Supplementary Materials: Frequency of EBV LMP-1 Promoter and Coding Variations in Burkitt Lymphoma Samples in Africa and South America and Peripheral Blood in Uganda

- 5 Hsiao-Mei Liao, Hebing Liu, Heiyan Lei, Bingjie Li, Pei-Ju Chin, Shien Tsai, Kishor Bhatia,
- 6 Marina Gutierrez, Sidnei Epelman, Robert J Biggar, Francis Nkrumah, Janet Neequaye, Martin
- 7 D. Ogwang, Steven J. Reynolds, Shyh-Ching Lo and Sam M. Mbulaiteye

Figure S1: The illustration of the corresponding positions of the 23 single nucleotide variants that form
 the pattern A on LMP-1 gene and the primers used for the variant typing via target-specific PCR and
 Sanger sequencing

12

1 of 6

13 Table S1: Heterogeneous variations in the LMP-1 gene suggestive of co-infection with Pattern A and Pattern D EBV in 2 BL tumors from Ghana.

Gene region			LMP-2B exon 1						LMP-1 promoter				LMP-1 exon1				LMP-1 exon3									
Primer pair			Lei-F3/ Lei-R3								Lei-F1/ Lei-R1				Lei-F2/ Lei-R2											
Amplicon size				396 bp						435 bp						428 bp										
FT and a.a. affected							AM L1	LBF2	LBF4		CREB			E2D	Н	3L	S24A (new)	V43I	S57A	163	SV	I124V	I152L	H213 N	E214Q	
Variation		1. G- 426 <mark>A</mark>	2. T- 412 <mark>G</mark>	3. C- 410 <mark>A</mark>	4. G- 376 <mark>A</mark>	5. A- 354 <mark>G</mark>	6. G- 227 A	7. A- 184T	8. T- 172 <mark>C</mark>	9. T- 50 <mark>A</mark>	10. A- 39 <mark>C</mark>	11. G- 12A	12. T+18 <mark>G</mark>	13. GAA>G A <mark>C</mark>	14 CAC>C TG	15. CAC>C T <mark>G</mark>	TCC> GCC	16. GTT> ATT	17. TCC> GCC	18. ATA> <mark>G</mark> TG	19. ATA>G T <mark>G</mark>	20. ATC> GTC	21. ATC> CTC	22. CAT> AAT	23. GAA> <mark>C</mark> AA	
Origin	Pattern	Sample						ļ	ļ	1		[<u>.</u>	I	ļ			ļ			ļ			
	A/D	HU1102 0	G/A	T/G	C/A	G/A	A/G	G	Т	T/C	T/ <mark>A</mark>	A/ <mark>C</mark>	G <mark>/A</mark>	T/G	A <mark>/C</mark>	A/T	C/G	Т	G/ <mark>A</mark>	T/ <mark>G</mark>	A/ <mark>G</mark>	A <mark>/G</mark>	A/ <mark>G</mark>	A/ <mark>G</mark>	C/A	G/ <mark>C</mark>
CI	Heteroz (%	zygosity %)	56.0	54.4	54.2	53.3	56.4	0	98.7	52.8	50.6	54.1	55.9	55.4	79.4	55.3	55.3	0	56.8	57.1	57.8	57.8	49.6	49.6	49.4	49.5
Ghana	A/D	HU1328 1	G/A	T/ <mark>G</mark>	C/A	G/A	G	G	A/T	T/ <mark>C</mark>	Т	A	A	Т	С	А	С	Т	G	Т	А	А	A/ <mark>G</mark>	A/ <mark>C</mark>	C/A	G/ <mark>C</mark>
	Heteroz (%	zygosity %)	24.8	24.8	24.6	25.3	99.8	0	24.6	24.8	0	0	99.5	0	99.7	0	0	0	0	0	0	0	7.3	7.5	6.5	6.5

Table S2: EBV LMP-1 Patterns in 22 EBV-positive BL tumors from South America typed using PCR amplicon sequencing via Sanger method.

		EBV de	etection	Variant typing result			
Sample Name	Geographic distribution	Southern Blot	PCR	LMP-1 Pattern	Typing method		
CV	Argentina	+	+	А	HTS#/PCR-		
VA	Argentina	+	+	А	Sanger		
SG	Argentina	+	+	А			
N=3							
MD	Argentina	+	+	А			
JR	Argentina	-	+	А			
BD	Argentina	-	+	А			
RJR	Argentina	-	+	А	~		
135	Argentina	-	+	А			
HD	Argentina	-	+	ML-A	PCR-Sanger		
AF	Argentina	+	+	ML-A			
OJI	Argentina	+	+	D			
AA	Argentina	+	+	D			
AS	Argentina	-	-	N.D.	~		
AG	Argentina	-	-	N.D.			
RJ	Argentina	-	-	N.D.			
N=12							
FNR	Brazil	+	+	А			
ССН	Brazil	+	+	Α	LITCHDOD		
RPF	Brazil	+	+	Α	HTS#/PCR-		
MP	Brazil	+	+	А	Sanger		
SCL	Brazil	+	+	Α			
VGO	Brazil	+	+	В			
N=6							
SRC	Brazil	-	+	А			
IN	Brazil	_	+	А			
BE	Brazil	-	+	А	PCK-Sanger		
ND	Brazil	-	+	D			
ME	Brazil	-	-	N.D.			
N=5							

17

Table S3: EBV LMP-1 Patterns in 42 EBV positive BL tumors from Ghana typed using PCR amplicon sequencing via Sanger method.

			etection	Variant typing result		
Sample name	Geographic distribution	Southern Blot	PCR	LMP-1 Pattern	Typing Method	
H058015C	Ghana	+	+	А		
HU11393	Ghana	+	+	Α	HTS#/PCR-	
H018436D	Ghana	+	+	Α	Sanger	
H002213	Ghana	+	+	А		
H03753A	Ghana	+	+	А		
N= 5						
H02212D	Ghana		+	А		
HU11541	Ghana		+	Α		
HU11595	Ghana		+	А		
HU12335	Ghana		+	Α		
HU11308	Ghana		+	Α		
HU12208	Ghana		+	Α		
HU11394	Ghana		+	Α		
HU10416	Ghana		+	Α		
HU10377	Ghana		+	А		
HU13148	Ghana		+	Α		
HU11813	Ghana		+	Α		
H057519a	Ghana		+	Α		
H058001a	Ghana		+	Α		
H057520a	Ghana		+	А	PCR-Sanger	
H057521a	Ghana		+	А	(N=40)	
H003840a	Ghana		+	А		
HU13312	Ghana		+	Α		
HU14473	Ghana		+	А		
N= 18						
HU14163	Ghana		+	ML-A		
HU11386	Ghana		+	ML-A		
HU14250	Ghana		+	ML-A		
HU10615	Ghana		+	ML-A		
HU10612	Ghana		+	ML-A		
N= 5						
HU13265	Ghana		+	С		
N= 1						
HU10552	Ghana		+	D		
HU11303	Ghana		+	D		

	Total N=45		
N= 2			
HU13281	Ghana	+	Mix A/D
HU11020	Ghana	+	Mix A/D
N= 3			
HU14423	Ghana	-	N.D.
HU12317	Ghana	-	N.D.
HU12078	Ghana	-	N.D.
N= 11			
H031201b	Ghana	+	D
H057518a	Ghana	+	D
HU10244	Ghana	+	D
HU14219	Ghana	+	D
HU11589	Ghana	+	D
HU11361	Ghana	+	D
HU10496	Ghana	+	D
HU11344	Ghana	+	D
HU11469	Ghana	+	D

21 Notes: These samples include 5 that previously were typed using whole genome high-throughput sequencing

22 #: The partial genome and the addressed LMP-1 variant pattern has been published by Lei, H., et al. on *Sci Rep*

- **23 5**: 16706 (2015).
- 24 N.D.: undetected

ML-A: 12 or 13 serial variants (variants number 11 to 23 or 12 to 23 on table 1) of the 23 Pattern A
 variants presented in the sample were assigned as <u>Middle Length pattern A</u>.

Table S4: The primers were used for PCR amplifying the hypervariable region of the LMP-1 andSanger Sequencing.

Primer Name	Sequence 5' to 3'	Amplicon Length (bp)	Tm (°C)	
LEI-1F	GCCTCCGGCAGACCCCGCAAATC			
LEI-1R	GGGCAAAGGGTGTAATACTTAC	435	55	
LEI-2F	CCTTGGAATTGTGCTGTTCA	120		
LEI-2R	TCTGCCCTCGTTGGAGTTAG	428	55	
LEI-3F	GTCTGCTGCTTCGTCACCCGCCGAC	207	(0)	
LEI-3F	GATTTGCGGGGTCTGCCGGAGGC	396	60	

29

31	Table S5: The summary of the Lei et al. pattern classification applied on the samples from BL cases
32	and healthy donors that had been used for LMP-1 phylogenic analysis in the study of Correia et al.
33	(2017). Table S6: The geographic distribution and the Pattern A-D classification of the BL cases and

34 healthy donors that were used in the study of Correia et al. (2017).

	BL tumor biopsy (N=3)	BL Cell line (N=16)	Saliva from BL patient (N=4)		Total BL cases (N=23)	healthy saliva, sLCL (N= 59)
Pattern A	3 (Argentina)	1 (Africa)	0	Ν	4	0
				%	17.4%	0.0%
Pattern B	0	2 (Africa)	0	Ν	2	30
				%	8.7%	50.8%
Pattern C	0		1 (Africa)	Ν	1	3
				%	4.3%	5.1%
Pattern D	0	13 (Africa)	3 (Africa)	Ν	16	26
				%	69.6%	44.1%

35 Note: In the Correia et al. study, total sample number for LMP-1 phylogenic analysis was 190.
36 Eighty of the 190 samples were overlapped in the Lei et al. study. Rests of the 110 samples were
37 subjected to the pattern classification. The classification was based on the amino acid sequences of
a6 each sample obtained from the Supplementary table S2 of the Correia study. The nucleotide
a1 samples from BL cases
and saliva or sLCL from healthy donors of the Correia et al. study was described in this table. The
a1 samples from other disease states in the same study were not included.

samples nom omer disease states in the same study were not included.

© 2018 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).