
cancers

Review

Repurposing of Drugs Targeting YAP-TEAD
Functions

Gian Marco Elisi 1, Matteo Santucci 1, Domenico D’Arca 2 , Angela Lauriola 1 ,
Gaetano Marverti 2 , Lorena Losi 3, Laura Scalvini 4 , Maria Laura Bolognesi 5 , Marco Mor 4

and Maria Paola Costi 1,*
1 Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;

178871@studenti.unimore.it (G.M.E.); matteo.santucci@unimore.it (M.S.); angela.lauriola@unimore.it (A.L.)
2 Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia,

41125 Modena, Italy; domenico.darca@unimore.it (D.D.); gaetano.marverti@unimore.it (G.M.)
3 Department of Life Sciences, University of Modena and Reggio Emilia, Unit of Pathology,

41124 Modena, Italy; lorena.losi@unimore.it
4 Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle

Scienze 27/A, 43124 Parma, Italy; laura.scalvini@unipr.it (L.S.); marco.mor@unipr.it (M.M.)
5 Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna,

Italy; marialaura.bolognesi@unibo.it
* Correspondence: mariapaola.costi@unimore.it; Tel.: +39-059-205-8579

Received: 4 August 2018; Accepted: 7 September 2018; Published: 14 September 2018
����������
�������

Abstract: Drug repurposing is a fast and consolidated approach for the research of new active
compounds bypassing the long streamline of the drug discovery process. Several drugs in clinical
practice have been reported for modulating the major Hippo pathway’s terminal effectors, namely
YAP (Yes1-associated protein), TAZ (transcriptional co-activator with PDZ-binding motif) and TEAD
(transcriptional enhanced associate domains), which are directly involved in the regulation of cell
growth and tissue homeostasis. Since this pathway is known to have many cross-talking phenomena
with cell signaling pathways, many efforts have been made to understand its importance in oncology.
Moreover, this could be relevant to obtain new molecular tools and potential therapeutic assets. In this
review, we discuss the main mechanisms of action of the best-known compounds, clinically approved
or investigational drugs, able to cross-talk and modulate the Hippo pathway, as an attractive strategy
for the discovery of new potential lead compounds.

Keywords: Hippo pathway; YAP-TEAD disruption; drug repurposing; cell signaling;
protein-protein interactions

1. Introduction

The Hippo pathway attracted increasing interest in the past decade for its role in the regulation of
cell growth, differentiation, organ size, and tissue homeostasis [1]. The Hippo pathway basically consists
of a core kinase cascade containing the Ste-20 family of protein kinase MST1-2, the scaffolding protein
Salvador, and large tumor suppressor kinase LATS1-2 to inhibit the transcriptional co-activators YAP
(Yes1-associated protein) and TAZ (transcriptional co-activator with PDZ-binding motif). YAP and TAZ
are the major effectors of the Hippo signaling pathway. They function as transcription factors along
with TEAD (transcriptional enhanced associate domain) in the nucleus, which increases expressions of
such target gene as CTGF (connective tissue growth factor), CYR61 (cysteine-rich angiogenic inducer 61),
AXL (AXL receptor tyrosine kinase), and BIRC5 (baculoviral inhibitor of apoptosis repeat-containing 5 or
survivin) [2]. Recent studies have demonstrated that a wide range of upstream regulators of the Hippo
pathway are critical for translating cellular signaling into transcriptional responses (Figure 1). Overgrowth
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phenotypes upon deregulation of the Hippo pathway have prompted investigation into its role in
cancer. Some cancer types have shown deregulation of the Hippo proteins [3], with YAP overexpression
particularly associated with solid tumors [4] and with epithelial to mesenchymal transition (EMT) [5].
YAP, TAZ, and TEAD represent the most relevant functional proteins in the signaling system and their role
as drug targets have been validated [6]. Owing to its relevance, several drug discovery programs aimed
to identify new small molecules that can target the YAP/TAZ/TEAD network, effectively impairing the
TEAD function [7,8]. However, only recently, some systematic approaches of drug discovery have led to a
few leads that will be further developed. Moreover, a different approach based on the repurposing of
existing drugs acting on a pathway connected to YAP/TAZ/TEAD protein network can be considered
potentially relevant as inducing a downregulation of the system, therefore acting as long distant effectors.

Repurposing refers to finding new uses for clinically approved drugs (or investigational drugs),
different from that for which they were originally registered [9]. It is a particularly attractive strategy
in terms of a risk-versus-reward trade-off since critical information related to drug-likeness and
pharmacokinetic features, dosing, safety, tolerability, formulation, and manufacturing, are already
available. Clearly, this can circumvent the long, risky, and expensive discovery and early clinical stages
and streamline the entire drug discovery process [9].

Drugs in clinical practice have been reported for targeting the Hippo pathway, through both
cross-talking with other signaling networks and directed to YAP-TEAD interaction inhibition [10,11].
These compounds have been assessed in experimental works to modulate Hippo pathway core proteins
levels in both phosphorylated and unphosphorylated forms. Given the promising results, there is no
doubt that this research area is going to be more exploited by the biomedical research community to
obtain prominent lead compounds. Basing on the above knowledge, the drugs and compounds that have
been proposed for re-purposing aims may act at different levels within the YAP-TEAD cascade. In the
present review, we examine the best-known compounds and drugs that have been shown to modulate
the Hippo pathway and discuss the main mechanisms of actions. The compounds are presented on the
basis of the main modulated pathway.
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Figure 1. Hippo pathway upstream modulation. Upstream modulators in the blue field regulate 
Hippo core kinases in the green field, namely MST (mammalian STE20-like protein kinase) 1-2 and 
LATS (large tumor suppressor) 1-2 [1]. Once phosphorylated, these kinases inhibit YAP (Yes1-
associated protein)/TAZ (transcriptional co-activator with PDZ-binding motif) nuclear translocation 
through serine-phosphorylation, ensuring cytoplasmic compartmentalization and promoting 
degradation mechanisms. The Hippo pathway induces an onco-protective signal by impairing 
antiapoptotic and cell proliferation-related genes transcription by the final effectors. G-protein 
coupled receptors with Gs promote LATS1-2 activation, while other coupling-type mechanisms 
promote actin cytoskeleton dynamics that impair Hippo kinases activity [12]. The Ras-association 

Figure 1. Hippo pathway upstream modulation. Upstream modulators in the blue field regulate Hippo
core kinases in the green field, namely MST (mammalian STE20-like protein kinase) 1-2 and LATS
(large tumor suppressor) 1-2 [1]. Once phosphorylated, these kinases inhibit YAP (Yes1-associated
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protein)/TAZ (transcriptional co-activator with PDZ-binding motif) nuclear translocation through
serine-phosphorylation, ensuring cytoplasmic compartmentalization and promoting degradation
mechanisms. The Hippo pathway induces an onco-protective signal by impairing antiapoptotic and
cell proliferation-related genes transcription by the final effectors. G-protein coupled receptors with
Gs promote LATS1-2 activation, while other coupling-type mechanisms promote actin cytoskeleton
dynamics that impair Hippo kinases activity [12]. The Ras-association domain family (RASSF) proteins
generally promote Hippo kinases phosphorylation and activation, while phosphatase promotes the
opposite. Other upstream modulators such as FRMD6/WWC1-2/NF2 complex activate Hippo
kinases in response to cytomechanical response. Ajuba inactivates MST1-2 and LATS1-2 when it
is up-regulated [13,14], while apicobasal cell polarity control complexes, such as the Scribble complex,
have been proved to display a tumor-suppressive role [15].

2. Drugs Targeting Upstream YAP Modulation

YAP phosphorylation preludes to cytoplasmatic sequestration and inactivation by 14-3-3σ proteins
and/or AMOT (Angiomotin) and AMOTL1-2 (Angiomotin-like proteins 1-2) [16] or degradation by
SCF (Skp, Cullin, F-box complex) β-TrCP (β-transducin repeat-containing proteins) E3 ubiquitin
ligase complex, and in this case with a concurrent Wnt pathway suppression [17] (Figure 2 and
paragraph 2.4). The following compounds are believed to promote an onco-protective signal mediated
by YAP translocation impairment (Figure 3 and Table 1).

Cancers 2018, 10, x  3 of 19 

 

domain family (RASSF) proteins generally promote Hippo kinases phosphorylation and activation, 
while phosphatase promotes the opposite. Other upstream modulators such as FRMD6/WWC1-
2/NF2 complex activate Hippo kinases in response to cytomechanical response. Ajuba inactivates 
MST1-2 and LATS1-2 when it is up-regulated [13,14], while apicobasal cell polarity control complexes, 
such as the Scribble complex, have been proved to display a tumor-suppressive role [15]. 

2. Drugs Targeting Upstream YAP Modulation 

YAP phosphorylation preludes to cytoplasmatic sequestration and inactivation by 14-3-3σ 
proteins and/or AMOT (Angiomotin) and AMOTL1-2 (Angiomotin-like proteins 1-2) [16] or 
degradation by SCF (Skp, Cullin, F-box complex) β-TrCP (β-transducin repeat-containing proteins) 
E3 ubiquitin ligase complex, and in this case with a concurrent Wnt pathway suppression [17] (Figure 
2 and paragraph 2.4). The following compounds are believed to promote an onco-protective signal 
mediated by YAP translocation impairment (Figure 3 and Table 1). 

 
Figure 2. YAP principal interactors and phosphorylation sites. YAP phosphorylation main site is on 
S127 with consequent 14-3-3σ proteins recruitment, YAP cytoplasmic sequestration and 
phosphorylation site shielding from phosphatases. LATS1-2 also promotes phosphorylation on other 
sites (yellow glow), namely S397 phosphorylation which in turn promotes S400 and S403 
phosphorylations (green glow) by Casein Kinase 1 family, isoforms δ and ε (CK1δ/ε), overall forming 
the phosphodegron site responsible for ubiquitination system recruitment [17]. Y407 is 
phosphorylated by C-Abl and Yes-1 (blue glow) prompting opposite effect according to the involved 
tyrosine kinase. While C-Abl has onco-protective relevance, promoting binding with p73, Yes-1 
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Figure 2. YAP principal interactors and phosphorylation sites. YAP phosphorylation main site
is on S127 with consequent 14-3-3σ proteins recruitment, YAP cytoplasmic sequestration and
phosphorylation site shielding from phosphatases. LATS1-2 also promotes phosphorylation on
other sites (yellow glow), namely S397 phosphorylation which in turn promotes S400 and S403
phosphorylations (green glow) by Casein Kinase 1 family, isoforms δ and ε (CK1δ/ε), overall forming
the phosphodegron site responsible for ubiquitination system recruitment [17]. Y407 is phosphorylated
by C-Abl and Yes-1 (blue glow) prompting opposite effect according to the involved tyrosine kinase.
While C-Abl has onco-protective relevance, promoting binding with p73, Yes-1 promotes nuclear
translocation through cross-talking with Wnt/β-catenin pathway (paragraph 2.3.3). The first WW
domain (tryptophan tryptophan domain) is responsible for N-terminal AMOT PPXY motif binding,
while the second one is only conserved in YAP1-2 isoforms. WW1 domain also permits LATS1-2
binding, but it is unclear if this binding is needed for S127 phosphorylation [18]. The terminal
motif binds PDZ domain, anchoring YAP to tight junction proteins, such as Zonula Occludens-1/2
(ZO-1/2) [19]. Sequence consensus boxes of the interactors are colored according to the protein to
which it belongs [1,20,21].
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YAP through pleiotropic mechanisms (GPCRs (G-protein coupled receptors) signaling in red). Statins, 
as HMG-CoA (3-hydroxy-3-methylglutaryl CoA) reductase inhibitors, impair Rho signaling in orange 
and modulate actin cytoskeleton, impairing LATS1/2 activation altogether. Tyrosine kinase inhibitors 
target growth factors signaling in cerulean (PI3K-AKT pathway), green (MAPK (mitogen-activated 
protein kinase) pathway) and black and purple (MAPK pathway final effectors) according to the 
proper interested drug. Receptor autophosphorylation inhibitors, such as Gefitinib, Erlotinib, and 
Pazopanib, hit an ATP-binding site. Instead, Dasatinib is a Src/Bcr-abl dual inhibitor, while 
Losmapimod and Trametinib target downstream components of MAPK pathway. Dimethylfumarate 
inhibits GSK3β phosphorylation, preventing APC β-catenin destruction complex formation and 
undermining oncogenic β-catenin pathway in the process. Metformin, through AMPK 
phosphorylation and consequent half-time AMOT (Angiomotin) prolongment, promotes 
phosphorylation-independent YAP cytoplasmic sequestration by AMOT in yellow. Digitoxin, 
Verteporfin and Flufenamic acid and derivatives modulate YAP/TEAD interaction, as better 
discussed in paragraphs 3 and 4. 

Figure 3. Repurposing of drugs on YAP (Yes-1 associated protein)-TEAD (transcriptional enhanced
associate domain) system through cross-talking pathways. Hippo pathway core kinases (in blue)
and final effector YAP are modulated by approved drugs through different cross-talking pathways.
Dobutamine binds β1-adrenergic receptor and promotes LATS (large tumor suppressor) 1/2
phosphorylation through PKA (protein kinase A) signaling, while melatonin is believed to modulate
YAP through pleiotropic mechanisms (GPCRs (G-protein coupled receptors) signaling in red). Statins,
as HMG-CoA (3-hydroxy-3-methylglutaryl CoA) reductase inhibitors, impair Rho signaling in orange
and modulate actin cytoskeleton, impairing LATS1/2 activation altogether. Tyrosine kinase inhibitors
target growth factors signaling in cerulean (PI3K-AKT pathway), green (MAPK (mitogen-activated
protein kinase) pathway) and black and purple (MAPK pathway final effectors) according to the proper
interested drug. Receptor autophosphorylation inhibitors, such as Gefitinib, Erlotinib, and Pazopanib,
hit an ATP-binding site. Instead, Dasatinib is a Src/Bcr-abl dual inhibitor, while Losmapimod
and Trametinib target downstream components of MAPK pathway. Dimethylfumarate inhibits
GSK3β phosphorylation, preventing APC β-catenin destruction complex formation and undermining
oncogenic β-catenin pathway in the process. Metformin, through AMPK phosphorylation and
consequent half-time AMOT (Angiomotin) prolongment, promotes phosphorylation-independent
YAP cytoplasmic sequestration by AMOT in yellow. Digitoxin, Verteporfin and Flufenamic acid and
derivatives modulate YAP/TEAD interaction, as better discussed in paragraphs 3 and 4.
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Table 1. Pharmaceutical agents targeting Hippo signaling through cross-talking pathways and their approved clinical indication.

Active Compound Common Name Mechanism of Action Indication References

Cancers 2018, 10, x FOR PEER REVIEW  5 of 19 

 

Table 1. Pharmaceutical agents targeting Hippo signaling through cross-talking pathways and their approved clinical indication. 

Active Compound Common Name Mechanism of Action Indication References 

 

Dasatinib BCR-ABL inhibitor 
Src family tyrosine kinase inhibitor 

Acute Lymphoblastic Leukaemia 
(ALL) 
Chronic Myeloid Leukaemia (CML) 

[22–24] 

 

Dobutamine β-1 adrenergic receptor agonist 
Cardiac decompensation 
Coronary artery disease 

[25] 

 

Dimethylfumarate Nrf2 cysteine covalent modification 
(GSK3β phosphorylation block) 

Relapsing remitting multiple sclerosis  [26] 

 

Erlotinib EGFR inhibitor 
Non-small-cell lung carcinoma 
(NSCLC) 
Metastatic pancreatic cancer  

[27,28] 

 

Fluvastatin HMG-CoA reductase 
Atherosclerosis 
Hypercholesterolemia 

[29,30] 

 

Gefitinib EGFR inhibitor 
Metastatic Non-Small Cell Lung 
Cancer 

[23,31] 

Dasatinib BCR-ABL inhibitor
Src family tyrosine kinase inhibitor

Acute Lymphoblastic Leukaemia (ALL)
Chronic Myeloid Leukaemia (CML) [22–24]

Cancers 2018, 10, x FOR PEER REVIEW  5 of 19 

 

Table 1. Pharmaceutical agents targeting Hippo signaling through cross-talking pathways and their approved clinical indication. 

Active Compound Common Name Mechanism of Action Indication References 

 

Dasatinib BCR-ABL inhibitor 
Src family tyrosine kinase inhibitor 

Acute Lymphoblastic Leukaemia 
(ALL) 
Chronic Myeloid Leukaemia (CML) 

[22–24] 

 

Dobutamine β-1 adrenergic receptor agonist 
Cardiac decompensation 
Coronary artery disease 

[25] 

 

Dimethylfumarate Nrf2 cysteine covalent modification 
(GSK3β phosphorylation block) 

Relapsing remitting multiple sclerosis  [26] 

 

Erlotinib EGFR inhibitor 
Non-small-cell lung carcinoma 
(NSCLC) 
Metastatic pancreatic cancer  

[27,28] 

 

Fluvastatin HMG-CoA reductase 
Atherosclerosis 
Hypercholesterolemia 

[29,30] 

 

Gefitinib EGFR inhibitor 
Metastatic Non-Small Cell Lung 
Cancer 

[23,31] 

Dobutamine β-1 adrenergic receptor agonist Cardiac decompensation
Coronary artery disease [25]

Cancers 2018, 10, x FOR PEER REVIEW  5 of 19 

 

Table 1. Pharmaceutical agents targeting Hippo signaling through cross-talking pathways and their approved clinical indication. 

Active Compound Common Name Mechanism of Action Indication References 

 

Dasatinib BCR-ABL inhibitor 
Src family tyrosine kinase inhibitor 

Acute Lymphoblastic Leukaemia 
(ALL) 
Chronic Myeloid Leukaemia (CML) 

[22–24] 

 

Dobutamine β-1 adrenergic receptor agonist 
Cardiac decompensation 
Coronary artery disease 

[25] 

 

Dimethylfumarate Nrf2 cysteine covalent modification 
(GSK3β phosphorylation block) 

Relapsing remitting multiple sclerosis  [26] 

 

Erlotinib EGFR inhibitor 
Non-small-cell lung carcinoma 
(NSCLC) 
Metastatic pancreatic cancer  

[27,28] 

 

Fluvastatin HMG-CoA reductase 
Atherosclerosis 
Hypercholesterolemia 

[29,30] 

 

Gefitinib EGFR inhibitor 
Metastatic Non-Small Cell Lung 
Cancer 

[23,31] 

Dimethylfumarate Nrf2 cysteine covalent modification
(GSK3β phosphorylation block) Relapsing remitting multiple sclerosis [26]

Cancers 2018, 10, x FOR PEER REVIEW  5 of 19 

 

Table 1. Pharmaceutical agents targeting Hippo signaling through cross-talking pathways and their approved clinical indication. 

Active Compound Common Name Mechanism of Action Indication References 

 

Dasatinib BCR-ABL inhibitor 
Src family tyrosine kinase inhibitor 

Acute Lymphoblastic Leukaemia 
(ALL) 
Chronic Myeloid Leukaemia (CML) 

[22–24] 

 

Dobutamine β-1 adrenergic receptor agonist 
Cardiac decompensation 
Coronary artery disease 

[25] 

 

Dimethylfumarate Nrf2 cysteine covalent modification 
(GSK3β phosphorylation block) 

Relapsing remitting multiple sclerosis  [26] 

 

Erlotinib EGFR inhibitor 
Non-small-cell lung carcinoma 
(NSCLC) 
Metastatic pancreatic cancer  

[27,28] 

 

Fluvastatin HMG-CoA reductase 
Atherosclerosis 
Hypercholesterolemia 

[29,30] 

 

Gefitinib EGFR inhibitor 
Metastatic Non-Small Cell Lung 
Cancer 

[23,31] 

Erlotinib EGFR inhibitor Non-small-cell lung carcinoma (NSCLC)
Metastatic pancreatic cancer [27,28]

Cancers 2018, 10, x FOR PEER REVIEW  5 of 19 

 

Table 1. Pharmaceutical agents targeting Hippo signaling through cross-talking pathways and their approved clinical indication. 

Active Compound Common Name Mechanism of Action Indication References 

 

Dasatinib BCR-ABL inhibitor 
Src family tyrosine kinase inhibitor 

Acute Lymphoblastic Leukaemia 
(ALL) 
Chronic Myeloid Leukaemia (CML) 

[22–24] 

 

Dobutamine β-1 adrenergic receptor agonist 
Cardiac decompensation 
Coronary artery disease 

[25] 

 

Dimethylfumarate Nrf2 cysteine covalent modification 
(GSK3β phosphorylation block) 

Relapsing remitting multiple sclerosis  [26] 

 

Erlotinib EGFR inhibitor 
Non-small-cell lung carcinoma 
(NSCLC) 
Metastatic pancreatic cancer  

[27,28] 

 

Fluvastatin HMG-CoA reductase 
Atherosclerosis 
Hypercholesterolemia 

[29,30] 

 

Gefitinib EGFR inhibitor 
Metastatic Non-Small Cell Lung 
Cancer 

[23,31] 

Fluvastatin HMG-CoA reductase Atherosclerosis
Hypercholesterolemia [29,30]

Cancers 2018, 10, x FOR PEER REVIEW  5 of 19 

 

Table 1. Pharmaceutical agents targeting Hippo signaling through cross-talking pathways and their approved clinical indication. 

Active Compound Common Name Mechanism of Action Indication References 

 

Dasatinib BCR-ABL inhibitor 
Src family tyrosine kinase inhibitor 

Acute Lymphoblastic Leukaemia 
(ALL) 
Chronic Myeloid Leukaemia (CML) 

[22–24] 

 

Dobutamine β-1 adrenergic receptor agonist 
Cardiac decompensation 
Coronary artery disease 

[25] 

 

Dimethylfumarate Nrf2 cysteine covalent modification 
(GSK3β phosphorylation block) 

Relapsing remitting multiple sclerosis  [26] 

 

Erlotinib EGFR inhibitor 
Non-small-cell lung carcinoma 
(NSCLC) 
Metastatic pancreatic cancer  

[27,28] 

 

Fluvastatin HMG-CoA reductase 
Atherosclerosis 
Hypercholesterolemia 

[29,30] 

 

Gefitinib EGFR inhibitor 
Metastatic Non-Small Cell Lung 
Cancer 

[23,31] Gefitinib EGFR inhibitor Metastatic Non-Small Cell Lung Cancer [23,31]



Cancers 2018, 10, 329 6 of 19

Table 1. Cont.

Active Compound Common Name Mechanism of Action Indication References

Cancers 2018, 10, x FOR PEER REVIEW  6 of 19 

 

Active Compound Common Name Mechanism of Action Indication References 

 

Losmapimod p38 MAPK inhibitor Investigational [32] 

 

Melatonin MT1/2 receptors agonist Sleeplessness [33,34] 

 

Metformin AMPK activator 
Mitochondrial complex I inhibitor 

Type II diabetes [35,36] 

 

Pazopanib 
c-KIT, FGF, PDGF, VEGF receptors 
inhibitor 

Advanced Renal Carcinoma 
Advanced Soft Tissue Carcinoma 

[30,37] 

 

Trametinib MEK1/2 inhibitor Metastatic melanoma [38] 

Losmapimod p38 MAPK inhibitor Investigational [32]

Cancers 2018, 10, x FOR PEER REVIEW  6 of 19 

 

Active Compound Common Name Mechanism of Action Indication References 

 

Losmapimod p38 MAPK inhibitor Investigational [32] 

 

Melatonin MT1/2 receptors agonist Sleeplessness [33,34] 

 

Metformin AMPK activator 
Mitochondrial complex I inhibitor 

Type II diabetes [35,36] 

 

Pazopanib 
c-KIT, FGF, PDGF, VEGF receptors 
inhibitor 

Advanced Renal Carcinoma 
Advanced Soft Tissue Carcinoma 

[30,37] 

 

Trametinib MEK1/2 inhibitor Metastatic melanoma [38] 

Melatonin MT1/2 receptors agonist Sleeplessness [33,34]

Cancers 2018, 10, x FOR PEER REVIEW  6 of 19 

 

Active Compound Common Name Mechanism of Action Indication References 

 

Losmapimod p38 MAPK inhibitor Investigational [32] 

 

Melatonin MT1/2 receptors agonist Sleeplessness [33,34] 

 

Metformin AMPK activator 
Mitochondrial complex I inhibitor 

Type II diabetes [35,36] 

 

Pazopanib 
c-KIT, FGF, PDGF, VEGF receptors 
inhibitor 

Advanced Renal Carcinoma 
Advanced Soft Tissue Carcinoma 

[30,37] 

 

Trametinib MEK1/2 inhibitor Metastatic melanoma [38] 

Metformin AMPK activator
Mitochondrial complex I inhibitor Type II diabetes [35,36]

Cancers 2018, 10, x FOR PEER REVIEW  6 of 19 

 

Active Compound Common Name Mechanism of Action Indication References 

 

Losmapimod p38 MAPK inhibitor Investigational [32] 

 

Melatonin MT1/2 receptors agonist Sleeplessness [33,34] 

 

Metformin AMPK activator 
Mitochondrial complex I inhibitor 

Type II diabetes [35,36] 

 

Pazopanib 
c-KIT, FGF, PDGF, VEGF receptors 
inhibitor 

Advanced Renal Carcinoma 
Advanced Soft Tissue Carcinoma 

[30,37] 

 

Trametinib MEK1/2 inhibitor Metastatic melanoma [38] 

Pazopanib c-KIT, FGF, PDGF, VEGF receptors inhibitor Advanced Renal Carcinoma
Advanced Soft Tissue Carcinoma [30,37]

Cancers 2018, 10, x FOR PEER REVIEW  6 of 19 

 

Active Compound Common Name Mechanism of Action Indication References 

 

Losmapimod p38 MAPK inhibitor Investigational [32] 

 

Melatonin MT1/2 receptors agonist Sleeplessness [33,34] 

 

Metformin AMPK activator 
Mitochondrial complex I inhibitor 

Type II diabetes [35,36] 

 

Pazopanib 
c-KIT, FGF, PDGF, VEGF receptors 
inhibitor 

Advanced Renal Carcinoma 
Advanced Soft Tissue Carcinoma 

[30,37] 

 

Trametinib MEK1/2 inhibitor Metastatic melanoma [38] Trametinib MEK1/2 inhibitor Metastatic melanoma [38]



Cancers 2018, 10, 329 7 of 19

2.1. GPCRs as Targets to Regulate the Hippo Pathway

GPCRs (G-protein coupled receptors) that act through Gα12/13, Gαq/11 or Gαi stimulate YAP,
while Gas coupled receptors have the opposite effect.

Extracellular ligands such as serum-contained lysophosphatidic acid (LPA) and sphingosine-
1-phosphate (S1P), that interact with Gα12/13-coupled receptors and thus regulate YAP and TAZ
activity through Rho GTPases (and their relative kinase ROCK, Rho-associated protein kinase), lead to
actin regulation, which in turn implies LATS1-2 inactivation and subsequent YAP/TAZ activation [12].
Another ligand probably involved in GPCR modulation is thrombin and its expression is increased
during blood clotting, a process directly associated with wounds, and may promote wound healing
by activating YAP/TAZ through activation of the protease-activated receptor 1 (PAR1) [39]. Somatic
mutations interesting GNAQ or GNA11 genes have been correlated to higher YAP activation as
a molecular basis of uveal melanoma [40].

Dobutamine, a sympathomimetic amine used as an inotropic agent in heart failure, trough
Gs coupling, promotes YAP phosphorylation on S127 site through PKA signaling and so YAP
cytoplasmatic retention, confirming in vitro YAP-TEAD transcriptional activity suppression likely
involved in F-actin regulation through Rho GTPases, as well as other GPCRs [25].

An interesting hypothesis sheds light on a conjectured pleiotropic mechanism involving
a cross-talk between melatonin signaling and the Hippo signaling pathway, possibly foreshadowing
implications for cancer therapy. The onco-protective role can be motivated by p38 triggering via
MT1/2 binding and possibly by RORE (Retinoic Acid-Related Orphan Receptor Response Element)
transcription on retinoic acid response. Melatonin is also proved Reference [41] to counteract estrogen
response by impairing calmodulin complex and counterbalance RHOa/ROCK signaling through
PKA (protein kinase A) [33]. Melatonin has also been proved to reduce bleomycin (BLM)-induced
experimental lung fibrosis in mice by inhibiting YAP nuclear translocation [34].

GPCRs can co-act with IRS-1 (Insulin receptor substrate 1) signaling pathway to up-regulate YAP
nuclear translocation. This pathway promotes YAP dephosphorylation, in PDAC (pancreatic ductal
adenocarcinoma) cells through PI3K (phosphatidylinositol-4,5-bisphosphate 3-kinase) activation and
its downstream effectors, mTOR (mammalian target of rapamycin) signaling pathway, and GSK3β [42]
by impairing the PI3K-AKT pathway such as in the case of statins and kinases inhibitors.

2.2. HMG-CoA Inhibitors

Statins such as HMG-CoA (3-hydroxy-3-methylglutaryl CoA) are reductase competitive
inhibitors that are used to treat hypercholesterolemia by blocking the mevalonate pathway and
lowering cholesterol. As a side effect, as well as in myopathy, mevalonate lower levels reduce
geranylgeranyl-pyrophosphate, required for Rho GTPase prenylation. Consequent and synergic
Rho inhibition demonstrates involvement of an unknown kinase, rather than LATS1-2, in mediating
a non-canonical Hippo signaling. These implications are not probably going to be exploited for
therapeutic needs because doses required in in vitro studies were higher than the clinical ones [29].

As a further confirmation, through bioinformatical methods, the Mutations and Drugs Portal
(MDP) was queried, relying on genomic data extracted from the Cancer Cell line Encyclopedia and the
NCI60 DTP projects to obtain a pharmacogenomic association constituted by statins and Dasatinib as
an efficient co-targeting strategy [22].

2.3. Kinases Inhibitors

MAPK (Mitogen-activated protein kinase) pathway is a mitogenic signaling cascade naturally
opposing the onco-protective Hippo kinases by promoting cell growth and proliferation. This pathway
is deregulated in 30% of all cancers. Mutations in KRAS and BRAF, two genes implied in this pathway,
have been identified as responsible for 36% and 9–11% of colorectal cancers, respectively [43].
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2.3.1. EGFR ATP-Ase Tyrosine Kinase Inhibitors (EGFR TKIs)

Loss of YAP by siRNA (small interfering RNA) or YAP inhibition through Verteporfin treatment,
has been reported to enhance Erlotinib cytotoxicity to NSCLC (non-small-cell lung carcinoma) cells
H1975 [27]. Autocrine loop with ERBB2 (EGFR family of tyrosine kinase receptors) induced by YAP
to bypass EGFR (epidermal growth factor receptor) inactivation regulates ovarian cancer initiation
and progression through Hippo kinases inhibition [44]. Different EGFR mutations are distinctly
expressed in lung adenocarcinoma cells in which EGFR TKIs frequently occur [23]. Even in this
case reducing YAP expression by shRNA (short hairpin RNA) or YAP inhibitors leads to augmented
sensitivity. Clinical studies have shown TKIs (tyrosine kinase inhibitors) inefficacy in dealing with
resistance mechanisms [45]; even though Dasatinib stood out in terms of cytotoxicity, results have been
deemed insufficient to move forward, underlining the importance of YAP inhibition. YAP inhibition
was obtained with statin, effectively prolonging survival among lung cancer patients, corroborating
the effectiveness of co-targeting EGFR and YAP as a therapeutic strategy through TKI-resistance
development delay [23]. Moreover, YAP has been proved to up-regulate EGFR signaling, prompting
resistance mechanisms in esophageal cancer [28]. Furthermore, TAZ is over-expressed in NSCLC cells
carrying EGFR-T790M mutation, leading to Gefitinib-resistant phenotype and EMT [31].

2.3.2. RAF/MEK Inhibitors

YAP knockout enhances RAF (Rapidly Accelerated Fibrosarcoma) and MEK (MAPK/ERK Kinase)
inhibitors efficacy in many RAS/BRAF-mutant tumor types, controlling the threshold of apoptosis,
through antiapoptotic genes upregulation [38]. YAP protein level and transcriptional activity of
the Hippo pathway in NSCLC cell lines have been reported to be decreased by MEK1-2 inhibitor
trametinib [38]. It has been suggested by previous studies that ERK1-2 (extracellular signal–regulated
kinases) inhibition participates in reducing the YAP protein level, which in turn down-regulates
expression of the downstream genes of the Hippo pathway to suppress migration and invasion of
NSCLC cells [46].

2.3.3. Bcr-Abl and the Src Kinase Family TKi

Bcr-Abl first generation drug Imatinib was proved to increase YAP suppression in chronic
myeloid leukemia (CML) cells promoted by Verteporfin, involving PI3K-Akt and MAPK pathways
as previously seen [47]. Conversely, Dasatinib also inhibits Src family kinases and decrease
YAP/TAZ nuclear translocation, through changes of actin dynamics. Suppression of proliferation of
β-catenin-active cell lines in in vitro depends on the inhibition of YES1 and the resulting inactivation
of the YAP–β-catenin–TBX5 complex, interrupting the process the nuclear localization of YAP, by also
regulating the actin dynamics and through YES1-mediated YAP reduction. In fact, YAP nuclear
localization and stabilization is performed by Dasatinib by reducing Yes1-promoted and activating
YAP Y357 phosphorylation (position in YAP1 iso3 (YAP1-1β) corresponding to Y407 in YAP1 iso1
(YAP1-2γ) [20,21]) or by increasing YAP S127 phosphorylation via LATS1-2 [24].

2.3.4. Other Kinases Inhibitors

When Ajuba, adapter or scaffold protein which participates in the assembly of numerous protein
complexes and involved in several cellular processes, is up-regulated, a consequent Hippo kinasic
activity suppression occurs through LATS1-2 binding, preventing its phosphorylation on the YAP
S127 phosphorylation site [48]. This complex is involved in γ-tubulin recruitment in centrosomes and
in mitotic spindle organization [49]. Terminal effectors of MAPK signaling evoke Ajuba, abrogating
Hippo kinasic onco-protective activity [13,14], explaining Losmapimod activity, by blocking p38
mitogen-activated protein kinases [32]. It should be noted that p38 MAPKs can either promote or
inhibit cell growth depending on the type of the stimulus or the involved cell type [50].
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Pazopanib, a c-KIT (mast/stem cell growth factor receptor), FGFR (fibroblast growth factor
receptor), PDGFR (platelet-derived growth factor receptor), and VEGFR (vascular endothelial growth
factor receptor) multi-kinase inhibitor induced the proteasome-dependent degradation of YAP and
TAZ, which was not prominent in the cells treated with Dasatinib and Fluvastatin, besides interrupting
YAP nuclear localization altogether [30,37].

2.4. GSK3β Phosphorylation Inhibition

Wnt pathway stimulation via Frizzled receptor activation causes Dsh (Dishevelled) inhibiting
GSK3β phosphorylation and activation [51,52]. Without this activation, GSK3β no longer promotes
β-catenin phosphorylation, with consequent nuclear accumulation and transcriptional complex
formation with Lef/Tcf (T-cell factor/lymphoid enhancer-binding factor), and APC (adenomatous
polyposis coli) β-catenin destruction complex at cytoplasmic level with Axin can not either be formed.
Wnt and β-catenin pathways have a demonstrated responsibility in the colorectal cancer pathogenesis.
β-catenin activity study in 85 cancer cell lines found that tumorigenic mechanism involves YAP through
the above-mentioned APC complex. YAP phosphorylation through tyrosine kinase YES1, and so in
another phosphorylation site rather than the main one, implies involvement of this complex in BCL2L1
(Bcl-2-like 1) and BIRC5 transcription [53]. In a similar way of Wnt signaling, dimethylfumarate
(DMF) can hinder GSK3β phosphorylation by impairing PI3K/AKT pathway, thus reducing nuclear
localization of YAP, but also abrogating TGFβ/Akt1-mediated inhibitory phosphorylation of GSK3β,
with consequent proteasomal degradation of YAP. Studies conducted in human Hek293 and in mouse
NIH3T3 cells have demonstrated that after YAP phosphorylation at S381 by LATS1-2 (position in
YAP1 iso2 (YAP1-2α) corresponding to S397 in YAP1 iso1 (YAP1-2γ) [20,21]), another phosphorylation,
possibly performed by casein kinase 1 (CK1δ/ε) that triggers degradation via E3-ubiquitin SCFβ-TRCP,
leading to YAP polyubiquitination and degradation [17] (Figure 2). YAP levels diminution could
also explain the anti-fibrotic outcomes of DMF, since animal models have demonstrated a role in
reversing the pro-fibrotic phenotype of systemic sclerosis dermal fibroblasts. Cytoskeletal changes
and YAP nuclear translocation impairment were evaluated replicating healthy and fibrotic tissues
stiffness trough polyacrylamide gels with different modulus [26]. Previously, DMF was used to treat
autoimmune diseases, like multiple sclerosis and psoriasis, probably involving covalent modifications
through Michael addition by cysteine residues, namely Nrf2 (Nuclear factor erythroid-derived 2-like
2) with a consequent anti-oxidant response [54].

2.5. AMOT Stabilization by Metformin

Another cytoplasmic compartmentalization is acquired through inhibition by AMOT-mediated
tight junction localization mediated by the phosphorylation-independent mechanism.

Metformin has been implied to be involved in cross-talking with Hippo pathway, inhibiting YAP
nuclear translocation. Furthermore, energy stress caused by glucose deprivation induces AMOTL1
phosphorylation at S793 by 5′AMP-activated protein kinase (AMPK), which is activated by the growth
of AMP/ATP rate caused by mitochondrial respiratory-chain complex 1 block [55,56]. The notion of
augmented AMOTL1 protein stability derives from studies indicating a phosphorylation-deficient
S793A mutant that showed a shorter half-life that were obtained through AMOTL1 knock-out
mediated by shRNA, followed by shRNA-resistant wild-type AMOTL1 or AMOTL1 S793A mutant
over-expression [35].

Interestingly, loss of YAP/TAZ by siRNA also demonstrated a similar effect of Metformin towards
insulin axis, inhibiting cell growth and implying a novel function of YAP in an insulin resistance
IRS1/2-mediated endometrial cancer; Verteporfin obtained similar results as comparison [36].

3. YAP/TEAD Interaction Modulation through Direct Ligands Design

Computational techniques, including virtual screening and docking, are commonly used to screen
large databases of molecules, allowing the rapid discovery of potential lead compounds. In the case
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of drug repurposing campaigns, the identification of already-known or marketed compounds with
novel target activity can be afforded by these approaches. When the target structure is known, as in the
case of TEAD, docking and structure-based studies allow the identification of molecules characterized
by complementary shape and electrostatic distribution with their binding sites, and to estimate the
interaction energy of ligand-target complexes. The selection of hit compounds, which are forwarded
to biological assays, is based on the application of scoring functions that provide an approximation
of the binding free-energy, considering the interaction energy and empirical functions that account
for desolvation and entropic factors [57,58]. In particular, docking of virtual structures has been
applied to devise a possible interaction model for Digitoxin with YAP, as detailed below. A virtual
screening campaign, aimed at drug repurposing, led to the identification of Flufenamic acid as an
inhibitor of TEAD palmitoylation, as discussed in the next chapter. Specifically, structure-based drug
identification approaches have been applied to the identification of pharmaceutical agents for directly
interfering with YAP/TEAD signaling pathway (Table 2), rather than regulate upstream mediators as
before described.

Table 2. Pharmaceutical agents directly modulating YAP-TEAD interaction.

Active Compound Common Name Mechanism of Action Indication References
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3.1. Cardiac Glycosides as Potential YAP Function Modulators

Sudol et al. [59] have proposed an in silico model for Digitoxin binding with a homology model
of YAP WW domain extrapolated from WW domain of dystrophin and obtained with comparative
modelling software MODELLER, showing a potential inhibiting role with proteins exposing PPXY
motif, namely LATS1-2 (Figure 2). This hypothesis has not been confirmed yet by any experimental
study, as for now there are no in vitro studies testing YAP affinity. However, docking approaches,
besides predicting AMOT and LATS interaction with YAP WW domain, estimated that Digitoxin could
arrange an extensive network of Van der Waals interactions and hydrogen bonds with a determined
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set of residues in the proposed hydrophobic binding groove. It should be noted that this set of residues
could permit target selectivity discrimination among the other WW domains [59]. Cardiac glycosides
so should be able to mimic interactions of YAP physiological inhibitors at level of WW1 domain on the
YAP protein. Targeting WW domain could impair complexes formation, such as with Wbp2, involved
in conveying oncogenic signals through YAP/TAZ activity enhancement [69] or be beneficial in tumors
where YAP exerts a potential oncosuppressive role, as seen in breast cancer [70]. As a testament, recent
findings suggested that digitoxin promotes YAP nuclear sequestration, phospho-YAP (S127) decrement
and downstream transcription factors levels increase, in both HK-2 cells [60] and different human lung
squamous cell lines [61]. These outcomes respectively elicit regenerative and fibrogenetic mechanisms
after acute kidney injury (AKI), with the prospect of prevent transition to chronic kidney disease
(CKD) [60], and suppress cancerous progression through ROS accumulation due to scavenger enzyme
genes down-regulation [61], thus prompting the use of YAP agonist, as opposed to the previously
discussed cases. Therefore, these data are evidence that YAP role in oncogenesis is so intimately related
with tissue environment and cell lineage.

Furthermore, Digitoxin and the other cardiac glycosides have been reported as cytotoxic agents,
probably not exclusively due to their activity as Na+/K+ ATPase inhibitors, with consequent membrane
fluidity alterations, increasing Ca2+ levels. Additionally, through mitochondrial Na+/Ca2+ pump
activity exacerbation and triggering cytoskeleton alterations, that lead to cell cycle dysregulation
with possible Mcl-1 (induced myeloid leukemia cell differentiation protein Mcl-1) and Bcl-xl (B-cell
lymphoma-extra large) down-regulation, it is a possible a mechanism involving a mitochondrial
apoptosis-inducing pathway [71,72]. Other hypotheses involve an ampler signalosome [73,74] leading
to a multitude of effects leading to cell death, namely topoisomerase inhibition [75], EGFR/Src/Akt
signaling cross-talking [76], Na+/K+ ATPase, and Src endosomal trafficking and immunogenic cell
death [74], p21 up-regulation and JNKs (c-Jun N-terminal kinases) activation [77], and HIF1-α
(hypoxia-inducible factor 1-alpha) inhibition [78].

3.2. Verteporfin and Derivatives as YAP-TEAD Interaction Disruptors

Liu-Chittenden et al. [62] identified Verteporfin (VP, Visudyne® by Novartis) and two other
protoporphyrins, Protoporphyrin IX (PPIX), and Hematoporphyrin (HP) as YAP-TEAD interaction
inhibitors. They first set up a luciferase reporter assay through Gal4-TEAD4 fusion protein expression
in order to screen Johns Hopkins Drug Library and, leveraging on intrinsic VP fluorescence and through
proteolytic patterns comparison, they clarified a selective binding to YAP. Co-immunoprecipitation
assays revealed that both VP and PPIX abolish YAP-TEAD complex formation at 10 µM, but the first
molecule with greater potency [62]. Since VP is adopted by photodynamic therapy, it was necessary
to prove activity in an environment without light as it was reported in a study where levels of YAP,
phospho-YAP (S127), CYR61 and CTGF were diminished in uveal melanoma cells [63]. In a subsequent
research regarding growth inhibition in human glioma cells in vitro, as well as implying p38 activation
with its consequent antiproliferative role [64]. The same study also underlined the possibility of
treatment of different tumor cell lines, namely retinoblastoma cells [65], ovarian cancer cells [66],
and endometrial cancer cells [79]. VP also downregulates EGFR levels, as these are dependent on
YAP-promoted transcriptional activity, effectively lowering chemoresistance to cytotoxic drugs [28].

YAP is conceivably targeted with different modes, since 14-3-3 proteins up-regulation
is promoted with consequent YAP cytoplasmic sequestration, suggesting a VP scaffold-like
phosphorylation-mimicking interaction concerning the HXRXXS motif (Figure 2) [67].

Gibault et al. [80] synthetized molecular simplification derivatives, among which a symmetric
divinyldipyrrine stands out regarding its inhibitory activity. Nevertheless, due to vinyl groups, it is
unclear whether this result is obtained through extensive proteotoxicity [80].

It has to be noted that VP could also promote oligomerization of high-molecular weight proteins,
obstructing proteasomal and autophagic degradation systems on which cancer cells heavily rely to
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hunt nutrients for cell growth [81]. Formation of high-molecular weight complexes have also been
assessed in different types of cancer cell lines as a light-mediated post-lysis effect [82].

4. Drugs Directed to the Palmitoylation Pocket of TEAD

While the N-terminal domain of human TEAD1-4 is involved in DNA recognition, the C-terminal
regions interact with YAP, and a strong protein-protein interaction is required for the formation and
stabilization of the YAP/TEAD complex, which promotes gene transcription. Three motifs of YAP
(a β-strand called β1, a α-helix called α1 and a twisted-coil region called Ω-loop) are placed around
the surface of TEAD formed by a portion of the two β-sheets, which form a β-sandwich in the core of
the YAP-interacting domain, and by a helix-turn-helix motif which connects the two sheets (Figure 4).
While the three portions of YAP contribute differently to the strength of YAP/TEAD association,
the synergism conferred by the presence of all of them is responsible for the high affinity of the
complex [83–85].
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complex with YAP2 (in blue and red, respectively, as part of the PDB structure 3KYS). The β1 strand
of YAP is displayed on the left, the α1 helix in the center, and the Ω-loop on the right of the figure.
The cysteines which are the sites of palmitoylation for the two TEAD isoforms are evidenced.

Therefore, another potentially successful strategy to impair YAP-TEAD interaction could be
addressing this TEAD central pocket, directly targeting the final effector in genic expression regulation
and contemporarily exploiting a conserved hydrophobic site with good druggability. TEAD has
a highly conserved palmitoylation site (C344 in TEAD1, C380 in TEAD2, C371 in TEAD3, C360 in
TEAD4) [86]. The residue numbers are reported as in the available crystallographic structures, although
in the case of TEAD1, they do not correspond to the Uniprot sequence numeration (i.e., residue C344 in
the X-ray structure corresponds to C359) [84]. The palmitoylation site is close to the surface interacting
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with YAP/Vgll4 (vestigial-like family member 4) β1, so it is plausible to inquire that displacing the
palmitoyl-moiety could disrupt protein-protein interface through allosteric communication.

While trying to identify autopalmitoylated proteins and studying PATs (palmitoyl acyl-transferases),
Chan et al. [87] also identified TEAD1 and TEAD3 as palmitoylated proteins by synthetizing chemical
probes as 2-bromohexadec-15-ynoic acid and cis-2,3-epoxy-4-oxooctadec- 17-ynamide. These probes
were obtained with the specific purpose to gain analogues of palmitic acid for click chemistry—as
done before by the same researchers to study Wnt palmitoylation [88]. To validate chemoproteomical
results, the authors performed, with labelled FLAG-coimmunoprecipitated proteins, a Huisgen 1,3-dipolar
cycloaddition with biotinylated azide, recognized by streptavidin western blot analysis, which detected all
TEADs paralogues as palmitoylated through reversible thioester bond. These findings suggested that such
a post-translational modification is evolutionarily conserved, by also individuating the cysteine residue
majorly involved in all paralogues. Past X-ray resolved structures were critically re-evaluated linking
pocket electronic extra-density to palmitoylate, rather than to other interferents, and compared those with
recently obtained (PDB codes 5EMV/5EMW with TEAD2/3). The importance of the palmitoylate as a fold
stability hub was proved through fluorescence resonance energy transfer (FRET) AlphaScreen assays by
using TEAD1 mutant C359S (corresponding to C344 in the crystallographic structures), which showed a
weaker binding to YAP respect to wild-type TEAD, but not with Vgll4. They also found that DHHC-family
PATs overexpression did not prompt any sizable fluctuation in palmitoylation levels, suggesting a probable
autopalmitoylation mechanism [87]. Furthermore, they found Scribble pro-oncogenic mislocalization
away from the cell-cell junction as a result of ZDHHC7 (zinc finger DHHC domain-containing protein 7)
knock out, as they demonstrated that palmitoylation promoted role of Scribble in YAP activity suppression
and cell polarity control [15]. Another team has individuated TEAD-palmitoylation as a process rather
slower than expected, observing palmitoylation levels reduction through acylation with Ω-alkynil palmitic
acid, but that it strangely does not affect cell localization, since TEAD is not stably associated to nuclear
envelope. To inquire into the role of S-palmitoylation, they tested TEAD2 mutants C380A and K357A
in HEK293T cells, as they predicted that neighboring lysine amino group could lower cysteine the pKa
group, promoting palmitoylation in the process [86].

Before the palmitoylation of TEAD was reported, Pobbati et al. [68] had already shown the
druggabiliy of this central hydrophobic pocket. In silico screening of a Pharmakon library built
from FDA approved entities, followed by differential scanning fluorimetry measuring TEAD4-YBD
(YAP-binding domain) Tm change, identified Flufenamic acid as a TEAD-binding drug. Flufenamic
acid binding was then confirmed with STD-NMR (saturation-transfer difference-NMR) and with ITC
they were able to find Kd = 73 µM. Crystal structure of TEAD2-YBD confirmed Flufenamic acid (PDB
code 5DQ8) or bromofenamic acid (PDB code 5DQE) electron density in the palmitoylation pocket. The
carboxylate group of the fenamates takes a hydrogen bond with the backbone nitrogen of C380, as well
as a salt bridge with K357 (Figure 5). However, the fenamates class did not show any involvement
in interaction disruption, even if, at a higher dose, luciferase reporter assay showed TEAD activity
reduction. Nowadays, the role of palmitoylation, and of its displacement on the YAP-TEAD interaction,
is still controversial. In fact, Mesrouze et al. have recently reported that YAP and TAZ bind in a similar
manner to acylated and non-acylated TEAD4 [89].
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5. Conclusions

Given the results obtained in other fields, there is no doubt that repurposing attractive research
areas is going to be more and more exploited in a pragmatic way to obtain prominent lead compounds.
While drug repurposing relies on existing drugs with already safety outline, and approved clinical
use, it is evident that medicinal chemists still play a crucial role in the context of these efforts. This is
because it is extremely unlikely that the repurposed drugs are already optimized for the most favorable
interaction with YAP-TEAD network proteins. Thus, it is highly feasible that they will lead to the best
future outcomes, through projects aimed at identifying optimized analogs with improved activities,
reduced toxicities, and better pharmacokinetic properties tailored on appropriate target product
profiles, for a wide range of therapeutic applications, especially in the antitumor field.
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