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Abstract: The licensing of talimogene laherparepvec (T-Vec) represented a landmark moment for
oncolytic virotherapy, since it provided unequivocal evidence for the long-touted potential of
genetically modified replicating viruses as anti-cancer agents. Whilst T-Vec is promising as a locally
delivered virotherapy, especially in combination with immune-checkpoint inhibitors, the quest
continues for a virus capable of specific tumour cell killing via systemic administration. One candidate
is oncolytic adenovirus (Ad); it’s double stranded DNA genome is easily manipulated and a wide
range of strategies and technologies have been employed to empower the vector with improved
pharmacokinetics and tumour targeting ability. As well characterised clinical and experimental
agents, we have detailed knowledge of adenoviruses’ mechanisms of pathogenicity, supported by
detailed virological studies and in vivo interactions. In this review we highlight the strides made
in the engineering of bespoke adenoviral vectors to specifically infect, replicate within, and destroy
tumour cells. We discuss how mutations in genes regulating adenoviral replication after cell entry can
be used to restrict replication to the tumour, and summarise how detailed knowledge of viral capsid
interactions enable rational modification to eliminate native tropisms, and simultaneously promote
active uptake by cancerous tissues. We argue that these designer-viruses, exploiting the viruses
natural mechanisms and regulated at every level of replication, represent the ideal platforms for local
overexpression of therapeutic transgenes such as immunomodulatory agents. Where T-Vec has paved
the way, Ad-based vectors now follow. The era of designer oncolytic virotherapies looks decidedly as
though it will soon become a reality.

Keywords: adenovirus; oncolytic; targeting; virotherapy; cancer; av36 integrin; immunotherapy;
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1. Introduction

Once described by Peter Medawar (recipient of the 1960 Nobel prize for the discovery of
immunological tolerance) as “a piece of bad news wrapped up in protein” [1], oncolytic viruses are
beginning to emerge as clinically useful agents in the cancer arena. As long ago as 1953, viruses were
reported to selectively kill cancer cells; Koprowski et al. concluded that “Studies on the specificity of
such a reaction for a given virus [ ... ] may facilitate an understanding of the mechanism of selective cell
destruction”, and in so doing, predicted what is now a global research effort to harness viruses as
cancer therapeutics [2]. A wide range of different viruses are now under investigation as cancer
therapeutics, ranging from wildtype small RNA viruses like Respiratory Enteric Orphan virus
(Reovirus), to intricately engineered large DNA viruses such as herpes simplex [3,4].

Few virotherapies have seen as much development as those based on adenovirus (Ad).
These non-enveloped, double stranded DNA viruses are generating increasing interest as therapeutic
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vectors for cancer owing to their low levels of pathogenicity and relative ease of manipulation. A search
of clinicaltrials.gov shows in excess of 180 clinical trials utilising adenoviruses, in some form, as a cancer
therapeutic at time of writing [5]. Whether the therapeutic agent is designed as a vaccine, gene therapy,
or oncolytic virus, all are dependent on our ability to engineer these viruses and manipulate their
natural tropisms to ablate pathogenicity and achieve therapeutic benefit.

This engineering is based on intricate understanding of adenovirus virology. These non-enveloped
viruses possess an icosahedral capsid comprised of 3 major, and 4 minor, capsid proteins described in
Figure 1. The hexon is the most abundant capsid protein, comprising the 20 facets of the dodecahedral
viral capsid. At each vertex, shown in Figure 1, there is a penton base with the fiber protein projecting
from it. These proteins influence secondary and primary viral tropisms, respectively (Figure 1). An in
depth review of adenoviral structure can be found in the review by Russell [6].
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Figure 1. Adenovirus Structure. Cartoon view of adenovirus, highlighting the major capsid proteins
as labelled (A). Structural view of an adenovirus vertex modelled from CryoEM structure (PDB: 6B1T)
showing penton (green) with hexons (dark and light blue) and minor capsid proteins (red) (B).

Canonically there are 57 adenoviral serotypes divided amongst seven species—A-G—as
determined by serological testing for neutralising antibody activity, though the true diversity may
be much greater [7]. Phylogenetic analysis of the species D adenoviruses (the largest of the human
adenoviral species) reveals homologous recombination between hypervariable regions in each of the
major capsid proteins and in every member of this subtype. In turn, there will be a direct impact on
capsid structure and thus immune recognition [8]. The authors of this study estimate that serology
testing (the standard on which the canonical 57 serotypes is based) can only identify 53% of 38 fully
characterised species D adenoviruses unambiguously. An alternative taxonomic proposal attempts to
reflect the genetic variation observed in the ~35 Kbp linear dsDNA genomes of isolated adenoviruses,
yielding 86 candidate serotypes as of November 2017 [9,10].

Oncolytic adenoviruses must be capable of efficiently and selectively destroying cancerous cells
and avoid damaging healthy tissues. This can be achieved through selective replication within cancer
cells, a strategy important for virotherapies. Since the process of replication within the tumour
microenvironment allows amplification of the therapeutic at the point of need, and the process
of oncolysis (the “bursting” of virus filled tumour cells) is innately immunogenic, it facilitates a
host-anti-tumour response. There are many means of achieving oncolysis, but most strategies rely
upon the lytic properties of virotherapies, or encoding transgenes within the viral genome to induce
necrosis or apoptosis, both of which serve to stimulate recruitment of immune cells to the tumour site.
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The review by Twumasi-Boateng et al. discusses oncolytic virotherapies as immunotherapies in detail
and summaries the ongoing clinical trials in this area [11].

Some of the most significant oncolytic strategies are based around subtle mutations with early
adenoviral genes to enable selective replication within cancerous cells whilst sparing non-transformed
cells. Below we give further insights into the mechanistic basis of this means of selectivity.

Numerous attempts have been made, and are ongoing, to retarget adenovirus infection to cancer
cells using chemical modification or adaptor proteins [12-20]. Such methodologies may be potentially
hindered by the fact that the modifications are non-heritable and thus cannot be transferred to progeny
virions. In the case of modifications conferring enhanced cell killing this means that progeny virions
will have reduced oncolytic properties. Furthermore, modifications which target the therapy will
also be lost raising the possibility that progeny virions may cause unwanted off target infection,
with subsequent toxicities. While these problems can be prevented by the use of replication deficient
Adenoviruses these vectors then lose a major advantage of oncolytic virotherapies: the capacity to
self-amplify at the point of need [21-23].

This potential limitation can be overcome by incorporating modifications at the genetic level
through manipulation of the viral genome, allowing the changes to be conferred to progeny through
the normal viral replication cycle. Adenoviral genomes can be efficiently manipulated using
recombineering technology [24]. This technique utilises homologous recombination to “capture”
the adenovirus genome in a circular vectorised format, a Bacterial Artificial Chromosome (BAC),
which can be maintained in E. coli. The vectorised gDNA (genomic DNA) can then be modified through
further rounds of homologous recombination using a selectable marker cassette as an intermediary,
enabling efficient production of mutant adenoviruses which can be rescued by transfection of the BAC
into mammalian cells.

In this review we will discuss the diverse types of genetic modifications utilised to generate
tumour specific oncolytic viruses. Initially, we will describe how viral cell killing can be regulated
post-entry through transcriptional control and manipulation of the early viral proteins, before
discussing how to prevent the natural viral tropisms from driving off target infection, and how
these observations can guide the rational design of targeted viral particles to specific cell types through
capsid engineering. Whilst there is also ongoing development of so-called “xeno-Ads”, adenoviruses
with non-human hosts, this review will focus on the most clinically advanced and therapeutically
relevant adenoviruses: those with human tropisms.

2. Replication-Selective Adenoviruses

To date, the majority of clinically evaluated mutants have been generated from species C serotypes
5 and 2, although, recently a species B chimera of serotype 3 and 11 has entered early phase clinical
trials [25]. The most common strategy to generate replication-selective oncolytic adenoviral mutants
is to delete viral genes that are essential for replication in normal cells, but are complemented in
cancer cells with altered cell cycle, DNA damage-repair and cell death mechanisms [26]. Alternatively,
tumour-selective promoters including androgen receptor response elements or telomerase promoters
have been inserted to regulate early viral gene expression [27,28].

The first oncolytic adenovirus to enter clinical trials, 411520 (named Onyx-015), was generated by
deleting the viral E1B55K protein. Onyx-015 and the mutant H101 (both E1B55K- and E3B-deleted) are
examples of replication-selective viruses carrying the E1B55K-deletion [29-34]. During the early stages
of viral infection, E1B55K binds to cellular p53 and promotes G1/S transition in the presence of viral
DNA and damaged host cell DNA. Expression of E1B55K is vital for adenovirus replication in normal
cells, while in most cancers, p53 is non-functional through direct or indirect mutations in proteins
regulating the p53 pathway [35]. Onyx-015 was demonstrated to replicate exclusively in cancer cells,
although replication appeared to be independent of p53 status [36]. While safety of Onyx-015 and H101
has been demonstrated in numerous clinical trials, efficacy has been consistently disappointing because
of attenuated viral replication and spread. Reasons for the poor efficacy was later revealed to be caused
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by defective nuclear export of viral mRNAs, a function directly controlled by E1B55K-binding to
Edorf6. In addition, E1B55K inhibits cellular protein synthesis by facilitating export of the viral L4
100K to the cytoplasm to prevent activation of the elF-4F cellular factor, which is responsible for the
translation of cellular mRNA [37]. Therefore, viruses lacking E1B55K replicate poorly also in the
majority of cancer cells, contributing to the reported modest clinical outcomes [37]. Currently, trials
with Onyx-015 have been discontinued while H101 has been approved for nasopharyngeal carcinomas
in combination with chemotherapy by the Chinese State Food and Drug Administration (SFDA) [38].
Due to the attenuated replication with E1B55K-deleted mutants, the next generation of oncolytic
adenoviruses harboured small specific deletions in the E1A gene to retain viral potency while still
being tumour-selective. Expression of E1A is an absolute requirement for viral replication through its
binding to the retinoblastoma (pRb) protein, which releases E2F and induces S-phase entry, enabling
the virus to exploit the cellular DNA and protein synthesis mechanisms (Figure 2) [39]. The E1A gene
contains four conserved regions (CR1, CR2, CR3, and CR4) each with specific functions, for example,
E1ACR1 binds to p300 and E1ACR2 to pRb. The cellular transcription factor E2F is normally repressed
by the retinoblastoma protein (pRb) or its family members p130 or p107 [40]. When the small (24 amino
acids) EIACR2 domain binds to the pRb family of proteins, E2F is released and free to induce S-phase.
E1ACR2-deleted mutants selectively replicate in cancer cells with deregulated cell cycle control
(e.g., pRb-p16 pathway), but not in normal cells with intact growth control. The first oncolytic mutants
with E1ACR2 deletions were d922-947 and AdA24 [41,42]. Both mutants were demonstrated to potently
and selectively replicate in preclinical cancer models to significantly higher levels than Onyx-015.
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Figure 2. Schematic representation of E1A-mediated regulation of the cell cycle. The E1A adenoviral

protein promotes S-phase induction by interacting with pRB and p300.

To date, numerous E1IACR2-deleted mutants have been optimised for targeting of solid tumours.
For example, the integrin retargeted Delta-24-RGD (DNX-2401) was reported to replicate and spread
in recurrent malignant gliomas after local administration, prolonging survival in 20% of patients in
a Phase I trial [43]. DNX-2401 is currently evaluated in two additional trials for patients affected by
glioblastoma and glioma (NCT02798406; NCT03178032). The chimeric mutant Ad5/3-A24 expressing
Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF), Oncos-102 showed promising results
in preclinical hamster models and in patients with solid tumours [44]. Currently, Oncos-102 is evaluated
in several Phase I and II trials in combination with chemotherapy (NCT03514836; NCT02963831;
NCT03003676; NCT02879669). In ICOVIR-7, the ELACR2-deletion was combined with an E2F-promoter
controlling E1A expression to mediate self-activation in tumour cells [45]. ICOVIR-7 was later armed
with various transgenes and an RGD-4C integrin-targeting sequence (e.g., Ad5/3-Cox2L-D24), and has
been evaluated in glioma patients with evidence of tumour reduction [46]. An improved version
of this mutant, named VCN-01, had a putative heparin sulphate glycosaminoglycan (HSG)-binding
site (KKTK) within the fiber shaft replaced by an RGDK motif, discussed later in this review [47].
This retargeted virus showed decreased liver transduction and increased tumour targeting in murine
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models. Furthermore, the human glycosylphosphatidylinositol-anchored enzyme PH20 hyaluronidase
was inserted into the VCN-01 genome to promote viral penetration of the dense tumour stroma
and to increase intra-tumoural spread, processes that may facilitate access by drugs and immune
cells. Two phase I trials are underway with VCN-01 in combination with gemcitabine or Abraxane®,
targeting patients with unresectable treatment-resistant pancreatic ductal adenocarcinomas (PDAC)
(NCT02045589; NCT02045602).

In contrast to the prototype virus, Onyx-015 many E1ACR2-deleted mutants have the
immunomodulatory E3gp19K gene deleted and retain the E3B genes. It has been established that
deletion of E3gp19K enables antigen presentation through major histocompatibility complex (MHC)
class I expression in the cell membrane of infected cells, which contribute to activation of T-cells
and immune responses to cancer cell antigens. Retention of E3B genes was demonstrated to prevent
premature elimination of virus by macrophages and enhance replication in tumours. A different
approach was reported when generating the E1ACR2 deleted and RGD-integrin targeted virus
ORCA-010 [48]. A single base mutation (T 29183) was incorporated in the E3gp19K protein that
produced a protein (E3gp19K-T1; K445A) lacking the endoplasmic reticulum retention sequence and
was constitutively located to the plasma membrane. Incorporation of E3gp19K-T1 in ORCA-010
resulted in permeabilization of the cell membrane of infected cells, in turn enhancing the release of
new virions with good efficacy in prostate and ovarian xenografts in athymic mice.

We previously generated an E1ACR2-deleted mutant that was designed to enhance potency
in combination with apoptosis-inducing chemotherapeutic drugs by deleting the anti-apoptotic
B-cell lymphoma-2 protein (Bcl-2) functional homologue E1B19K (AdAA) [49]. In combination with
cytotoxic drugs, AAAA showed superior efficacy compared to single drug regimens in preclinical
models of drug-insensitive prostate and pancreatic cancers [50,51]. Synergistic tumour reduction was
caused by improved viral infection followed by higher expression levels of the apoptosis-inducing
and chemosensitising E1A-gene products that promote drug-induced DNA damage followed by
aberrant mitosis and cell death [52]. Recently we further increased the selectivity and efficacy of
AdAA by ablating Coxsackie and Adenovirus Receptor (CAR) binding and retargeting the fiber
to av36-integrins by inserting a 20 amino acid sequence from the Foot-and-Mouth-Disease Virus
(A20FMDYV) generating Ad5-3A-A20T [53]. The av[36-integrins are frequently expressed in PDAC,
breast and colorectal cancers but not in normal tissues [54,55]. Additional fiber-modifications improved
specific uptake in tumour cells by reducing sequestration in the blood by preventing CAR mediated
binding to erythrocytes and improved the liver-to-tumour viral ratios in murine models [56-58].
Furthermore, the E3gp19K-gene was deleted to promote MHC class I expression and reactivation of
the host anti-tumour immune responses [53]. Ad5-3A-A20T retained the potent synergy observed for
AdAA with gemcitabine, and may be suitable for clinical translation targeting late stage PDAC lesions.
The effectiveness and minimal toxicity to normal cells indicate that Ad5-3A-A20T is a worthy candidate
for combination therapies with cytotoxic drugs to safely and effectively kill treatment-resistant
av6-integrin expressing cancers.

A completely different strategy was employed when developing ColoAd1 (enadenotucirev, EnAd;
PsiOxus Thrapeutics Ltd., Abingdon, UK), a potent chimeric Ad3/Ad11p recombinant selected by
‘directed evolution” on the colon cancer cell line HT29 [25]. The highly efficacious recombinant
ColoAd1 has the Ad11p backbone with the entire E3-region and a small E4-domain (E4orf4) deleted, in
addition to a partial E2B substitution by the Ad3 E2B genes. Potency and selectivity was significantly
higher compared to Onyx-015 and Ad5. The Ad11p capsid proved more resistant to elimination by
human serum and blood cells than Ad5 and consequently, viral activity was better preserved after
systemic delivery [59]. Interestingly, the mechanism for cancer-selectivity of ColoAd1 is not entirely
understood although, the deregulated metabolic pathways in cancer cells have been indicated [60].
Infection with ColoAd1 resulted in a more rapid drop in ATP levels than with Ad5 and Ad11p, likely a
consequence of the smaller viral genome and the shorter life-cycle of the recombinant. ColoAd1
lacks expression of E4orf4, which normally feeds back to limit E1A expression and regulates 5’



Cancers 2018, 10, 201 6 of 39

Adenosine Monophosphate-activated Protein Kinase (AMPK) activity that controls cellular energetics.
The sudden fall in ATP levels resulted in membrane blistering and necrosis-like cell death with release
of proinflammatory factors that stimulated T-cell activation and targeted tumour cells. An initial
clinical trial with ColoAd1 investigating the mechanism of action demonstrated that both intratumoural
and intravenous delivery was feasible [61]. Following this trial ColoAd1 entered phase I-II trials and
promising outcomes in several solid cancers after systemic delivery were reported [60,61]. Currently a
multicenter phase I trial is in progress including patients with metastatic or advanced epithelial cancers
and a phase I trial targeting patients with recurrent platinum resistant ovarian cancers (NCT02636036;
NCT02028117).

Recently, a similar approach using a pool of viral serotypes including ColoAd1, resulted in the
isolation of two recombinants that were selective for ovarian cancer cells [62]. Both recombinants
retained the first 10-13 Kbp from ColoAdl and the remainder of the genome was from Ad3.
The findings from these studies and the trials with ColoAd1 suggest that species B viruses that
bind to CD46 and/or desmoglein 2, both highly expressed on most tumour types, may have a potential
advantage in future developments of oncolytic viruses. An important finding with ColoAd1 was the
pro-inflammatory properties that indicate that type B adenoviruses may more efficiently stimulate
long-term anti-tumour immunity than type C mutants [59,60].

In the second approach, tumour-selectivity is achieved by placing the viral genome under control
of a tumour-specific promoter [26,63,64]. The E1A gene is the first to be expressed upon infection
and has often been placed under control of tissue- or tumour-specific promoters [39]. For example, in
the CG7870 virus, the E1A gene is under control of the prostate-specific rat probasin promoter and
the E1B genes regulated by PSA promoter-enhancer elements, which are activated by the androgen
receptor that is often deregulated in prostate cancer [65]. Another example is the Adv-TERTp-E1A
mutant with E1A controlled by the human telomerase reverse transcriptase (hTERT) promoter that is
frequently upregulated in cancer cells. Tumour selectivity was demonstrated in early phase clinical
trials targeting solid cancers [27].

Combination of Oncolytic Adenoviruses with Chemotherapy

Although the safety of replication-selective adenoviruses was proven in numerous clinical
trials, single agent treatment with oncolytic adenoviruses have only resulted in moderate
efficacy [26,66]. However, treatment efficacy was increased when the mutants were combined with
chemotherapy [26,67].

The mitotic inhibitors paclitaxel and docetaxel prevent microtubule-depolarization, arresting
the cell cycle and triggering apoptosis [68]. The combined treatment of paclitaxel and Onyx-015
resulted in synergistic effects in the treatment of non-small cell lung cancer (NSCLC) in vitro in cell
lines and primary cultures obtained from lung cancer patients [69]. The combination of docetaxel or
paclitaxel with CV787, in which E1A and E1B are placed under control of PSA and hKLK2 promoters,
respectively, was reported to synergistically enhance cell death in LNCaP prostate cancer cells [70].
CV787-induced synergistic cell killing was suggested to be due to increased viral production and
E1A-mediated sensitization to docetaxel.

Anti-metabolites such as gemcitabine, can alter nucleotide synthesis by targeting different key
enzymes implicated in nucleotide production [26]. The combination of OBP-301 (Telomelysin®, E1A
and E1B regions under the control of hTERT promoter) with gemcitabine (a nucleoside analogue
chemotherapy) resulted in synergistic cell killing both in vitro and in vivo in H460, H322, H358 lung
cancer cell lines [71]. The synergistic effect was caused by Telomelysin®-mediated S-phase entry,
which was suggested to sensitise infected cells to gemcitabine. Telomelysin® has completed a phase I
trial confirming safety and activity in various solid tumours and, in addition, it is currently being tested
in various Phase 1/1I clinical trials for hepatocellular carcinoma, esophageal cancer and melanoma
patients (NCT02293850; NCT03213054; NCT03190824) [27].
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Treatment with topoisomerase inhibitors induces double strand breaks, promoting cell cycle arrest
in the G2-phase [72]. The combination of the AdA24 with the topoisomerase I inhibitor irinotecan
resulted in enhanced anticancer effect both in vitro (in U-85 MG and U-25 MG human glioblastoma cell
lines) and in vivo (intracranial xenograft models) [73]. This enhanced cell killing was suggested to be
due to AdA24-mediated upregulation of topoisomerase I expression and activity and accumulation of
cells in S-phase. Enhancement of cell death was also detected in esophageal carcinoma and in prostate
carcinomas when Onyx-015 was combined with the topoisomerase II inhibitors Vp-16 (etoposide) or
mitoxantrone [74,75].

We previously demonstrated that the mutant d1922-947 (E1ACR2- and E3B-deleted), synergistically
enhanced mitoxantrone- and docetaxel-induced cell death in vitro (in PC3, DU145 and LNCaP prostate
cancer cells) and in vivo in PC3 and DU145 xenografts [75]. The combination of d1922-947 with
mitoxantrone or docetaxel resulted in increased viral uptake and E1A expression. To further enhance
the cell killing efficacy and apoptosis induction of E1ACR2-deleted mutants, we developed the AdAA
oncolytic mutant (E1ACR2- and E1B19K-deleted) [49]. The E1B19K protein binds to pro-apoptotic
Bcl-2 Associated protein X (BAX) preventing the formation of the Bcl-2 homlogous Antagonist/Killer
(BAX-BAK) complex and the subsequent permeabilization of the mitochondrial membrane and
apoptosis [35]. Intratumoural administration of the AdAA oncolytic mutant caused synergistic cell
killing and increased apoptotic death in combination with mitoxantrone or docetaxel in prostate
cancer cells, and promoted tumour regression in murine PC3 and DU145 xenograft models [49].
The combination treatment of AdAA and mitoxantrone was recently shown to promote increased
apoptosis and attenuation of mitoxantrone-induced autophagy resulting in increased cell death in
22Rv1, PC3 and PC3-M prostate cancer cells [51].

The exact mechanisms for selective, synergistic cell killing in cancer cells are dependent on
the specific genetic alterations in each cancer cell and oncolytic mutant [76]. However, increased
drug-induced apoptosis in response to E1A expression has been indicated in combination with
several cytotoxic drugs including inhibitors of metabolism, microtubules and topoisomerases.
In prostate and pancreatic models, ElA-mediated caspase 8 and 3 activation through
E1A-binding to the caspase 8 inhibitor cellular (Fas-Associated protein with Death Domain
(FADD))-like IL(InterLeukin)-13-Converting enzyme (FLICE) Inhibitory Protein (cFLIP) followed
by mitochondrial depolarization significantly enhanced apoptosis in response to the cytotoxic drugs
(e.g., Miranda et al., 2012) [77,78].

3. Oncolytic Immunotherapy

Recent developments in immunology including the clinical applications of immune-check
point inhibitors, have greatly increased the understanding of oncolytic virus interactions with the
host immune system. Accumulating evidence attribute the main efficacy of oncolytic viruses to
the induction of tumour specific immune responses, initiated by viral lysis and tumour-antigen
exposure. Viral genome amplification and replication cause tumour specific cell lysis, which releases
tumour antigens, and pathogen- and damage-associated molecular pattern molecules that stimulate
tumour-infiltrating antigen presenting cells that activate innate and adaptive immune responses [79,80].
Tumour cells often express higher levels of the immune checkpoint proteins (e.g., PD-1 ligands) and
are therefore immunologically ‘cold’ [81-83]. A prevelant strategy is to utilise the lytic abilities of
oncolytic viruses to alter the tumour microenvironment, turning immunologically ‘cold” tumours ‘hot’.
I Combination therapy with immune checkpoint blockade can then efficiently eliminate the tumours,
as discussed in the reviews by Martin and Bell, and Breitbach et al. [84-86]. In addition, transgenes
that promote local cytokine release and tumour infiltration of lymphocytes are often included in the
oncolytic adenoviral genome such as, granulocyte macrophage colony stimulating factor (GM-CSF),
interferon (IFN)-c, cluster of differentiation 40 ligand (CD40L), and interleukin (IL)-12 and -18 [87].

GM-CSF is an immune-modulatory cytokine that induces activation of monocytes and
macrophages, and promotes T-cell-mediated systemic antitumor responses [88]. Re-activation
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of the host anti-tumour immune defence after infection with oncolytic adenoviruses expressing
GM-CSF has been established in several preclinical models with numerous adenoviral mutants and
in early phase clinical trials [44,89]. One of these mutants, replication-selective Ad5/3-A24-GM-CSE,
also known as Oncos-102, has been tested in patients with metastatic solid cancers resulting in
stable disease or minimal responses in half of patients [90]. Results from a Phase I clinical trial with
Oncos-102 in combination with cyclophosphamide demonstrated that the treatment was safe with
no significant adverse effects while the best responses were stable disease in 40% of patients [81].
Further developments are required to realise long-term immunity and elimination of untreated lesions
similar to that reported for the recently market-approved GM-CSE-expressing herpes virus T-VEC [91].

The cell surface receptor CD40 is expressed on all antigen presenting cells. The interaction of CD40
with its ligand CD40L (also called CD154) has been shown to prevent cell proliferation and promote
apoptosis in malignant breast and ovarian carcinomas [92,93]. The CD40 activation plays important
roles in humoral and cell-mediated immunity, enabling dendritic cells (DC) to mature and support
activation of cytotoxic T-cells [94,95]. To take advantage of the overexpression of CD40 in the majority of
breast cancer cells, the CD40L was expressed from the oncolytic mutant AAEHCD40L with replication
controlled by a hypoxia-response element (HRE) and an estrogen response element (ERE) [96].
AdEHCD40L showed increased cytotoxicity, anti-tumour immune effects and apoptosis-induction
in cancer cells only. Another CD40L-mutant, Ad5/3-hTERT-E1A-hCD40L (also named CGTG-401)
with replication controlled by the hTERT promoter, selectively killed CD40-expressing cancer cells
resulting in tumour regression and apoptosis in CD40-expressing xenograft models [97]. Safety of
CGTG-401 and immunological responses have been proven in nine patients with solid tumours.
Minimal responses or stable disease were reported in over half of patients [98]. Further developments
by the same team generated the improved mutant LOAd703 [99]. In addition to improved and
modified CD40L, LOAd703 also expresses the full-length human 4-1BB ligand (4-1BBL) to further
stimulate innate and adaptive immune responses for efficient elimination of infected tumour cells.
Safety and immunological responses are currently evaluated in Phase I/1I trials in patients with
metastatic pancreatic ductal adenocarcinomas in combination with gemcitabine or nab-paclitaxel
(NCT02705196;, NCT03225989).

IL-12 is a proinflammatory cytokine with great potential to activate the host anti-tumour immune
responses after oncolytic virus infection [100]. IL-12 activates both innate and adaptive immune
systems by promoting antigen presentation and has been incorporated in many oncolytic adenoviruses.
One example, is Ad5-yCD/mutTKSR39rep-hIL12 that expresses a mutant TK and IL-12 [101,102].
Infection with this mutant in combination with 5-fluorocytosine (5-FC) and valganciclovir in a prostate
adenocarcinoma mouse model resulted in reduced number of metastasis and improved survival.
Ad5-yCD/mutTKSR39rep-hIL12 is currently in Phase I clinical trials for patients with metastatic
pancreatic cancer in combination with cytotoxic drugs and for locally recurrent prostate cancer
after definitive radiotherapy (NCT03281382; NCT02555397). A concern with IL-12 therapy is the
systemic toxicity of the cytokine. To address this issue, a modified non-secreted and consequently less
toxic version of IL-12 was recently expressed from the highly efficacious AdAA mutant, previously
developed in our laboratory, by replacing the E3gp19K gene (Ad-TD-nsIL-12) [103]. Deletion of the
E3gp19K gene allows MHC-class 1 presentation of tumour antigens and is commonly included in
oncolytic adenoviruses to facilitate reactivation of the host anti-tumour responses. In addition, the
Ad-TD-nslIL-12 virus showed promising CD8+ T-cell dependent efficacy in immunocompetent Syrian
Hamster models of pancreatic cancer.

Taken together, immune stimulatory mutants, including those not mentioned here, show great
promise for future clinical applications of oncolytic immunotherapy. Long-term improved tumour
immunity is a probable outcome in combination with cytotoxic drugs, immune checkpoint inhibitors,
cytokines and immune activators.
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4. Tropism Modification Strategies

4.1. Native Adenoviral Receptor Interactions

Adenoviruses have not evolved to be intrinsically tumour selective. Rather, in their wild state
they cause transient and non-life threatening (at least in the immunocompetent host) infections
of the respiratory and gastro-intestinal tracts, and ocular infections. This is due to the native Ad
tropisms, which result in infection and spread of virus within healthy tissues. If left unrefined,
Ad based virotherapies would have little uptake in cancerous cells, and exhibit reduced efficacy due to
sequestration of the virus in non-target tissues, clearance of the virus prior to delivery to the target site,
and consequent induction of dose limiting toxicities. Consequently, to achieve maximum therapeutic
efficacy with minimal “off-target” toxicity, extensive refinement of these tropisms are required to tailor
the virotherapeutic into a cancer selective agent.

Adenoviral serotypes bind different combinations of receptors, reflecting the diversity of natural
adenoviral pathogenicity as reviewed by Ghebremedhin [104]. Of note is the fact that adenoviruses
capable of binding the same receptors may do so with different affinities, exemplified by Ad11
and Ad21, where the latter has substantially lower affinity for, and a different binding mode to
CD46 [105]. Receptor tropisms can be inferred from sequence alignments and predicted structural
informatics, but often remain biologically unconfirmed. The modifications required for effective
viral “detargeting” strategies depend upon the choice of adenoviral serotype used, and a detailed
mechanistic understanding natural virus: host receptor interactions is therefore essential to enable
rational modification of the capsid proteins. Previously characterized interactions, and mutations

known to ablate them, are summarised in Table 1.

Table 1. Adenovirus receptor, the residues shown to facilitate receptor interactions, and demonstrated

tropism ablating mutations. Prototype viral receptor refers to the adenoviral serotype and protein

used in the receptor interaction study for which the binding residues and mutations are described.

Named mutations are in bold with the mutations in brackets. amino acids are described with single

letter code. A indicates a deletion mutation, while substitution mutations are described with the original

residue letter codes preceding the residue numbers and then the respective substituted amino acid code.

Prototype Viral Receptor Binding Previously Demonstrated Tropism
Receptor Receptor Residues Aablating Mutations References
KO1 (SP408-409EA); KO2
(AVK441-44s); KO3 (R460E); KO4
(AGK509-510); KOS5 (AGT538-539);
akubczak et al., 2001 [106
CAR Ad5—Fiber Protein ~ A406; S408; P409; R412; KO8 (N468T); KO9 (V466H); KO10 J [106]
knob Y477; R481; 1485, Y491  (P505A); KO11 (A404-581
Whole region)
ATAYT (ATAYT489-492) Roelvink et al., 1999 [107]
Ad35—Fiber F132; N133; T136; R169; . .
CD46 Protein knob M170; S172; N194; E192 F242; R279; S282 Wang et al., 2007 [108]
) ) 1eo. cran. meer.  N186D; V189G; S190P; D261N; F265L;
DSG2 AdS_izeermtem 1;1216856/&;2;%522969’5321' L296R; E299V; ND186-261DN; Wang et al., 2013 [109]
0 ’ ! ’ AD261+L296R; NDL186-261-296DNR.
GD1a/Sialic Ad37—Fiber Y308; Y312; P317; V322; .
acid Protein knob K322 None reported Nilsson et al., 2011 [110]
igﬁgvmss (Ad5with the HVR's of vy 4 gington et al,, 2008 [111]
Blood Ad5—Hexon HVR regions 3; and 7 —
Coagulation Protein HVR’s (Individual residues not ~ TTVRS-BAP (71“? BAP (Bloﬁ}m Kalyuzhniy et al., 2008 [112]
Factor X clearly defined). Associated Protein) peptide insert)
HVR5* (TE268-269AT); HVR7*
(ITEL420-422-423-425GNSY); E451Q Alba etal., 2009 [113]
Ad5—TFiber Protein S* (KKTK91-94GAGA); Paolo et al., 2007, Kritz et al.,
HSPG shaft KKTK91-94 KKTK91-94RGDK 2007 [114,115]
Integrin Ad5—Penton R340, G341, D342 RGE (D342E) Bai et al., 1993 [116]
Protein EGD (R340E) Henning et al., 2005 [117]
Ad5—Hexon HVRI; implied but not - .
MARCO Protein conclusively determined None reported Stichling et al., [118]
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4.2. Ablation of Natural Adenoviral Tropisms

4.2.1. CAR (Coxsackie and Adenovirus Receptor)

Perhaps the best described adenoviral tropism is CAR (Coxsackie and Adenovirus Receptor),
broadly expressed in tight junctions of epithelial tissues [119,120]. Originally shown as the receptor
for adenoviruses 2 and 5 [121], CAR has since been shown to be a receptor for a diverse range of
adenoviruses across the species [122]. Crystal structures have been obtained for Ad12 [123] (species A)
and Ad37 [124] (species D) in complex with the CAR-D1 domain; curiously the liganded structures
have never been determined for the classical Ad5-CAR interaction or indeed any of the widely accepted
Species C and Bl complexes. However, the Ad5-CAR interaction has been characterised in detail
through mutational analysis of the Ad5 Fiber-knob domain [106,107,125,126].

Mutations to ablate the interaction between adenovirus and CAR have been well explored in
the context of Ad5 [106,107,126]. The most efficacious, and thus most widely utilised, of these are the
KO1 (the 1st of 10 mutations in the same study) and ATAYT mutants [106,107]. KO1, shown as cyan
mesh in Figure 3, has been shown to almost entirely ablate the ability of Ad5 to bind CAR and to
work in vivo, though it is not sufficient to alter the native viral hepatic tropism following intravascular
administration [127,128].

Figure 3. Coxsackie and Adenovirus Receptor (CAR) interacting residues within the Ad5 fiber
knob domain. Known CAR interacting residues are shown as green sticks. The blue and yellow mesh
shows the surface of the KO1 and ATAYT mutations, respectively. Structure from PDB: 1KNB.

The ATAYT mutation removes residues 489492 in the FG loop of Ad5, shown in Figure 3
as yellow mesh. The TAYT motif was predicted to be important to receptor binding due to its high
conservation between 14 adenoviral species (Ad2,4,5,8,9,12,15,17,19,28,31,37,40 long, and 41 long) [107],
suggesting that this mutation may be effective in other Adenoviruses. The av[36 targeted Ad5-3A-A20T
oncolytic virus shows the efficacy of this mutation in CAR binding ablation in vivo, though as with
the KO1 mutation, ablation of CAR binding alone is insufficient to eliminate accumulation in the
liver [53,129]. Though CAR-binding ablation may combat sequestration of adenovirus in the blood by
preventing binding to CAR expressing erythrocytes, with the KO1 mutation being shown to prevent
haemaglutination [56,130,131].

4.2.2. CD46/MCP (Membrane Cofactor Protein)

CD46, also called Membrane Cofactor Protein (MCP), is a complement regulatory protein
expressed on the surface of all nucleated cells except erythrocytes [132]. This near ubiquitous protein
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has been identified as important to the pathogenicity of several infectious agents. It protects against
complement activity and has been implicated in the induction of regulatory T-cells, all covered in the
review by Yamamoto et al. [133].

At time of writing, the only full length crystal structure of the CD46 extracellular domain was
determined in complex with the Fiber-knob domain of adenovirus serotype 11 [134]. This is one of
several Species B adenoviruses which have been shown to utilise CD46 as their primary cell entry
receptor [105,135,136]. Crystallographic structures are available for Ad11 and Ad21 in complex with
CD46. The authors of the Ad21 complex structure suggest that there may be two modalities of CD46
interaction governed by the length of the HI and DG loops [105,134,136].

Despite there being no liganded structure available for the Ad35 interface with CD46,
the interaction is well explored, and the individual contact residues characterised, shown as green
sticks in Figure 4 [108]. The analysis of CD46 contact residues reveals the locations of critical mutations
which can be used to abrogate CD46 interaction, the locations of which are seen as yellow mesh in
Figure 4 [108].

ASN-194.

THR-136

Figure 4. Membrane cofactor (CD46) interacting residues, and known mutation sites, within the
Ad35 fiber knob domain: The key residues which interact with CD46 are shown as green sticks.
The yellow surface shows the region in which known mutations which abrogate CD46 interaction occur.
In the top right is a detailed view of the 4 loops which interact with CD46, HI (blue), DG (yellow), GH
(red), and IJ (green). Structure from PDB: 2QLK.

There is no published development of CD46 binding ablated vectors for therapeutic use.
This is curious when compared to the widespread adoption of de-targeted CAR binding viruses.
This may be a result of the perceived benefit of a universal entry pathway in favour of post infection
regulation, despite the potential for immunosuppressive properties derived from activation of the
CD46 pathway [137,138].

CD46 utilising adenoviruses remain a popular choice for the development of oncolytic
virotherapies since CD46 is upregulated in numerous cancers, though CD46 is far from unique to cancer
as it is present on the surface of all nucleated cells [139]. A good example is ColoAd1/enadenotucirev
(EnAd), an Ad11p/Ad3 chimera, generated by recombination and selection of adenoviruses rather than
rational modification, and has progressed to phase I/1I clinical trials [25]. EnAd posesses promising
oncolytic properties derived from several mutations, including E3 and E4 region deletions [25,140],
and is purported to have a primary tropism to both CD46 and desmoglein 2, though the affinities have
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not been fully defined [59,141]. It has previously been suggested that the species D adenoviruses Ad26
and Ad48 may also utilise CD46; vectors derived from these viruses are currently under development
as HIV and Ebola vaccines [142-145]. However this alleged tropism remains unclear, with other papers
suggesting CAR as the primary receptor [146,147].

4.2.3. Desmoglein 2

Desmoglein 2 (DSG2), part of the desmoglein subfamily of cadherin junctional adhesion protein
and one of four DSG isoforms, is a cell entry receptor for species B adenoviruses 3,7, 11, and 14 [148].
DSG2 requires knob domains to form a constellation to mediate cell entry as shown by studies
of whole virus, dimerised knob domains, and penton dodecahedrons (a natural particle produced
by Ad3 composed of 12 penton-fiber complexes which is capable of opening DSG2 mediated cell
junctions) [149-153].

Like CD46 utilising viruses, efforts have focused on exploitation of this tropism rather than
abolition of DSG2 binding. Work from the lab of David Curiel generated an Ad5 vector pseudotyped
with the fiber-knob of Ad3 able to efficiently infect prostate cancer cells [154]. Further development
led to the CGTG-102 virus [155]. CGTG-102, now branded as ONCOS-102, has progressed into phase 2
clinical trials in colorectal cancer and pleural mesothelioma having shown safety in a small phase I
trial, while a similar virus showed efficacy in a phase I trial of ovarian cancer [81,155-158].

Work has been performed to increase the affinity of Ad3 fiber-knob for DSG2 in pursuit of a
therapeutic molecule capable of loosening epithelial cell junctions to improve tumour penetration
culminating in the JO-4 molecule [151,159-161]. Whilst in search of enhancing mutations the lab of
Lieber identified several mutations capable of reducing or ablating the Ad3-DSG2 interaction, the
locations of which are seen as yellow mesh in Figure 5. When mapped to the Ad3 fiber-knob crystal
structure all of these mutations are at the extreme distal end suggesting the location of the binding
interface which may overlap with that of GD1a glycan [109,162].

Figure 5. DSG2 interacting residues, and known mutation sites, within the Ad3 fiber knob domain:
The key residues which interact with DSG2 are shown as green sticks. The yellow surface shows the
region in which known mutations which abrogate DSG2 interaction occur. Structure from PDB: 1H7Z.

It has been suggested that adenovirus binding DSG2 can induce an epithelia to mesencymal
transition (EMT)-like phenotype, and induce transient opening of cell junctions [148,163].
Presumably this facilitates viral spread through the tissue. However, EMT has also been linked
to cancer metastasis, though it is unclear if EMT is strictly necessary for metastasis and remains an area
of intense investigation [164-167]. DSG2 interacting molecules may be capable of inducing EMT/MET
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mesencymal epithelial transition (MET) and treatments based on this ability must be monitored for
this phenomenon.

4.2.4. GD1a Glycan and Sialic Acid

Unlike the receptors discussed so far GD1a is not a protein, but a large sialylated polysaccharide
attached to various glycoproteins. Sialylated glycans are expressed on the surface of numerous glycans
and is the receptor for many viruses [168]. Interestingly, Ad37 has been shown to specifically bind and
utilise the GD1a glycan for cell entry, rather than any sialylated glycoside. The asymmetric interaction
with the fiber-knob means only one copy of the GD1a can interact per fiber-knob domain, in contrast
with the three copies of CAR and CD46 [110].

GD1a glycan has been shown to act as an entry receptor for numerous species D adenoviruses.
In addition to the conservation of several key GD1a binding residues, preincubation of Ad3, 8, 9, 19p,
or 37/19a fiber-knob protein with soluble GD1a inhibited their binding to human corneal cells to
varying degrees [110]. This further corroborates other reports that Ad3, 19p, 37, and 52 complex with
sialic acid [169-171]. Interestingly adenovirus 52 and 37 have both been modelled in complex with
CAR and sialic acid simultaneously, demonstrating the ability of adenoviruses to bind two different
classes of receptor at once [130,171].

No mutations to ablate Sialic acid/GDla binding have yet been reported in adenoviruses.
Nevertheless, Tyr312 and Lys345 residues are shown to be critical for GD1a binding in Ad37 and are
conserved in other species D adenoviruses [110]. These and the supporting Tyr308, Pro317, and Val322
residues present obvious mutational targets but remain untested. These residues are shown in Figure 6
as green sticks.

\

Figure 6. GD1a/Sialic Acid interacting residues within the Ad37 fiber knob domain. Key residues
forming the GD1a-Ad37Fkn interaction are shown as green sticks, with the GD1a in orange, hydrogen
bonds are shown by red dashes. While the interface can occur in three orientations, only one set of

4

interacting residues is shown. The blue dots show the surface of all residues shown to be able to
interact with GD1a or support the interaction, seen to create a large apical binding pocket. Structure
from PDB: 3NOL

A recent study from the Arnberg lab reveals that Ad52, a species G adenovirus with two different
fiber proteins (SFK—Short Fiber, LFK—Long Fiber), binds to polySia (x-2,8-linked poly sialic acid)
via its SFK [172]. This study demonstrates that Ad37 fiber-knob was capable of polySia interaction
whilst Ad52SFK interacts with other sialylated glycans, but at a markedly lower affinity. The authors
demonstrate a primary hydrogen-bond interface with the first sialic acid of the polySia and use
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molecular dynamics simulations to argue convincingly for transient electrostatic contacts, which further
stabilise the interface, explaining the increased affinity with polySia chains >3 units.

PolySia is an unusual post-translation modification (PTM) with expression largely restricted
to neurological tissues of the hippocampus, olfactory bulb, and hypothalamus in healthy adult
brains [173-175]. Though it has been suggested that polysialylated protein being involved in the
development of other organs via polysialylated Neuronal Cell Adhesion Molecule (NCAM) and in
innate immunity via polysialylated CCR7; these are two of just nine reported carrier proteins [176,177].

While a neurological tropism is of potential concern when engineering a virus for cancer
virotherapy, it is worth noting that several cancers including glioma, astrocytoma, neuroblastoma,
and Non-Small Cell Lung Cancer (NSCLC) over-express polySia [178-184]. While usage within the
brain seems likely to generate off target effects within healthy polySia expressing tissues, however,
this tropism could have potential for usage in vectors for NSCLC or neuroendocrine tumours when
used in conjunction with the appropriate selectivity mutations.

These studies suggest several key binding motifs, but also a degree of flexibility in the mode of
interaction with sialylated glycans. It should be possible to ablate the primary interface by mutation of
the key protein-carbohydrate bonds forming residues. However, the electrostatic interface may retain
some limited ability to interface based on the Fiber-knobs surface charge. This seems unlikely to impact
biodistribution in the presence of a strong retargeting receptor, though this electrostatic interaction in
the knob could potentially be defeated by careful selection of charged residues for mutation.

4.2.5. Blood Coagulation Factor X (FX) and Heparan Sulphate Proteoglycans (HSPG)

HSPG'’s are expressed ubiquitously on cell surfaces and represent the receptor for myriad viruses
including all viruses with well described oncogenic properties (except Epstein-Barr virus) [185,186].
Adenoviruses have been shown to interact with HSPG’s through differential mechanisms. Ad2, 3, and 5
have all been shown to interact with HSPG’s in a sulphation dependent manner (higher sulphation
increases affinity). The interaction is mediated by a BBXB motif (B is a basic residue, X is a hydropathic
residue) typified by the KKTK motif in the Ad5 and Ad2 Fiber-shaft, one of two consensus sequences
proposed for heparan sulphate glucosaminoglycans (HSGAG), the other being BBBXXB [187-190].

The suggestion that the KKTK motif and subsequent HSPG interaction was solely responsible
for trafficking of adenovirus to the liver has been largely dispelled by subsequent studies utilising
mutantions or deletions in the KKTK motif. Chimerisation with the fiber proteins of Ad31 and Ad41
(CAR-interacting adenoviruses lacking the KKTK motif), the S* modification (Ad5 residues 91 KKTKoy4
— 91GAGAy,), and the 91 KKTKgy — 91RGDKgy mutation to substitute KKTK for an additional
integrin interacting motif, all abolish HSPG binding, but leave the hepatic tropism intact [114,115,191].
These studies also demonstrated an important role for the fiber shaft KKTK motif in making the fiber
shaft flexible enough to be able to bend and allow subsequent engagement between the viral penton
base protein and cellular v33/5 integrins. Mutation of these key residues (as in the S* mutation)
render the virus fiber shaft inflexible and thus the virus fitness is severely compromised.

More recently, it has been demonstrated that adenovirus liver transduction is actually mediated
by a high affinity, Ca®* dependent “bridging” interaction between the major capsid protein, hexon,
and blood coagulation factor X (FX) [192]. CryoEM was able to identify the hexon hypervariable
regions (HVR) 3, 5, and 7 as critical interaction determinants [57,111,112]. Mutation of HVR5 and 7 has
been shown to efficiently abrogate Ad5 trafficking to the liver by ablation of the Hexon: FX interaction
through both rational modification, and pseudotyping of the Ad5 HVRs with the HVRs of non-FX
interacting adenoviruses, namely Ad26 and Ad48 [111,113,193,194]. The HVR7 mutant in particular
was effective in detargeting Ad5 from the liver in vivo [111].

Coagulation factor X has been shown to shield Ad5 from complement mediated attack,
via inhibition of IgM binding [195]. Consequently, it is conceivable that ablation of this interaction
may result in enhanced clearance of the FX binding ablated virus from the body, reducing therapeutic
efficacy [196]. However, mutation of hexon protein to ablate FX interactions could be extended to also
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inhibit IgM binding, albeit, this may preclude the potentially beneficial effects provided through steric
inhibition of hexon interaction by large molecule binding (such as FX), which may represent a broadly
effective mechanism for inhibiting immune recognition, as described by Schmid et al. (discussed later
in this review) [12]. Not all adenoviruses bind FX, highlighting that binteraction with FX is not a
universally required mechanism for immune evasion, and this immune evasion could be achieved
through incorporation of a hexon or hexon hypervariable regions derived from low seroprevalence
adenovirus that are unrecognized by the immune system [197]. Therefore, whilst ablation of FX
binding may have effects on adenovirus clearance the virus must be considered individually in the
context of its native FX binding ability and seroprevelance in the population.

Uptake into to the liver hepatocytes occurs via a secondary interaction of the Ad5:FX complex with
cellular HSPGs forming an adenovirus: FX: HSPG complex which is then internalised by the cell [198].
This uptake pathway was subsequently found to be particularly dependent on O-linked sulphate
groups, which are abundant on hepatocytes [199]. The fiber protein continues to exert influence
over the final tropism, with Ad5/35Fkn pseudotyped viruses exhibiting differential liver tropism
to Ad5 when ablated for FX interaction [200]. While the mechanism underlying this effect remains
undetermined, pH dependent effects on endosomal transport may relate to differential properties of
the Ad35 vs. Ad5 fiber proteins in endosomal escape, rather than a direct interaction with HSPG.

While most development has focused on ablation of HSPG binding, this interaction has been
utilised in therapeutic development. The Ad5.pk7-A24 virus which contains a poly-lysine motif in the
in the C-terminus of the fiber protein to facilitate CAR independent infection via HSPG [201].

These studies highlight that FX interaction must be eliminated to effectively disrupt HSPG
interaction. However, the effectiveness of the poly-lysine modification, and the ability of peptides to
form electrostatic interactions implies that absolute abolition of HSPG binding may be unfeasible given
the charged adenovirus capsid [201,202]. HSPG’s electrostatic mode of interaction means any patch
of positive charge on the adenoviral capsid represents a potential binding site. Given the variability
of adenoviruses net electrostatic potential it seems likely that the robustness of the aforementioned
mutations will vary depending upon serotype [203]. However, if interactions are brought to sufficiently
low affinity this is unlikely to have in vivo relevance.

4.2.6. Integrins, «xvp33/5

The integrins ovB3 and avp5 were shown to be required for internalisation of Ad2 in 1993
via interaction with the penton base protein where it becomes internalised through clathrin coated
pits [204,205]. This endocytosis is mediated by phosphotidylinositol-3-OH (PI3K)-dependent Rho
GTPase reorganisation of the actin cystoskeleton [206,207]. Integrins interact via a canonical RGD
motif which is widely conserved despite occurring within a hypervariable region of the penton base
protein [116]. Mutation of the RGD motif to RGE is sufficient to prevent efficient infection; RGE mutant
Ad2 virus is shown to accumulate on the cell surface and not internalise and the mutation has been
shown to be effective in an Ad5 background [116,126,204,208]. Alternatively, there is the EGD mutation
which achieves similar ends [117]. This integrin mediated endocytosis mechanism has been shown to
apply across almost the whole adenoviral species, with only the Ad40 species F serotype reported to
have a naturally occurring RGA rather than an RGD motif [116,209].

There are reports that xvp1, aMfB2, xL32, and oy, 32 may also enable adenovirus internalisation
in the absence of ovv[33 and «xv[35, though these interactions are less well described [210-214]. The RGD
interacts with an NPXY motif, conserved at the C-terminus of integrin (3-subunits; this motif is
sometimes extended to include an N-terminal phenylalanine (FNPXY) [215,216]. Alteration of this
motif has been shown to limit adenoviral cell penetration [217]. Given the diversity of x-subunits in
the integrins, which adenovirus has been observed to complex and the conservation of the C-terminal
NPXY motif in the (3-subunits, it seems plausible that adenoviruses only dependency in terms of
penton: integrin interaction is the presence of a 3-subunit.
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The complex between Ad2 and Ad12 with «v(35 has been solved by CryoEM [218]. This study
shows that integrins bind the penton at 5 RDG sites and form a continuous ring structure with ~60 A
spacing between the 5 RGD sites (similar to that of Foot and Mouth Disease Virus—FMDV) [219,220].
The authors suggest that this clustering of integrins is what stimulates endocytosis. An updated
CryoEM structure of Ad12 in complex with «vp5 reveals that steric hindrance limits integrin
engagement to four copies per penton, despite pentavalency [214]. Comparison of the Ad2 and
Ad12 complexed structures reveal that the more stable conformation of RGD in Ad12, constrained by
lower flexibility of the loop on which RGD resides, enables more stable integrin interaction presenting
an opportunity to engineer tighter integrin interaction and potentially modulate the viral dependency
upon fiber mediated interactions [218].

Whilst normally acting as a co-receptor, it has been reported that av35 binding alone is capable
of facilitating efficient Ad5 infection and can interact with the penton with picomolar affinity (Kp of
1.4 x 1019 M) as determined by Ad5 virus binding to CAR!" MDA-MB-435 cells [221]. It is worth
noting that this study does not preclude non-intregin non-CAR means of cell uptake and would
benefit from being revisited with surface plasmon resonance experiments to determine virus-integrin
affinities in isolation. It was previously predicted that engagement of xv{35 was not required for
viral attachment, and while this may be true when cells bear a high affinity primary receptor the
aforementioned study suggests it can represent a viable means of cellular attachment [204].

It has previously been suggested that insufficient flexibility of the fiber-shaft would preclude
efficient infection due to an inability to bend to enable integrin interaction after primary receptor
interaction [222]. Recent CryoEM of a mutant Ad5 virus with the short fiber protein of Ad35 (Ad5F35)
indicates that their prediction that short shafted viruses will have limited flexibility is correct. However,
it does not appear to preclude binding between the penton and integrin, and shows simultaneous
interaction between short-fibered adenovirus with their primary receptor and integrins is possible [223].
Thus, when engineering adenovirus it is insufficient to rely upon the primary tropism to retarget the
vector, and the penton RGD motif must be ablated to prevent off target infection.

4.2.7. Scavenger Receptor (SR-A6)/Macrophage Receptor with Collagenous Structure (MARCO)

In vivo mouse studies show that macrophage depleted mice have greatly reduced inflammatory
response to adenovirus infection [224,225]. This effect was shown to be due to reduced adenovirus
infected MARCO™ macrophages local to the splenic marginal zone [226]. It is now clear that MARCO
has a direct role in Adenovirus recognition and is needed for anti-adenovirus cytokine response, via
the cGAS/STING pathway [227]. This effect has now been observed in species B (Ad35), C (Ad5),
and D (Ad26) adenoviruses, and deletion experiments in the hexon imply that the site of interaction
involves Hyper Variable Region 1 (HVR-1) [118]. However, the exact nature of the MARCO: hexon
interaction remains uncharacterised. With cGAS/STING being identified as a key sensor of adenoviral
infection, and innate antiviral/DNA sensing pathways becoming increasingly important to the field of
oncolytic virology in general, further studies of this interaction are paramount [228-231].

5. Retargeting of Adenovirus by Engineered Receptor Tropism

Once natural tropisms have been ablated, in order to generate a cancer targeted virotherapy, it is
necessary to provide an alternative means of infecting the cell; one which is specific to the tissue of
interest. The choice of new cell entry receptor is limited by several factors: it must be expressed on the
cell surface, selectively expressed /upregulated in the target cells, capable of internalisation following
receptor binding and capable of being targeted by genetic modification of adenoviral capsid proteins.

The pool of cancer specific ligands is not so large as to make this a trivial feat. Accordingly,
many studies have attempted to engineer a universal vector platform by utilising established ligand
specific molecules, detailed in this section. Others have sought to utilise naturally occurring tropisms
from other sources, but both methodologies pose challenges. An important benefit of the chimeric
retargeting approach is highlighted in a study of a “knobless” adenovirus in which the fiber protein
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was engineered to have 7 shaft repeats, a trimerization motif, and the anti-Taq polymerase Zi,q affibody;
this generated the Ad5/R7-Ztaq-Ztaq virus based on Ad5 [232]. This proof of concept study showed
a decrease in neutralisation by sera containing nAbs (neutralising antibodies) against adenovirus,
which is hardly surprising given the deletion of most of a major viral capsid protein. However, the
ability of these viruses to evade neutralisation in some sera highlights the important observation that
some patients appear to neutralise adenovirus solely via the fiber-knob protein rather than the hexon,
as is often cited [233,234].

5.1. Chimeric Fusion Proteins

5.1.1. Single Chain Antibodies

By far the most prolific example of a protein with targetable affinity is the antibody, so it is logical
that many have proposed the use of single chain variable antibody fragments (scFv’s) incorporated
into the viral capsid. However, most scFv’s require the formation of disulphide bonds, formed in the
endoplasmic reticulum [235]. Adenovirus proteins fold in the reducing environment of the cytosol,
followed by packaging in the nucleus, creating a fundamental biosynthetic incompatibility limiting
the effectiveness of this approach [236].

One example of a successful scFv fusion protein is the Ad5FFscFv47-CMV-GFP virus. An scFv
fragment of an anti-IL13Rx2 (a selective marker of glioma) mAb was fused in place of the fiber-knob
with a T4-fibritin trimerization motif between the scFv and shaft [237]. Whilst the resultant virus
selectively infected glioma cells based on IL13Ra2 expression, the production process demonstrates the
difficulty obtaining such a stable scFv. Selection of a viable scFv from the parental hybridoma required
extensive biopanning. An attempt to solve this was by retargeting a pIX-scFv fusion protein with an
ER trafficking signal [238]. Whilst this solved the folding issue, the pIX-scFv fusion integrated into the
virus inefficiently. The authors addressed this problem by using an sdAb (single domain antibody).
Though efficacious, this also requires extensive re-engineering of the targeting ligand, nullifying the
primary advantage of scFv use: the wide availability of ligand specific reagents.

The proposed solution has been scFv’s forming a tertiary complex, altering the scFv sequence
to contain a virus specific domain as well as its ligand specificity. An example is the addition of
dimeric leucine zippers, where the scFv (still expressed from the viral genome) contains one half of the
pair with the other expressed in place of the fiber-knob C-terminal of a trimerization motif to retain
stability [239]. A similar approach utilised a bispecific diabody, a genetic fusion of two scFv’s with
different specificities. This molecule had specificity for CD105 (endoglin) for targeting of vascular
tissues and adenovirus fiber-knob [240]. Another utilised a fusion of Ad5’s native CAR receptor with
an anti-HER2 scFv [241]. A similar scFv (chA21) is seen in Figure 7A,D, though this particular version
has not been integrated into adenovirus.
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Figure 7. Overview of antibody-like proteins specific to Human Epidermal growth factor Receptor
2 (HER2) which have been genetically integrated into Adenovirus. HER? is composed of 4 domains,
Extra Cellular Domain (ECD) I-IV which can be bound by different proteins (A). The Designed Ankyrin
Repeat Proteins (DARPIN’s) 9.29 (B) and G3 (C) are seen in orange and red complexing ECD-I and
ECD-1V, respectively. ScFv chA21 (D) is seen in purple complexing ECD-1 (this particular ScFv has
not previously been integrated to Adenovirus), and affibody ZHER? (E) is seen in green binding at
the ECD-III/1V interface. All molecules are shown to scale, structures from PDB: 4HRL, 4HRN, 3H3B,
and 3MZW.

However, at this time, no adenovirus targeted by means of a bridging molecule has been translated
to the clinic. The dependence of these vectors on a non-covalent molecular interaction for retargeting
demands high affinity binding to prevent off target effects with uncomplexed virus. A potential
solution to this is expression of the adaptor from a virus which is ablated for all-natural tropism.
However, this is yet to be attempted in the context of an adaptor:virus targeting complex and presents
manufacturing issues. More problematic is providing evidence that the adaptor molecule itself does
not have detrimental interactions. These issues create severe regulatory hurdles, leading many to
abandon adaptor molecules as a means of retargeting and turn to more stable antibody mimetic
proteins, which can be integrated into the viral capsid directly.

5.1.2. Affibodies—FGFR2

Affibodies are antibody mimetic proteins based on a stable scaffold, in this case a 3-helix
bundle derived from Staphylococcus bacteria Protein A. They are popular and versatile owing to
their small size (~6.5 kDa), the ability to achieve picomolar affinities, and ability to correctly fold in the
cytosol [242,243].

One of the earliest attempts to retarget adenovirus with an affibody was a proof of concept
study where an anti-antibody Fc domain affibody was fused to the fiber protein, replacing the knob
domain [244]. The authors demonstrated that the modified virus can specifically infect modified
293 cells displaying the Fc on their cell surface, but not wild type (WT) cells. However, the retargeted
virus has a lower infectivity than the unmodified Ad5.

This strategy was then used to target cancer cells via an antibody against the well-known cancer
marker HER2/neu (AKA ERBB2) [245]. The FibACAR-HI-Link-ZHZH fiber chimera containing
22 shaft repeats, an ALT4g5 454 deletion mutation to ablate CAR affinity, and a head to tail dimer of
the anti-HER? affibody “ZH” in the knob HI loop (seen in Figure 7A,E), was integrated into the
Ad5/EGD vector (EGD being an integrin binding ablation mutation described in a previous study
of affibody candidate molecules) [117]. The Ad5/EGD/FibACAR-HI-Link-ZHZH virus was able to
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infect HER2 expressing SKBR-3 (breast carcinoma) and SKOV-3 (ovarian carcinoma) cells with greater
efficiency than WT Ad5 or non-integrin ablated chimeric vectors demonstrating the effectiveness of this
approach. A comparable study using alternative anti-HER?2 affibodies designed with an N-terminal
fold on trimerization motif (derived from T4 fibritin) entirely replacing the knob domain showed
similarly effective results [246].

The Ad5/EGD/FibACAR-HI-Link-ZHZH was further developed to include an 91 KKTKgs —
91RKSKys4 mutation in the fiber-shaft, and renamed Ad-ZH/3 [247]. When tested in mice bearing
HER2M8h PC346C prostate cancer tumours the Ad-ZH/3 cohort had significantly prolonged survival
compared to mock. However, survival was not significantly improved vs. Ad5WT treated mice.
Analysis of tumours from mice revealed that tumours from the AdSWT treated mice retained HER2
expression in >40% of tumour mass, while Ad-ZH/3 treated tumours were negative for HER2. As the
authors note, this suggests that the virus has effectively infected and killed HER? positive tumours,
but left the remainder of the tumour mass to grow unchecked.

This outcome is unlikely to be so clear cut in an immune competent model given the immune
stimulatory effects (now accepted as a primary mode of action for oncolytic viruses) are likely to
activate a T-cell responses against neighbouring cancer cells [248-252]. Yet it is a reminder of the danger
of monotargeted therapies, something which has been considered in proof of concept experiments
using two affibodies, with different targets, inserted into the Fiber HI-loop to create a virus with dual
specificity [253].

The most recent example of a virus retargeted using an affibody is adenovirus serotype 43 virus
pseudotyped with a similar affibody-knob chimera, also against HER2. The use of adenovirus Ad43
leverages the low levels of pre-existing immunity to the rare species D adenovirus and lack of cross
neutralisation by anti-Ad5 nAbs [254]. Whilst the virus can efficiently transduce HER2* cells, it is
hampered by poor production titres due to inefficient incorporation of the chimeric fiber.

An intriguing departure from fiber-chimeras is the integration of an anti-HER? retargeting affibody
to the pIX protein, C-terminal of an engineered cathepsin cleavage site [255]. Integration of peptides
at the pIX C-terminal has been shown not to interfere with viral assembly [256-259]. However pIX
activity is required for dissociation of the fiber from the capsid during endosomal escape, to facilitate
efficient infection [260]. So the authors foresaw, in line with earlier predictions, that high affinity
association between pIX fusion proteins and ligand may prevent endosomal escape [261]. cathepsin is
naturally present inside endosomes [262]. The authors inclusion of a cathepsin cleavage site N-terminal
of the affibody enabled transduction of SKOV-3 spheroid cultures with efficiency greater than both
Ad5WT or the pIX fusion lacking the cathepsin site, presumably by enabling cleavage of the affibody
post-endocytosis and thus dissociation from the endosome.

Overall affibodies represent an attractive means of adenoviral retargeting, however the chimeric
fibers are often to blame for poor production titres, a limitation likely to severely hamper their
potential for clinical translation. It is worth noting that none of the affibody retargeted viruses have
included Factor X binding ablation mutations, which can result in sequestration of the virus in the liver.
The extent of off target effects in the liver cannot be determined due to the lack of in vivo imaging
of the infected mice, except for the Ad43 vector, which is shown not to interact with FX naturally.
Further development of these viruses must address these concerns.

5.1.3. DARPins

Another class of antibody mimetic molecules are Designed Ankyrin Repeat Proteins (DARPins).
Similarly to affibodies (and many modern antibodies) they are generated by library generation from
a stable scaffold (in this case ankyrin proteins) and biopanning [263,264]. They differ to affibodies
with a larger MW (~14-28 kDa) and are structurally distinct, but are otherwise similar in terms of the
engineering opportunities in the context of adenovirus [265].

Despite the free N and C-termini of DARPins, there has been little development of them as
adenoviral fusion proteins. While similar adaptor strategies have been employed as with affibodies,
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enabling retargeting to H-Ras and HER?2 (seen in Figure 7A-C), the DARPins are expressed from E.coli
and conjugated to the adenovirus prior to application [266-268]. The lack of genetic incorporation
technically places the development of DARPins as adenoviral adaptor molecules beyond the scope
of this review, nevertheless, given the clear opportunity to incorporate these robust and widely
engineered molecules into the capsid it is pertinent to include them.

A dimeric DARPin molecule, joined by a linker, was generated with specificity to HER2 and
adenovirus knob domain with an N-terminal SHP trimerization motif. This molecule has previously
been reported to enable HER-2 retargeting of Ad5 [268]. The authors used this in concert with a novel
antibody derived construct, an ScFv (mAb 9C12) against Ad5 hexon trimerized with an N-terminal
SHP motif. The authors demonstrated that the trimerized ScFv was capable of pico-molar binding
affinity for Ad5 (Kp 10.4 pM). When complexed to the Ad5 virus the DARPin construct efficiently
retargeted the virus to HER2* tumour cells, while the ScFv shielded the virus from neutralising
antibody activity [12].

This impressive feat of protein engineering presents a clear opportunity to synthesise the DARPin
retargeting molecule in cis with the virus, either as a transgene or fusion protein with the fiber or pIX
proteins. Similarly, the efficacy of the shield adaptor may well be achieved by modification of the
hexon hypervariable loops to eliminate immunogenic epitopes.

5.1.4. scTCR Chimeric Fiber Proteins

An innovative study by Sebestyen et al. used a chimeric fiber protein expressing a single chain (sc)
T-Cell Receptor (TCR) specific to Melanoma Associated antigen-A1 (MAGE-A1): Ad5.R1-scTCR as a
targeting protein, rather than an antibody mimetic molecule [269]. The fiber consisted of the N-terminal
region of the Ad5 fiber-shaft, the first pseudo-repeat of the shaft, followed by the Neck Region Peptide
(NRP) trimerization motif and a single chain TCR specific to Human Leukocyte Antigen-Al (HLA-A1)
presented MAGE-A1 antigen. The virus was able to initiate productive infection in an epitope specific
manner, displaying efficient infection and transgene expression in cells expressing a MAGE-A1 epitope,
but not MAGE-A2 or MAGE-A1 negative cell lines.

The melanoma associated cancer-testis antigen MAGE-A1 is one of numerous MAGE cancer
associated antigens. Their upregulation on cancer cells when normally restricted to germ cells
makes them an attractive target for therapeutic development owing to the potential for cancer
selectivity [270,271].

While an approach dependent upon antigen recognition by TCRs is inherently restricted, both by
patient HLA type and the availability of high affinity scTCRs, this presents an effective method of
targeting cancer neo-antigens with virotherapy. As such it is intriguing that this is the first and last
reported usage of a TCR retargeted adenovirus, such a vector could surely benefit from modern
capsid detargeting mutations. Especially in light of more recent work demonstrating the potential
effectiveness of oncolytic adenoviruses targeted to MAGE-A1, utilising non-genetic targeting technique
(electrostatic coating of Ad5 based conditionally replicating vector with MAGE-A1 peptide), and the
ongoing development of therapeutic TCR molecules [202,269,272].

5.2. Peptide Based Retargeting of Adenovirus

There have been many attempts to retarget adenovirus by integration of peptides specific to
ligands of interest. It has been shown that peptide insertion into the fiber-knob can exceed 100 residues,
50% larger than the knob itself, without major detrimental activity [273]. Though this is likely highly
dependent upon the character of the inserted sequence.

Approaches attempted so far include incorporation of peptides into the adenoviral fiber-knob to
target Epidermal Growth Factor Receptor (EGFR) or Fibroblast Growth Factor Receptor 1 (FGFR1) [274].
“Deknobbing” of the virus by removal of the Fiber-knob domain, and replacement with a trimerization
motif and integrin binding RGD ligand [275]. Directed evolution approaches displaying peptides on
the C-terminal of the fiber-knob to generate affinity to a glioma, pancreatic cancer, Transferrin receptor,
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and thyroid carcinoma [276-279]. Further specific examples of peptide incorporation and a discussion
of non-fiber-knob incorporation sites including the pIX C-terminus are given in the excellent review by
Dmitriev et al. [280].

Targeting acv[36

avp6 Integrin is an oncofoetal antigen, highly expressed in many aggressively transformed and
invasive cancers but absent in healthy tissues making it an ideal target for virotherapy [281,282].
FMDV naturally uses xv[36 as a receptor, attaching to the integrin via a relatively simple interface in a
semi-helical loop [283,284]. It is from this interface that the A20FMDV?2 peptide (A20) was derived,
a 20-mer with the amino acid sequence NAVPNLRGDLQVLAQKVART, and shown to specifically
interact with av[36 at high affinity [285,286]. A20 was integrated into the HI loop of Ad5 Fiber-protein
by genetic modification and was shown to enable efficient infection of «v[36 positive cells in a CAR
independent manner [287].

Integration of the TAYT in order to ablate the native Ad5 CAR tropism, which is not abolished
by the integration of the A20 peptide, reduced hepatocyte tropism and uptake by liver resident
macrophages (Kupffer cells) [58]. However, this was not sufficient to enable the virus to permeate the
tumour mass in tested mice. The A20 peptide was incorporated into the Fiber-knob loops (CD and IJ)
of the rare species D adenoviral serotype Ad48, replicating the success of the Ad5.A20 vector. Ad48, in
contrast to Ad5, was shown to be insensitive to neutralisation by serum, raising interest in improved
systemic delivery [288].

Several Ad5 based viruses were developed with and without the Ad48 Fiber-knob pseudotype,
or the CAR binding ablation (KO1) mutation: Ad5.HI.A20, Ad5.KO1.HI.A20, Ad5/48kn.DG.A20.
Respectively, these viruses were shown to transduce primary epithelial ovarian cancer (EOC) cells with
70, 60, and 16-fold improvements in affinity compared to Ad5, and 160, 270, and 180-fold improved
affinity in avp6Ni8h /CARIOW BT-20 triple negative breast cancer cells. Importantly, these modified
A20 vectors appeared capable of infecting EOC cells in the presence of highly neutralising anti-Ad5
neutralising immunity, demonstrating nearly 1000 fold improvement in the transduction of EOC cells
following pre-incubation with adenovirus neutralising ovarian ascites [128].

The most recently published successful implementation of the A20 peptide retargeting technique
is in the Ad5-3A-A20T virus in pancreatic cancer models. In this virus several early phase viral
genes were also deleted (3A): E3gp19K to promote antigen presentation, E1ACR?2 to render the virus
conditionally replicative in tumour cells, and E1B19K to prevent inhibition of apoptosis [49]. The A20
FMDV?2 peptide was inserted into the Ad5 fiber-knob protein, which was further modified with
the TAYT CAR ablation mutation (A20T). This represents one of the most exquisitely engineered
adenoviruses described to date, combining manipulation of the viral replication cycle via manipulation
of the early genes to enhance cancer specific viral replication, with capsid modifications to improve
viral specificity to tumour targets. The Ad5-3A-A20T was shown to kill effectively in cocultured
pancreatic cancer and stromal cells, and prolong survival in xenograft models of pancreatic cancer in
mice [53].

Despite this success, peptide retargeting is still limited by two major factors, which remain
unaddressed in the field of peptide retargeted viruses: the availability of high affinity peptides
for relevant cell markers and the inability to post-translationally modify adenoviral proteins.
While modern biopanning techniques can raise many suitable peptides they are constrained by
their nature as (usually) short 1-dimensional molecules, a structural constraint which frequently fails
to translate into meaningful retargeting in the context of a 3-dimensional viral protein.

This places peptides at a supreme disadvantage compared to non-linear recognition motifs
capable of forming 3-dimensional binding structures on antibodies and mimetic proteins like
DARPins [289,290]. So far there only approaches to attempt to overcome this weakness in
peptide design come in the form fiber-knob chimeras utilising large, non-adenoviral proteins
such as single-chain antibodies. It is conceivable that modern de novo protein design techniques,
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in combination with biopanning, can be applied to the loop structure projecting from the adenoviral
fiber-knob to enable the construction of highly avid 3-dimensional recognition sites against a
pre-determined recognition epitope [291].

The final constraint on peptide-based approaches to adenoviral retargeting is the lack of
availability of PTMs (Post Translational Modifications). As the adenoviral particle is assembled in the
cytoplasm and is not trafficked through the Endoplasmic Reticulum (ER) or Golgi, precluding cysteine
bond formation and glycosylation. Unless a method is found to facilitate in vivo post translational
modification of adenoviral proteins without inhibiting virion assembly the peptide-based approach
will remain limited to motifs which do not require PTMs.

6. Conclusions and Future Directions

Oncolytic virotherapies are progressing towards the forefront in the battle against cancer.
In the two decades since the first trials of ONYX-015 began, mounting evidence has emerged
that, with increasing knowledge of adenovirus biology and refinement of their mechanisms of
action, oncolytic virotherapies are beginning to demonstrate efficacy, especially in combination with
chemotherapies and immunotherapies. To further enhance their therapeutic index and safety, an
ever-increasing wealth of virological information and technologies have been described to “tailor”
viruses into bespoke, cancer fighting agents. In this review, we highlight two such areas.

Firstly, how manipulation of early viral genes can result in selective replication within the tumour
microenvironment. Secondly, we comprehensively overview the abundance of knowledge around
adenovirus structure and receptor interactions that can be exploited to tailor the viral tropism away
from native infectious routes, into bespoke tumour targeted agents. It should be added, however,
that additional levels of selectivity could and should be considered when designing virotherapies for
clinical applications. For example, the use of tumour specific promoters to drive either replication
or the expression of a therapeutic transgene, the use of microRNA (miR) binding sites to switch off
replication or transgene expression in “off target” tissues, and the possibility of including a “safety
switch” such as a Tet repressor or inducer, to switch off replication or transgene expression in the event
of leaky infection, should all be considered.

To add further complexity, careful consideration must be paid to which therapeutic transgene
(or transgenes) should be encoded within the viral genome to maximise the anti-tumour efficacy of
the oncolytic agent. The earliest studies focused on known immunostimulatory cytokines, such as
GM-CSF and IL12, though leaky expression and secretion of these powerful cytokines from the tumour
can potentially result in dose limiting toxicities. Recent advances extending our knowledge of how to
best harness the immune system to mount an anticancer response through enhanced T-cell activation
have shifted focus towards the use of virotherapies expressing immune checkpoint inhibitors and/or
bispecific T-cell engagers (BiTEs), designed to be secreted from virally infected cells, and physically
“bridge” the T-cell to tumour cells via a suitable bispecific fusion molecule (for example, a bi-specific
anti CD3-anti CD19 molecule). It is no coincidence that the advances in the immunotherapy field have
preceded and are now coinciding with the strides forward being made in the oncolytic field, providing
an expanding armoury of agents for developing more sophisticated immunovirotherapies.

The evaluation of adenoviral vectors is complicated by the inadequacies of animal modeling in
which to study them, as discussed by Baker et al. (2007) [292]. Rodents expressing xenografts enabling
the study of tissues bearing human receptors (including cancers) are by necessity immunocompromised
to prevent tissue rejection. However, this complicates the accurate evaluation of oncolytic virus
interactions with components of the immune system, and activation of the immune system which
(as discussed previously) is a major mode of therapeutic efficacy for oncolytic viruses [250]. Adenovirus
is also incapable of replication within mouse cells precluding accurate evaluation of their lytic
properties within mouse cells [293]. This has led to the popularization of hamster models for oncolytic
adenovirus studies, which are semi-permissive to replication and remain immunocompetent whist
supporting HaK tumours [294].
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The situation is exacerbated in the context of evaluating CD46 engaging adenoviruses. Old World
Monkeys express CD46 on erythrocytes, unlike humans, meaning that the virus may be sequestered
in the blood [295]. In rodents CD46 expression is restricted to the testes, resulting in a restricted
viral tissue tropism unlike that found in humans [296]. Taken together this makes both rodent and
non-human primate models, the two main models used in drug development, of limited relevance to
the development of oncolytic adenovirus.

While the limitations of the animal models may have hampered development, this has not
hindered the translation of adenoviruses to the clinic. As well as the clinical trials already mentioned
numerous other trials are, or have been, underway. Many of these are reviewed by Shaw and Suzuki,
with more trials being added to clinicaltrials.gov every month [79].

We are constantly reminded that no two cancers are the same, each exhibiting their own
unique signature of actively transforming modifications. It is therefore equally certain that no single
immunovirotherapy will offer a “one size fits all” treatment for cancer. Individualised virotherapies
will be required for personalised cancer treatments. We predict, therefore that the anti-cancer armoury
of the future will contain a suite of immunovirotherapies, tailored at multiple levels of selectivity for
virotherapy vector and serotype, to modified tropism, tumour specific expression driving replication,
and a range of sophisticated immunotherapies and other transgenes. The momentum gathered by the
fields of oncolytics and gene therapy now makes it all but certain that the next few decades will usher
in the era of bespoke virotherapies.
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