2

a
‖a(n)− a(k)‖2

(9)

Tmag(k) =
1

W

k+W−1

∑
n=k

1
σ2

a
(‖a(n)‖ − g)2 (10)

Tare(k) =
1

W

k+W−1

∑
n=k

1
σ2

ω
‖ω(n)‖2 (11)

where k is a time index. W is the window length. g is gravity. σ2
a and σ2

w denote the accelerometer and
gyroscope noise variance. ‖·‖ is the 2-norm calculation. Tmv, Tmag, and Tare are the test statics of the
MV detector, MAG detector, and ARE detector, respectively. a(k) is the average of a during the average
window W at time index k:

a(k) =
1

W

k+W−1

∑
n=k

a(n) (12)
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Tmv and Tmag use accelerometer readings, while Tare uses gyroscope readings. The stance phase
occurs when all these three ZUPT detectors are below their thresholds:

MV(k) =

{
1 i f Tmv(k) < γmv

0 i f Tmv(k) ≥ γmv

MAG(k) =

{
1 i f Tmag(k) < γmag

0 i f Tmag(k) ≥ γmag

ARE(k) =

{
1 i f Tare(k) < γare

0 i f Tare(k) ≥ γare

MMA(k) = MV(k)&MAG(k)&ARE(k)

(13)

where MV(k), MAG(k), and ARE(k) are stance-phase estimation results. γmv, γmag, and γare are the
threshold of MV, MAG, and ARE, respectively. MMA(k) is the combination of the previous three
detectors and MMA is short for the first letters of MV, MAG, and ARE. An experiment was taken to
verify the stance phase estimation result of different detectors. The results shown in Figure 7 depict
that, in this experiment, stance-phase detectors using accelerometer readings have some errors and
ARE using gyroscope readings perform better. This is not always right and in some other scenarios,
like taking an elevator, MV and MAG may have a better performance. In any case, MMA will always
have the best stance-phase estimation among MV, MAG, and ARE.
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Figure 7. Stance-phase estimation results of acceleration moving-variance (MV), acceleration
magnitude (MAG), angular-rate energy (ARE), and MMA detectors. 1 and 0 represent the pedestrian is
in the stance phase and swing phase, respectively.

3.4. Corner Detection Using Phone-W-Embedded MEMS-IMU

The gyroscope readings of the waist-mounted smartphone can be used to detect the timestamp
when a volunteer walks around a corner. The ARE method shown in Equation (11) is used:

Corner(k) =


Corner(k− 1) + 1 i f 1

W

k+W−1
∑

n=k

1
σ2

ω
‖ω(n)‖2 > γcorner

Corner(k) i f 1
W

k+W−1
∑

n=k

1
σ2

ω
‖ω(n)‖2 ≤ γcorner

(14)
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where Corner(k) is the corner-detection result, and γcorner is the threshold of corner detection.
Considering that the turning speed of each site-survey process is different, the threshold γcorner

is not a fixed value. It is chosen as 10 times the average value of the whole ARE detector sequence:

γcorner = 10×

N
∑

k=1
Tare(k)

N
(15)

where Tare is the ARE detector of Equation (11), and N is the length of Tare.
The ARE detector of Phone-W can clearly distinguish the difference of walking a straight line and

tuning around a corner, which is shown in Figure 8.
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Figure 8. Corner-detection result using the ARE detector. This experiment was performed with the
user walking around a square corridor and doing three turns. From the ARE values, we can clearly
pick out the corners.

Three more experiments were conducted to verify the corner-detection algorithm. The volunteer
walked around a square corridor for one, three, and six turns, respectively. The true and estimated
number of corners of these three tests is summed in Table 3. The results show that the ARE-based
corner-detection algorithm can accurately estimate turning movement and provide the timestamp
when a turning movement occurs. We took a smartphone to record the video of the volunteer walking
along the preassigned site-survey trajectory. From the video, we can take the average timestamp of
the turning motion as the reference timestamp. All timestamp differences were smaller than 500 ms,
which is smaller than the time duration of one step and has little influence on RP-coordinate estimation.

Table 3. Tests of ARE-based corner-detection algorithm using a waist-mounted smartphone.

Test Number True Number of Corners Estimated Number of Corners Corner-Detection Error Average Timestamp Error (ms)

1 3 3 0 324
2 11 11 0 426
3 23 23 0 233

This corner-detection method is not only applicable to 90-degree corners. A test was conducted
to validate our method in other situations. The volunteer turned 45 degrees, 90 degrees, 135 degrees,
and 180 degrees during a walk. The result is shown in Figure 9. The four typical degrees of
corners can be detected correctly. We need to point out that, if the degree of the corner is too small,
this corner-detection algorithm may have a wrong estimation. However, we can avoid this situation
with a proper preassigned site-survey trajectory design.
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Figure 9. Corner-detection result using an ARE detector. The volunteer turned 45 degrees, 90 degrees,
135 degrees, and 180 degrees during a walk. The four corners were detected correctly.

4. Post Calibration Process

4.1. Stance-Phase Detection Based on Step Detection (SPD-SD)

One gait cycle consists of a stance phase and a swing phase. Five complete gait cycles are shown
in Figure 10. It is very intuitive that we can count steps through counting stance phases. This method
is SPD-SD. Furthermore, the start and end timestamp of the stance phase can be used to withdraw
WiFi-RSSI from the complete WiFi-RSSI sequence and mark it with RP coordinates.
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Figure 10. Five complete gait cycles during a walk. Each gait cycle consists of a stance phase and a
swing phase. The start timestamp and the end timestamp of the stance phase can be detected from the
rising edge and falling edge, respectively.

The equation of the SPD-SD method is:

step(k) =


step(k− 1) + 0.5 i f ARE(k)− ARE(k− 1) = 1
step(k− 1) + 0.5 i f ARE(k)− ARE(k− 1) = −1

step(k− 1) i f ARE(k)− ARE(k− 1) = 0
(16)

where step(k) is the step-detection result at timestamp k. The volunteer’s movement always starts from
the stance phase and ends with the stance phase, which means starting from a falling edge and ending
with a rising edge of the stance-phase waveform. Therefore, the result of SPD-SD, which is equal to
step(end), must be an integer. We took a test walking 22 steps. Figure 11a shows the stance-phase
waveform. Figure 11b shows the rising and falling edge of the stance-phase waveform. Figure 11c
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shows the step-detection result using Equation (16). The step-detection result is 22 steps, which is the
same as the true number.
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result using Equation (16) and final step detection was 22 steps, which was the same as the true number.

To better verify the SPD-SD algorithm, we performed a much longer test, and the length of the
trajectory was around 500 m. This test was repeated three times. A volunteer took a camera and
recorded a video to count the true step number. The results are shown in Table 4. The step-detection
results of the first two tests were the same as the true number. However, the step error of the
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third test was 88. The reason is that in the third test the movement mode of the volunteer was
running, not walking. The stance-phase detector with a fixed threshold had limited performance.
In Reference [17], we developed a MAG-ZUPT method to estimate the stance phase of running using
magnetic-field strength. In Reference [51], we developed an adaptive-threshold method of walking and
running stance-phase detection. These two methods can solve the stance-phase detection problem but
add extra sensors or increase computation complexity. Luckily, unlike the first responders, site-survey
volunteers did not need to run, and the SPD-SD algorithm could provide good performance.

Table 4. Tests of SPD-SD algorithm using foot-mounted smartphone.

Test Number True Number of Steps Estimated Number of Steps Error

1 426 426 0
2 437 437 0
3 413 325 88

4.2. Stance-Phase Detection-Based Stride-Length Estimation (SPD-SL)

The positioning result is the moving trail of Phone-F, which touches the ground only in the stance
phase. Therefore, we can calculate the position in stance phase, and the distance between the neighbor
stance-phase positions is stride length. This is the fundamental principle of the SPD-SL algorithm.
To reduce fluctuation during stance phase, the position of each stance phase was averaged, with the
window length calculated with the start and end timestamp of the stance phase:

spwl(k) = spk(end)− spk(start) (17)

where spwl(k) is the number of timestamps of the k-th stance phase, spk(end) is the end timestamp of
the k-th stance phase, and spk(start) is the start timestamp of the k-th stance phase. The coordinates of
the k-th stance phase are averaged with spwl(k):

spc(k) =
1

spwl(k)
×

spk(end)

∑
i=spk(start)

traj(i) (18)

where spc(k) are the average coordinates of the k-th stance phase, and traj are the coordinates of the
whole trajectory. The stride length between the (k − 1)-th stance phase and the k-th stance phase are
calculated using:

sl(k) =
√
(spcx(k)− spcx(k− 1))2 + (spcy(k)− spcy(k− 1))2 (19)

where sl(k) is the k-th step length, spcx and spcy are the x and y values of spc, respectively.
Considering that the smartphone was mounted on one foot, the stride length of SPD-SL was

the stride length between the same foot, which was nearly two times longer than the stride length
between the left and right foot. We took two tests to verify the SPD-SL algorithm. Test had a stride
length of 1.2 m, and Test 2 of 0.6 m. The stride length of each step is shown in Figure 12. Comparison
of true stride length and estimated stride length is shown in Table 5. The stride length estimation
errors of Test 1 and Test 2 are 0.02 m and 0.03 m, respectively. It must be pointed out that it is difficult
to have an accurate measurement of true stride length of each step. The volunteer tried the best to
keep a constant stride length. However, considering that the positioning error of WiFi-fingerprinting
based IPS is usually larger than 1 m, the stride length estimation accuracy using SPD-SL is enough to
calculate RP coordinates.
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Figure 12. Stride-length estimation results of Test 1 and Test 2. (a) Result of Test 1. The volunteer
walked 122 steps trying to keep stride length to 1.2 m. (b) Result of Test 2. The volunteer walked
276 steps trying to keep stride length to 0.6 m.

Table 5. Comparison of true stride length and estimated stride length.

Test Number True Stride Length (m) Average Estimated Stride Length (m) Error (m)

1 1.2 1.18 0.02
2 0.6 0.57 0.03

4.3. Post Calibration with Preassigned Site-Survey Trajectory

Pedestrian dead-reckoning-based inertial navigation system (PDR-INS) integrates step lengths
and heading estimations at each detected step to compute the position of the pedestrian [18].
The relationship between the k-th step and the (k − 1)-th step is:{

x(k) = x(k− 1) + l(k) ∗ cos(ϕ(k))
y(k) = y(k− 1) + l(k) ∗ sin(ϕ(k))

(20)
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where k is the step number calculated using the SPD-SD algorithm and can be mapped to the timestamp.
[x(k), y(k)] and [x(k − 1), y(k − 1)] are position coordinates of k-th step and (k − 1)-th step, respectively.
l is the stride length calculated using the SPD-SL algorithm. ϕ is the heading calculated using
corner-detection results and the preassigned site-survey trajectory. Our heading-estimation algorithm
is very intuitive. With the knowledge that the volunteer cannot cross the wall, when they meet the
corner they have to turn in the direction of the corridor. Therefore, the corner detected by Phone-W
using gyroscope reading is an indicator of heading change and the value of the heading difference can
be easily obtained using the preassigned site-survey trajectory.

Finally, with accurate RP coordinates and the timestamp duration of each stance phase, the
WiFi-RSSI radio map is constructed. The WIFI-RSSI radio map can be built up with the correct RP
coordinates and the corresponding timestamp. The time interval, shown in Equation (17), between
the start and the end timestamp of each stance phase is the bridge to connect RP coordinates and
WiFi-RSSI vectors.

An experiment was conducted to show the post calibration process. The test site was a square
corridor. The step-detection result using the SPD-SD algorithm is shown in Figure 13, and the total
step number was 108, which matched the true step number.
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Stride length is estimated using SPD-SL, and the result of each step is shown in Figure 14.
The estimated stride length of each step is around 1.2 m, which was the nearly the same as the true
stride length.
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The heading was estimated using the corner-detection result from Phone-W and the preassigned
site-survey trajectory, which is shown in Figure 15. According to the direction of the corridor,
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when a corner occurs the heading is plus or minus 90 degrees. RP coordinates calculated with
the LSS-RM method, positioning results using Phone-F based on IEZ-INS, and the ground truth were
compared. The positioning result of Phone-F based on IEZ-INS was badly influenced by the drift of the
low-cost MEMS-IMU. However, a series of algorithms, such as SPD-DS, SPD-LS, and corner detection,
can calibrate inaccurate IEZ-INS results into accurate RP coordinates.Micromachines 2018, 9, x FOR PEER REVIEW  18 of 23 
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Figure 15. Heading estimation using corner-detection result from Phone-W and preassigned
site-survey trajectory.

RP coordinates were calculated using Equation (20), and results are shown in Figure 16,
even though the positioning accuracy of the smartphone-embedded low-cost MEMS-IMU is limited.
We can still use a series of algorithms in LSS-RM to get the accurate RP coordinates that are a good
match with the ground truth.
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Figure 16. RP coordinates calculated with the LSS-RM method, positioning results using Phone-F
based on IEZ-INS, and the ground truth are compared, although the positioning accuracy of the
smartphone-embedded low-cost MEMS-IMU is limited. We can still use a series of algorithms in
LSS-RM to get accurate RP coordinates.

5. Experimental Results

5.1. Summary of Submodule Tests in Previous Sections

Firstly, the experimental results of each submodule of our LSS-RM method have already been
depicted in the corresponding sections. We would like to have a summary here:
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(1) Timestamp alignment: Table 1 shows that our timestamp-alignment algorithm is very efficient.
Figure 4 shows the timestamp comparison of Phone-F and Phone-W.

(2) IEZ-INS: Figure 6 shows that the positioning result of IEZ-INS using Phone-F is influenced by
the heading error. The post calibration process is needed for accurate RP coordinates.

(3) Corner detection: Figures 8 and 9, and Table 3 show that we can detect corners correctly
using ARE.

(4) SPD-SD: Figure 11 and Table 4 show that the SPD-SD algorithm can have accurate step detection.
(5) SPD-SL: Figure 12 and Table 5 show that the SPD-SL algorithm is accurate enough for calculating

RP coordinates for WiFi-fingerprinting-based IPS.
(6) Post calibration: Figure 16 is the post calibration result. RP coordinates are matched with the

ground truth.

Then, we conducted a comprehensive experiment to compare the WIFI-RSSI radio map built
using our LSS-RSS with the one built with the traditional manual site survey method.

5.2. Comprehensive Experiment to Verify LSS-RM Method

This experiment was conducted in F6, New Main Building, Beihang University. The site is
a square corridor, and the total length of the corridor is 128 m, shown in Figure 17a. Phone-F and
Phone-W that were used in this experiment were MI6 (Xiaomi, Beijing, China), which contains a triaxial
accelerometer, a triaxial gyroscope, and a triaxial magnetometer. The operating system of the two
smartphones is MIUI based on Android 8.0, and we have developed an Android APP to sample
accelerometer readings, gyroscope readings, magnetometer readings, and WiFi-RSSI. The sampling
frequency of WiFi-RSSI and MEMS-IMU was 10 Hz and 30 Hz, respectively.
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Figure 17. Preassigned site-survey trajectory and RP coordinates. (a) Preassigned site-survey trajectory
along a square corridor. The volunteer was asked to walking along this trajectory. (b) Calculated RP
coordinates using timestamp alignment, SPD-SD, SPD-SL, and heading estimation based on corner
detection. There are 108 RPs.

Firstly, as a comparison, the manual site survey was conducted with 108 RPs. The distance
between adjacent RP was 1.2 m and the sampling time on each RP was 0.5 min. A manual WiFi-RSSI
radio map was built in 54 min. Then a volunteer mounted with Phone-W and Phone-F walked along
the preassigned site survey trajectory. RP coordinates, shown in Figure 17b, were calculated using
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a series of algorithms in LSS-RM like timestamp alignment, SPD-SD, SPD-SL, and heading estimation
based on corner detection.

The radio map constructed by LSS-RM was compared with the traditional manual one.
The number of test points was also 106 for both the manual radio map and the LSS-RM based radio
map. The cumulative distribution function (CDF) plots of the WiFi-fingerprinting-based positioning
using the manual radio map and the LSS-RM-based radio map are shown in Figure 18.Micromachines 2018, 9, x FOR PEER REVIEW  20 of 23 
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Figure 18. Comparison of CDFs of different radio maps. The black line is the WiFi positioning result
using the manual radio map. The red line is the positioning result using our LSS-RM based radio map
for one round along the preassigned site-survey trajectory. The blue line is using the LSS-RM-based
radio map for two rounds, and green line for three rounds. Although the positioning accuracy of the
manual site survey method is higher, its time consumption is nonnegligible. Furthermore, with more
volunteers walking more times, positioning accuracy would rise remarkably.

The time consumption and average-positioning error of different site-survey methods are
summarized in Table 6. The results show that the manual site survey method has the best positioning
accuracy, but time consumption is 54 min, which is several times longer than of the LSS-RM method.
As for LSS-RM, positioning accuracy rises with more walking, which means more WiFi-RSSI can make
the radio map more robust.

Table 6. Comparison of time consumption and average positioning error.

Test Type Time-Consumption (Minute) Average Positioning Error (m)

LSS-RM of one round 2.6 3.91
LSS-RM of two rounds 5.1 3.25

LSS-RM of three rounds 7.8 2.47
Manual site survey 54 1.61

The most important advantage of LSS-RM is that it can conspicuously reduce the time
consumption of offline site surveys. This characteristic helps the large-scale commercial deployment
of WIFI-RSSI indoor positioning systems. Taking the shopping market application as an example,
LSS-RM helps to build the WiFi-RSSI radio map in a much shorter time compared with the traditional
manual site-survey method. Then, customers can retrieve their positions by matching the WiFi-RSSI
collected in real time with the WiFi-RSSI radio map built using LSS-RM. With the position information
and the indoor map of the shopping mall, customers can navigate to the nearest shoe shop or exit.
Furthermore, shopping-mall managers can use the position information of customers to optimize the
arrangement of the stores.
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6. Conclusions

LSS-RM is developed in this paper to reduce the time consumption of offline site-survey processes.
The offline phase of LSS-RM consists of data collection and preprocessing, and post calibration.
The use of MEMS accelerometer and gyroscope readings of Phone-F can easily detect the stance phase
of the volunteer. Furthermore, stance-phase information can be used to count steps (SPD-SD) and
estimate stride length (SPD-SL). Using MEMS gyroscope readings of Phone-W can detect the corner
of preassigned site-survey trajectories and accurate headings can be estimated in the post calibration
process. The pedestrian dead-reckoning algorithm is used to calculate RP coordinates. A radio map is
built with the RP coordinates and WiFi-RSSI vectors in a traditional radio-map format {RP coordinates,
WiFi-RSSI vectors}. The bridge between RP coordinates and WiFi-RSSI vectors in the LSS-RM method
is the start and end timestamp of each stance phase.

Several experiments were conducted to evaluate the submodules of the LSS-RM method.
The results show that timestamp alignment, corner detection using ARE, step detection using SPD-SD,
stride estimation using SPD-SL, heading estimation using corner information, preassigned site-survey
trajectory, and RP-coordinate calculation all performed well. Finally, a comprehensive experiment was
conducted to compare the performance of the traditional manual site survey and the LSS-RM method.
The result shows that the manual radio map has better positioning accuracy, while time consumption
is 54 min compared with the 2.6–7.8 min of the LSS-RM method. Furthermore, positioning accuracy
of the LSS-RM method can be improved by more volunteers joining in the site-survey work. In our
future work, we will research a site-survey-free method to construct the WIFI-RSSI radio map.
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