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Abstract: This review highlights new findings that have deepened our understanding of the
mechanisms of leukemogenesis, therapy and resistance in acute promyelocytic leukemia (APL).
Promyelocytic leukemia-retinoic acid receptor α (PML-RARa) sets the cellular landscape of acute
promyelocytic leukemia (APL) by repressing the transcription of RARa target genes and disrupting
PML-NBs. The RAR receptors control the homeostasis of tissue growth, modeling and regeneration,
and PML-NBs are involved in self-renewal of normal and cancer stem cells, DNA damage response,
senescence and stress response. The additional somatic mutations in APL mainly involve FLT3,
WT1, NRAS, KRAS, ARID1B and ARID1A genes. The treatment outcomes in patients with newly
diagnosed APL improved dramatically since the advent of all-trans retinoic acid (ATRA) and arsenic
trioxide (ATO). ATRA activates the transcription of blocked genes and degrades PML-RARα, while
ATO degrades PML-RARa by promoting apoptosis and has a pro-oxidant effect. The resistance to
ATRA and ATO may derive from the mutations in the RARa ligand binding domain (LBD) and in
the PML-B2 domain of PML-RARa, but such mutations cannot explain the majority of resistances
experienced in the clinic, globally accounting for 5–10% of cases. Several studies are ongoing to unravel
clonal evolution and resistance, suggesting the therapeutic potential of new retinoid molecules and
combinatorial treatments of ATRA or ATO with different drugs acting through alternative mechanisms
of action, which may lead to synergistic effects on growth control or the induction of apoptosis in
APL cells.
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1. Introduction

Acute promyelocytic leukemia (APL) is a subtype of acute myeloid leukemia (AML) which
is characterized by a reciprocal and balanced translocation involving the retinoic acid receptor α

(RARa) on chromosome 17 and promyelocytic leukemia (PML) gene on chromosome 15, and generates
the oncogenic PML-RARα fusion protein [1–3]. PML-RARα has two primary effects: deregulates
transcriptional control (acting as a transcriptional repressor of RARα target genes) and disrupts PML
homeostatic function. RARα is a ligand-dependent transcription factor that binds to retinoid X receptors
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(RXR) to form transcriptionally active heterodimers. The retinoic acid (RA) response elements (RARE)
are found in genes that play pivotal roles in a series of physiological processes including cell growth,
differentiation, survival and death. Retinoid receptors also activate kinase signaling pathways, which
fine-tune the transcription of the retinoic acid target genes [4]. The PML gene, due to alternative splicing
of its C-terminal exons, displays six nuclear and one cytoplasmic isoforms. The PML protein plays
a role in a number of cellular processes involving homeostasis and tumor suppression mechanisms,
including the response to viral infections and stress, senescence, angiogenesis, differentiation, and
maintenance of genome stability. To exert its functions, PML recruits a molecular apparatus organizing
peculiar organelles known as nuclear bodies (PML-NBs) [5,6]. The PML-RARα fusion protein acts as
a transcriptional repressor of RARa target genes leading to the proliferation of myeloid progenitors
and maturation arrest at the promyelocytic stage, and disrupts PML-NBs [7–10]. The present review
highlights new findings that have deepened the understanding of the mechanisms of leukemogenesis,
and resistance, enabling the design of experimental treatment strategies in APL.

2. APL Pathophysiology

RAR receptors (alpha, beta and gamma) signaling is pivotal in the homeostatic control of
tissue growth, modeling, and regeneration. The evidence suggests that the RAR transcriptional
pathway regulates hematopoietic stem cell (HSC) development, maintenance and expansion, as well
as maturation/differentiation into distinct hematopoietic cell lineages.

Ligand-free RARs bind to RAREs on the DNA to repress the transcription of RAR responsive
genes through the assemblage of the RAR co-repressors. These include NR corepressor (NCoR)
and SMRT which trigger the recruitment of a high molecular weight complex containing histone
deacetylase (HDAC) to maintain chromatin in a densely packed, inactive state. Retinoid binding
induces conformational changes which cause the dissociation of co-repressors and the induction of
transcriptional activation of responsive genes [4]. PML-RARα takes control of RARE sites and has a
dominant negative action on transcription, inhibiting activation by physiological ligands, causing the
maturation arrest at the promyelocyte stage.

PML NBs dysfunction has been implicated in various cellular processes leading to the APL
oncogenic phenotype [7,11]. Senescence is known to be the first physiological defense against
cellular transformation. Two key observations have directly implicated PML in senescence:
Ras-induced senescence is lost in a pml−/− context, conversely PML overexpression induces premature
senescence [12,13]. PML NBs are stress-sensitive and are required for p53 action: Cells lacking PML
show a reduced propensity to undergo senescence or apoptosis in response to p53 activation [14,15].
Notably, two of the most active drugs in APL therapy, ATRA and ATO, allow the reformation of PML
NBs as the result of PML-RARα degradation [16,17].

PML-NBs also have an important role in the mechanisms of DNA damage response (DDR) via
both NHEJ and HR repair pathways. Its disruption by PML-RARα strongly affects ATM activation,
as well as CHK2 and NBN phosphorylation [18,19]. ATM kinases are clients of the HSP90α chaperone,
whose inhibition leads to the destabilization of these important components of the DNA damage
response [20]. Recently, the authors demonstrated that Hsp90 is downregulated in the presence of
PML-RARα [21], thus could hamper the DNA damage response in APL cells.

PML NBs are involved in the self-renewal of normal and cancer stem cells [22,23]. PML contributes
to embryonic stem cells (ESC) self-renewal maintenance by controlling cell-cycle progression and
sustaining the expression of crucial pluripotency factors [5]. Among these, phosphatase and Tensin
homologue deleted on chromosome 10 (PTEN) is an important tumor suppressor and plays a pivotal
role in the self-renewal of hematopoietic stem cells. Its ablation promotes the exhaustion of normal
hematopoietic stem cells (HSCs) and the generation of leukemia-initiating cells (LICs) [24,25]. Although
the ubiquitinylation and subcellular localization of PTEN are regulated by a HAUSP-PML network [26],
the authors demonstrated that PML-RARα directly suppresses PTEN expression [27]. The lack of PTEN
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anticancer control could play a pivotal role in favoring the emergence, survival and proliferation of
damaged stem cells, allowing the accumulation of additional genetic events towards leukemogenesis.

The PML-RARα phenotype is also characterized by the downregulation of autophagy-related
genes (ATGs) (i.e., ULK1, BECN1, ATG14, ATG5, ATG7, ATG3, ATG4B and ATG4C) [28–30]. Autophagy
or self-eating is a highly conserved, closely regulated homeostatic cellular activity that allows for the
bulk degradation of long-lived proteins and cytoplasmic organelles [31]. Autophagy is one of the
main cellular catabolic pathways controlling a variety of physiological processes and its disruption
interferes with the machinery of self-renewal, differentiation and death [32]. Its roles in cancer
initiation and progression and in determining the response of tumor cells to anticancer therapy are
complicated. A recent study provided evidence for a new function for PML as a repressor of autophagy
when associated at the mitochondrial-associated membrane (MAM) [33]. However, whether or not
PML-RARa inhibits autophagy through its binding to MAM has not yet been investigated. These
observations differ from the data reporting that PML-RARa is involved in constitutive activation of
autophagy through inhibiting the AKT/mTOR pathway in APL cells [34]. The reason for seemingly
opposite effects of PML-RARa on the regulation of autophagy remains to be clarified. Figure 1 depicts
the pathophysiologic aspects of APL (Figure 1).
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Figure 1. Schematic representation of the molecular mechanisms involved in acute promyelocytic
leukemia (APL) pathogenesis. Promyelocytic leukemia / retinoic acid receptor α (PML/RARA) exerts
dominant-negative effects on RAR/RXR-dependent transcriptional control through the recruitment
of co-repressor complexes (CoR) (top) and PML nuclear bodies assembly (bottom). The direct or
indirect regulation of target genes is responsible for the differentiation block, aberrant self-renewal,
and impairment of autophagy and apoptosis observed in APL blasts. PML nuclear bodies disruption
drives enhanced self-renewal, inhibition of DNA damage response and inhibition of senescence and
apoptosis, in part by p53 inactivation.
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Ethnicity is considered a measure of genetic and lifestyle. Some studies, mainly from Latino
America, suggested that the Latino population had a higher proportion of APL among all AML diagnosis,
which ranged approximately 30–38% against less than 10–7% in the non-Latino population [35–37]
Nevertheless, Latino is not an ethnicity and it is very difficult to define the characteristics of this
population. On the other hand, several reports did not find any significant variation in the incidence,
and there is no hard evidence of any ethnic physiological or life style difference linked to APL incidence.

3. Additional Genetic Events

The PML-RARα rearrangement is the main pathogenetic event of APL. However, its expression in
the bone marrow in a mouse model leads to a myeloproliferative phenotype similar to chronic myeloid
leukemia, while the emergence of full-blown APL requires 12–14 months [12,38]. This long latency
suggests that additional genetic/epigenetic changes are necessary to flare the APL phenotype. By next
generation sequencing (NGS), a recurring point mutation (Jak1 V657F or V658F in humans) and a
recurring deletion in histone demethylase Kdm6a were identified in a mouse APL model [39]. In vivo
data have shown that aberrant Jak1 signaling can play an important role in APL pathogenesis and that
the JAK-STAT signaling may be activated by different mechanisms in a mouse model of APL. The role
of KDM6A mutation in APL pathogenesis is not clear yet, but it may involve the dysregulation of Hox,
Notch, or Rb signaling pathways [40–43].

The topography of somatic mutations in APL is defined by recurrent alterations of FLT3, WT1,
NRAS, KRAS, ARID1B and ARID1A genes, and the near-absence of mutations in other common
AML genes [44–47]. A recent survey of 153 primary and 69 relapse APL samples by whole-genome
sequencing showed that both the primary and relapse APL harbored an average of eight non-silent
somatic mutations per exome. The recurrent alterations of FLT3 (43%), WT1 (14%), NRAS (10%) and
KRAS (4%) in newly diagnosed APL were reported, whereas mutations in other genes commonly
mutated in myeloid leukemia including DNMT3A, NPM1, TET2, ASXL1 and IDH1/2 were absent [44].
In a Chinese report on 84 APL samples studied by RT-PCR, the prevalence of mutations was 60.7%
(51/84), with 27.4% FLT3-ITD mutations, 14% WT1 mutation, 10% FLT3-TKD, 8% TET2, 6% N-RAS, 5%
ASXL1, 2% EZH2 mutations and 1% each for MLL-PTD, IDH1 and CBL mutations, respectively. No
mutations were found in other common leukemia-related genes: JAK1, DNMT3, c-Kit, NPM1, IDH2,
RUNX1 and JAK2 (V617F) [45]. The authors reported a low frequency of mutations of WT1 exon 7
and 9 in 103 APL samples (4%) [48]. Activating FLT3 signaling mutations are often present in APL,
associated with hyperleukocytosis, a major adverse risk factor in chemotherapy-based regimens [49,50].
FLT3, KRAS, trisomy 8 and the deregulated expression of BCL2 have been described as cooperators of
PML-RARa in mouse models of APL [51,52]. Recently, Esnault et al. demonstrated, also in an APL
mouse model, that FLT3-ITD mutations severely blunt ATRA response. The combination of ATRA and
ATO fully rescued the therapeutic response in FLT3-ITD+ APLs, leading to PML-RARa degradation,
PML nuclear body reformation, P53 activation and APL eradication [53]. This review further reinforces
the biological importance of the presence of FLT3-ITD mutations independent from its allelic ratio in
the context of the disease. A recent report by Iaccarino et al. described a median of two additional
mutations per patient (range, 0–3) at the time of APL diagnosis, in 11 patients who later relapsed
and a median of one mutation (range 0–2) in 21 of 33 APL patients, who remained in continuous
complete remission (P = 0.0032). They also found NRAS and RUNX1 mutations only in patients who
later relapsed, with FLT3 (ITD/TKD: 5 of 11 patients, 45%) and NRAS (3 of 11 patients, 27%) as the
most frequently mutated genes. The FLT3-ITD mutations were present in most high-risk patients,
but were not significantly associated with the risk of relapse. The authors suggest that molecular
patterns detectable at diagnosis may predict the treatment response. Comparing the initial mutational
status of patients who relapsed during the course of disease (n = 11) with those in CCR (n = 33), they
found differences in concomitant mutations, with NRAS and RUNX1 mutated only in the first group of
patients, suggesting their possible role as predictive markers of relapse. Of note, also the number of
concomitant mutations per patient was significantly higher in the group who later relapsed (P < 0.0001)
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indicating an accumulation of genetic alterations during disease progression. In particular, they found
mutations associated with clonal hematopoietic expansion, like ASXL1, DNMT3A, JAK2, SRSF2, TET2
and TP53 [46]. However, validation studies are needed to confirm these hypotheses.

The optimal management of APL requires the early diagnosis, institution of aggressive supportive
measures, appropriate management of treatment-related complications, and monitoring of measurable
residual disease (MRD) for the presence of PML/RARa. MRD monitoring is not recommended in
non–high-risk patients who achieve profound molecular remission (CRMRD2) status after consolidation,
independently from induction treatment (ATRA plus ATO or ATRA plus chemotherapy) [54]. Contrarily,
high-risk patients and those not responding well to induction therapy request frequent and accurate
monitoring. As mentioned before, a relatively large set of genes are mutated or aberrantly expressed in
APL. These genetic alterations, over their significance in prognosis, might be of use as clonal markers in
measuring MRD after treatment. The availability of new more sensitive methods of investigations, like
deep sequencing and mutation-specific ddPCR, enable a better understanding of the clonal evolution
in cases harbouring several mutations acquired during disease progression. However, apart from
high-risk characteristics, the question remains on how to discriminate at onset the cases that need a
more-timely diagnostic approach. The first study to propose a molecular risk score in APL was reported
by Hecht et al. Although the sample size was limited (79 patients), Hecht et al. demonstrated that
BAALC, ERG and WT1 expression levels integrated into a score that could offer a promising approach
to guide the monitoring of patients with APL treated with ATRA and high doses of cytarabine [55,56].
Recently, Lucena-Araujo et al. in a recent study, proposed the use of an integrative score in APL (ISAPL)
based on FLT3-ITD mutational status, ∆Np73/TAp73 expression ratio, ID1, BAALC, ERG and KMT2E
gene expression levels. They proposed that the combination of gene mutation with gene expression
analysis could improve the outcome prediction in acute promyelocytic leukemia. Lucena-Araujo et al.
suggested that a better understanding of the molecular limitation of patients in response to ATRA and
anthracycline-based chemotherapy could serve as the basis for future initiatives aiming to change
the current scenario for APL treatment in patients who live in low- and middle-income countries
(LMIC) [57]. The additional mutations events are resumed in Table 1.
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Table 1. Additional genetic events.

Author Source
Number of Samples

Method
Molecular Alterations

Ref
Dx Relapse Dx Relapse

Madan, et al Human 163 69 WGS

FLT3 (43%), WT1 (14%),
NRAS (10%) and KRAS

(4%), ARID1A (5%),
ARID1B (3%), LRP1 (3%)

PML(17%), RARA (10),
FLT3-ITD (25%), WT1 (18%),
ARID 1B (12%) RUNX1 (5%),

FLT3 (5%), NRAS (5%),
ARID1B(5%), NRAS (5%), ETV6
(4%), FANCA (3%), TP53 (3%),

LRP1 (3%), KMT2C (3%)

[44]

Yin J, et al Human 84 - Genomic DNA-PCR

FLT3-ITD (27%), WT1
(14%), FLT3-TKD (10%),
TET2 (8%), N-RAS (6%),
ASXL1 (5%), EZH2 (2%),

MLL-PTD (1%), IDH1
(1%) and CBL (1%)

- [45]

Iaccarino, et al Human 33 31 NGS (31-gene panel)

FLT3-ITD (34%), WT1
(20%), NRAS (7%),

RUNX1 (5%), FLT3-TKD
(9%), DNMT3A (5%),

ETV6 (2%), MYC (2%),
SETBP1 (2%), SF3B1 (5%),

TET2 (%)

WT1 (13%), FLT3-ITD (10%),
DNMT3A (10%), ETV6 (10%),
FLT3-TKD (6%), TET2 (6%),

ASXL1 (3%), JAK2 (3%),
RUNX1 (3%) SRSSF2 (3%),

TP53 (3%), U2AF1 (3%), PML
(19%), RARa (10%)

[46]

Gaur, et al Human 103 - DNA Sequencing (Ex 7-8) WT1 (4%) - [48]

Wartman, et al Mouse model - - NGS Jak1 V657F or V658F and
Kdm6a - [39]

Dx: diagnosis, Rel: relapse, WGS: whole genome sequence, NGS: next generation sequencing.
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4. Immunophenotypic Characteristics

The APL cells show absent or minimally expression gp-170 as well as other proteins associated to
multidrug resistance, such as MRP1, MRP2, and LRP, present in a high proportion of AMLs. This is
a feature that may be relevant to explain the striking sensitivity of APL blasts to anthracyclines [58].
APL is characterized by low or negative CD34 expression, the infrequent expression of HLA-DR
and the lack of CD7, CD11a, CD11b, CD14 and CD18, strong positivity for CD33, the expression of
CD13 and CD117 [59], and frequently show aberrant expressions of the T-cell-associated antigen CD2
which is associated with the microgranular variant morphology and increased leukocyte counts at
presentation [17,58,60]. CD56 expression has been associated with resistance to standard ATRA and
chemotherapy [61]. In a recent Chinese review of 798 APL cases, the authors in that study described
high SSC, the absence of expression of CD34 and HLA-DR, the strong expression of CD33 in 90%
of cases, the consistent expression of CD13, CD9, CD123, and the expression of CD56, CD7, CD2
(sometimes). The remaining 10% of the cases showed atypical APL phenotypes, positive for CD34
and/or HLA-DR expression, with decreased SSC and a frequent CD2 expression [62]. This suggests that
an inclusive approach is required to indicate further genetics or molecular biology tests at diagnosis.

5. Insight into the Mechanisms of Treatment Resistance in APL

The knowledge on the mechanisms of resistance to treatment in APL is vitally important to
develop new therapies. ATRA has a double therapeutic function in APL: activates the transcription of
genes involved in myeloid lineage differentiation and degrades the PML-RARα oncoprotein. ATO
degrades all PML containing molecular species, promoting apoptosis in APL cells, has a pro oxidant
effect and damages protein structures at large by resolving disulphide bonds. Resistance to ATRA and
ATO could derive mechanically from genetic mutations resulting in amino acid substitution in the
RARa ligand binding domain (LBD) and in the PML-B2 domain of PML-RARa respectively [46,63–65].
LBD mutations are confined to three clusters regions and were confirmed in 18 out of 45 (40%) relapsed
patients treated with ATRA-chemotherapy [64]. Dicysteine C212/C213 in PMLB2 domain is critical
for direct ATO binding and for the serial reaction of sumoylation, multimerization, and degradation
of PML-RARa [66]. However, such mutations cannot explain the majority of resistance to ATO
experienced in the clinic.

Recently Lehmann-Che et al. studied 64 matched samples collected from patients at initial
diagnosis, during remission, and following relapse after ATRA-chemotherapy treatment by exome
sequencing. They confirmed that APL is a relatively simple disease under the genetic profile which at
diagnosis is similar in patients who later relapse or remain in complete remission, except for a significant
excess of WT1 mutations or loss (7/18, 40%) in relapsing patients, and, importantly, that some relapses
were completely distinct from the diagnostic APL clone [65]. This has been previously observed also in
chemotherapy-treated core-binding factor leukemias [67]. Lehmann-Che, et al. identified, in addition
to WT1 mutations, rare anomalies involving activators of MAP kinase pathway and/or other epigenetic
controllers that disrupt key epigenetic or transcriptional regulators. Once relapsed, the disease often
acquires additional oncogenic alterations and/or mutations impairing the treatment response (RARa,
NT5C2). Some mutations present at diagnosis were lost upon relapse, mainly including FLT3 and
other passenger mutations. The data infer that the relapses derive from PML-RARA expressing clones,
different from the one expanded at disease onset, that survived ATRA-chemotherapy [65].

By NGS, a 31 myeloid gene panel in 33 patients in continuous complete remission (CCR) and
in 11 relapsed APL patients were analyzed, including four cases with multiple relapses. All APL
with multiple relapses after ATRA-ATO displayed a significantly higher number of mutations as
compared to CCR patient samples, indicating an accumulation of genetic alterations during disease
progression. In particular, the authors found mutations associated with clonal hematopoietic expansion,
like ASXL1, DNMT3A, JAK2, SRSF2, TET2 and TP53 [46]. The mutational patterns suggested different
models of disease progression. In some patients, relapses may originate from the driver clone present



Cancers 2019, 11, 1591 8 of 21

at diagnosis. In other cases, relapses probably emerged from ATO or ATRA-resistant subclones.
Particularly, PML-mutated subclones seemed to arise under the selective pressure of ATO treatment.

Esnault et al. reported that FLT3-ITD severely blunts ATRA response, not preventing PML-RARα
dislocation of NCoR/HDAC complex from the RARE motifs, but protecting the oncoprotein from
degradation. Thus, although in the presence of FLT3 mutations the transcriptional output of the initial
ATRA response is unaffected, the retinoid fails to degrade PML-RARA protein, whose persistence in
the cells confers the APL phenotype with PML nuclear body disruption and the deactivation of P53
signaling. The resistance is overcome by ATO [53], reflecting the efficacy of the ATRA/ATO combination
in patients with FLT3 mutation proven in different clinical studies [68,69].

Autophagy is another mechanism involved in APL resistance. The relationship between autophagy
and cancer is complex, with both deficiency and over-activation contributing to the development
and progression of cancer. In general, during the advanced stages of the malignant disease, clonal
evolution reactivates autophagy to provide for the metabolic needs of the cells and to promote
tumor growth, invasion and metastasis. The APL cells display low levels of expression of autophagy
genes and reduced autophagy activity: ATRA restores autophagy in these cells allowing granulocyte
differentiation through the degradation of PML-RARa [70]. ATO also promotes autophagy-dependent
clearance of PML-RARa in APL cells [70–72]. Hence, enhancing autophagy may have therapeutic
benefits in maturation-resistant APL cells. However, the role of autophagy following APL therapy is
not so simple, since some autophagy regulatory proteins (e.g., BECN1 and p62/SQSTM1) have been
shown to play a pro-survival role during ATRA and ATO treatment. This might contribute to the
development of resistance to treatment [32].

Alex et al. used whole exome sequencing to address ATO-resistance mechanisms in three NB4
APL cell line clones developed under ATO treatment pressure. They identified alterations in the redox
system, the ubiquitin-proteasome degradation pathway and the PI3-AKT signaling pathway [73].
Consistent with this report, low levels of ROS, glutathione and glucose uptake have been observed in
ATO-resistant NB4 cells, proposing a metabolic rewiring hypothesis as ATO-resistance mechanism
in APL cells [74]. Chendamarai using micro-array expression profiling studied 8 ATO-sensitive and
8 ATO-resistant patient samples, and found the differential regulation of the following functional
pathways: (i) Cell adhesion: Integrins, Cadherins and Mucins; (ii) cell survival and anti-apoptosis:
PI3-AKT, PTEN, NFkB, MAPK and JAK-STAT; (iii) stem cell regulation: Wnt, Hedgehog and CD34; (iv)
immune regulation: TNF-receptor super family genes, Interleukins. The multi drug resistant (MDR)
glycoprotein is scarcely expressed by APL cells [75]. There is evidence that after relapse and in therapy
resistant NB4 cell subclones, MDR and other detoxification related proteins (as MRP1) seem to be
upregulated, but the role of detoxification is not capital in the resistance mechanism. P-glycoprotein
(P-gp) and multidrug resistance-associated protein 1 (MRP1) are induced by arsenic trioxide (As2O3),
but are not the main mechanism of As2O3-resistance in acute promyelocytic leukemia cells [76].

However, very little is known on the role of the microenvironment in APL. Several studies have
shown that RARs regulate non-hematopoietic cells present in the bone marrow microenvironment
influencing the stem cell fate [77–79].

Su M. et al. proceeded from the premise that AML cells are responsive to ATRA in vitro, whereas
the drug is not efficient in the clinic, and that APL patients relapse after ATRA monotherapy. Su M. et al.
hypothesized that the enhanced activity of ATRA metabolizing enzyme cytochrome P450 gene CYP26
by stromal cells could contribute to the rescue of APL cells and to the persistence of the residual
disease [80].

The PML function is essential for immunosurveillance and has been proven that its degradation via
ubiquitination promotes lung cancer progression by fostering an immunosuppressive and prometastatic
tumor microenvironment [81]. During therapy, the degradation of PML by ATO also occurs in the BM
stromal cells mimicking this effect, and contributes to sparing APL stem cells in relapsing patients.
A recent report provided evidence for the involvement of microenvironment-mediated drug-resistance
in ATO treated APL cells, which is driven by the nuclear factor kappa B (NF-kappa B) pathway [82].
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Finally, a very limited number of patients showing an APL phenotype devoid of the t(15;17),
exhibited a variety of X-RARa fusions: PLZF [83]; NuMA [84], NPM [83], STAT5b [85], FIP1L1 [86],
PRKAR1A [87], ZBTB16 [88]; BCoR [89]; OBFC2A [90]; TBLR1 [91]; GTF2I [92]; IRF2BP2 [93]
and FNDC3B [94]. Interestingly, most patients expressing X-RARa show clinical resistance to
ATRA and/or ATO, but the molecular mechanism involved is not well known. In the case of
PLZF-RARa, the resistance to ATRA has been associated with the reciprocal transcript RARa-PLZF via
CRABPI-upregulation [95]. The molecular mechanisms of ATRA resistance in STAT5b-RARa could
be related to aberrant transcription regulation of STAT5b target genes, but the mechanism must be
investigated. Further, ZBTB16 and TBLR1 are also ATRA-resistant. ATO resistance in clinical setting
has been observed in patients expressing PLZF-, STAT5b-, BCoR- and ZBTB16-RARa [88]. The lack of
ATO binding sites in X-RARa proteins may cause the resistance to ATO treatment (Figure 2).
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substitution in the RARa ligand binding domain (LBD) and in the PML-B2 domain of PML-RARa
(ii) deregulated pathways like AKT/mTOR, activators of MAP kinase pathway and/or other epigenetic
controllers or additional gene mutations (ei WT1), (iii) FLT3-ITD severely blunts ATRA response, which
fails to degrade PML-RARA protein whose persistence in the cells confers the APL phenotype with
PML nuclear body disruption and deactivation of P53 signaling. This type of resistance is overcome by
ATO (iv) some autophagy regulatory proteins BECN1 and p62/SQSTM1 have been shown to play a
pro-survival role during ATRA and ATO treatment, (v) alterations in the redox system. (vi) Metabolic
alterations (vii) High expression of multi drug resistant (MDR) proteins, (viii) Microenvironment
influences (ix) Presence of X-RARa fusions.

6. Experimental Strategies for the Treatment of Resistant APL

The treatment outcomes in patients with newly diagnosed APL have improved dramatically in the
last three decades since the advent of ATRA. Some years later, the introduction of ATO-ATRA combined
with chemotherapy resulted in cure rates above 80%, but was associated with the risk of severe
infections and secondary leukemias [96–99]. ATO has been shown to act synergistically with ATRA to
induce the degradation of the PML-RARA oncoprotein [100] and the chemo-free ATRA-ATO approach
is nowadays regarded as the first treatment choice for patients with non-high-risk APL [68,69,101].
A recent review from the European leukemia network details the guidelines in the management of
frontline and relapsed APL and the specific recommendations for the identification and management
of the most important complications: bleeding disorder, differentiation syndrome, QT prolongation
and all the other toxicities related to treatment with ATRA and ATO [54].

When diagnosed and treated promptly, APL is curable in the vast majority of patients, yet
approximately 5% of cases are resistant to standard therapy and 5 to 10% relapse and eventually
become resistant. In these patients, hematologic stem cell transplantation (allo-HSCT) is the only
curative approach [54]. ATRA is the retinoid of choice, but other retinoids are being developed. A recent
randomized study of the Japanese Adult Leukemia Study Group comparing the new retinoid molecule
tamibarotene demonstrated a significant relapse-free survival benefit over ATRA as maintenance
therapy [102].

Considerable effort has been dedicated to identify specific targets and novel compounds acting
in synergy with, and preventing resistance to retinoids and ATO. The HDAC inhibitors as sodium
butyrate, valproic acid and trichostatin A have been used in combination with ATRA in the attempt
to inhibit co-repressor complexes that contain HDACs recruited by PML-RARα [103]. Gemtuzumab
ozogamicin (GO), an anti-CD33 monoclonal antibody linked with calicheamicin, efficiently targets
highly CD33- expressing APL cells [104–106].

The authors recently reported that megadoses ascorbate (ASC) induces the degradation of
PML-RARa and causes apoptosis in vitro in a variety of human myeloid cell lines, including ATRA-and
ATO-resistant cell lines, and cord blood-derived normal CD34+cells [107,108].

ATO itself is a pro-oxidant factor downregulating ROS scavenging proteins and disrupting
redox pathways [66,109,110], which may act synergistically with ASC at high doses, also a potent
oxidant [111–113]. Indeed, the blasts from APL patients were highly sensitive to the ASC-ATO
combination including a PLZF-RARa positive case. The APL cells higher sensitivity to the redox
unbalance is due in part to PML-RARα interfering with the NRF2 subcellular distribution and
inhibiting its transcriptional activity (manuscript in preparation). Of note, ASC treatment causes
inhibition of the activated FLT3 signaling [107] and the combination with ATRA can be of help in
FLT3-mutated cases, since FLT3-ITD mutation blocks the therapeutic response to ATRA in an APL
mouse model [53]. Recently, Masciarelli et al. observed a strong synergistic cytotoxic effect of ATO
and the endoplasmic reticulum (ER) stress-inducing drug Tunicamycin (Tm) in ATRA sensitive and
resistant APL cell lines [114]. Gu et al. reported that pharicin B, a novel natural entkaurene diterpenoid
and, a family of compounds with a long-standing history of medical applications as traditional Eastern
remedies, stabilizes RARα protein and has a synergistic effect with ATRA in inducing differentiation in
AML cells. It also overcame ATRA resistance in two NB4 subclones [115]. Wang et al. identified a
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novel synthetic small compound, named LG-362B, that induces caspases-mediated degradation of
PML-RARα, overcoming ATRA resistance and inducing cellular differentiation in transplantable APL
murine models [116]. Calvo et al. reported that Benznidazole (BZL), a nitro aromatic anti-parassitary
drug, inhibits the proliferation of leukemic cells by blocking the cell cycle at the G0/G1 phase through
the up-regulation of p27 [117]. Ying et al reported that 2-bromopalmitate, an inhibitor of fatty acid
oxidation, overcomes ATRA resistance in cell lines and in vivo APL mouse models. Mechanistically,
2- Bromopalmitate covalently binds and stabilizes RARα protein, leading to the enhanced transcription
of RARα-target genes. Lu et al. proposed the combination of ATRA and 2-Bromopalmitate as a
promising therapeutic strategy to overcome resistance in relapsed APL patients [118]. Ganesan et al.
reported a synergistic effect of ATO plus Bortezomib in both ATO-sensitive and resistant APL cell lines.
The mechanism of the synergy involved the downregulation of the NFkB pathway, and an increase
in the unfolded protein response (UPR) and in reactive oxygen species generation in the malignant
cell. PML-RARa oncoprotein is effectively cleared with this combination despite the inhibition of
the proteasome by bortezomib, since the clearance is mediated through a p62-dependent autophagy
pathway [82]. As mentioned before, autophagy downregulation by PML-RARα contributes to the
differentiation block, therefore potentiation of this mechanism could be a desired strategy for the
differentiation therapy of APL. In this line, rapamycin and lithium, two well-known activators of
autophagy, may enhance the therapeutic effectiveness of both ATRA and ATO in APL cells. Recently,
Hussain et al. reported that phenylarsine oxide (PAO), one of the organic arsenic derivatives, could
induce PLZF-RARα degradation through the ubiquitin proteasome degradation pathway and cause
apoptosis [119]. The experimental strategies for resistance are listed in Table 2.
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Table 2. Experimental strategies for resistance.

Author Drug Function Study Source Result Follow up p Ref

Takeshita, et al. Tamibarotene
(TAM) RAR α agonist Clinical trial 270 Patients RFS %: TAM 94; ATRA 84 7- Year 0.027 [102]

Lo Coco, et al Gentuzumab
Ozogamicin

Anti CD33 +
Calicamicin Prospective Study 16 Patients Relapse RFS % 43 ± 15% 31 month - [104]

Gale, et al CEP-701
(Lestaurtinib) FLT3 inhibitor In vitro Primary APL blast

(n = 6)

Greater effect on cell
survival/proliferation in
FLT3/ITD cells, but this
inhibition was reduced in
the presence of ATRA

- - [105]

Mastrangelo, et
al

Ascorbate
Megadose Pro-oxidant, In vitro Cells Lines (n = 6)

Highly sensitive, with an
average 50 % lethal
concentration (LC50) of 3
mM Normal CD34+
not sensitive

- - [108]

Noguera, et al Ascorbate
Megadose Pro-oxidant, In vitro

Primary APL (n = 9)
and AML (n = 33)
Blast; Cells Lines
(n = 5)

Higer sensitivity
ASC induce PML/RARa
and PML degradation
ASC potenciate the effect
of ATO
Normal CD34+
not sensitive

- < 0.001 [107]

Masciarelli, et al Tunicamycin

Endoplasmic
reticulum (ER)
stress-inducing
drug

In vitro

Primary APL Blast;
ATRA sensitive and
resistant APL
cell lines

ER stress + ATO induced
apoptosis in RA-sensitive
an RA-resistant APL
cell lines

- < 0.005 [114]

Gu, et al pharicin B, stabilizes RARα
protein In vitro

Primary APL Blast;
ATRA sensitive and
resistant APL
cell lines

Induced apoptosis in
RA-sensitive and
RA-resistant APL
cell lines

- < 0.001 [115]
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Table 2. Cont.

Author Drug Function Study Source Result Follow up p Ref

Wang, et al LG-362B,
caspases-mediated
degradation of
PML-RARα

In vitro e in vivo

Primary APL Blast;
ATRA sensitive and
resistant APL cell
lines
Murin models

Inhibits the proliferation
of APL in vitro and
in vivo
Synergistic or additive
differentiation effect
with ATRA
Overcom ATRA
resistance

- RTW: <
0.01 [116]

Ying, et al 2-bromopalmitate
(2-Br)

inhibitor of fatty
acid oxidation In vitro

Primary APL Blast;
ATRA sensitive and
resistant APL cell
lines
Murin models

ATRA + 2Br to
overcoming ATRA
resistance

-

Blast: <
0.05 to <

0.001 (n =
7); > 0.05

(n = 4)
RTW: <

0.05

[118]

Ganesan et al ATO plus
Bortezomib

downregulation
of the NFkB
pathway,
PML-RARa
degradation
inhibition of the
proteasome by
bortezomib

In vitro e in vivo

ATO sensitive and
resistant APL cell
lines
Murin models

Synergistic effect in both
ATO sensitive and ATO
resistant APL cell lines
Reduce leukemic burden
and induce long-term
survival in an APL
mouse model

- OS mouse:
0.0001 [82]

Hussain et al phenylarsine
oxide (PAO)

organic arsenic
derivatives In vitro

Cells Lines
transfected with
PLZF-RARa

PLZF-RARa degradation - - [119]

RFS: relapse-free survival, RTW: reduction tumor weight, OS: overal survival.
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7. Prophylaxis for Incidence of CNS Relapse

In the ATO era, central nervous system (CNS) involvement is rare in APL, but causes poor
prognosis. There are no hard biological data available concerning APL CNS localization, although it
has been associated with several factors including high WBC count (>10 × 109/L), CNS hemorrhage,
expression of CD2, and/or CD56 in blasts, PML-RARA bcr3 isoform, differentiation syndrome, and
above all induction therapy with single agent ATRA and regimens without Cytarabine [120–122].
A possible association between the use of ATRA and the development of extramedullary disease was
disproved [123]. However, it is conceivable that the emergence of such a complication was more
apparent due to better therapy and the prolonged survival of resistant patients. ATO is known to
cross the blood-brain barrier and has CNS penetration at therapeutically meaningful levels (CSF
concentration at 20% to 50% of plasma concentration). Recently, Sanz et al. reported that there are no
formal data supporting the use of CNS prophylaxis in the ATO era [54]. Furthermore, Larson et al. did
not recommend intrathecal chemotherapy (ITT) in the treatment of APL for any risk, thus prophylactic
ITT was not used in trials that incorporated ATRA and ATO [69,124–126].

8. Conclusions and Future Perspectives

Since the first insights into the PML-RARa network and the differentiating effect of retinoids,
APL has been a fascinating field for researchers as a first example of an acute myeloid leukemia cured
without antiblastic chemotherapy. In all, a very successful history of setting the clinical standards,
at least in countries without economical restraints for the expenses necessary for early diagnosis and
treatment. One of the main challenges in APL to date is prompt diagnosis and treament, since the
early death rate still reaches 15%, which is unacceptable in this disease. Yet, approximately 5 to 10% of
patients will relapse and may become resistant. Thus, identification of patients at risk of clonal evolution
and resistance is of vital importance. The complete definition of the genomic landscape of APL and
the characterization of meaningful accessory genetic alterations, point mutations, gene copy number
amplification or loss, and modification of the epigenome may pave the way for a deeper understanding
of the regulatory networks in APL cells. In particular, definition of metabolic peculiarities may provide
useful prognostic information and therapeutic targets, facilitating the development of active and safe
agents to be tested in clinical trials.

Reference

Author Contributions: N.I.N. write the manuscript, G.C. co-wrote the manuscript, C.B. contributed with the
design of figures, M.D., I.F. and T.O. critically reviewed the manuscript and contributed with the graphical abstract,
W.A. and M.T.V. critically reviewed the manuscript and amended the final report.

Funding: This work was supported by AIRC 5x1000 call “Metastatic disease: the key unmet need in oncology” to
MYNERVA project, #21267 (Myeloid Neoplasms Research Venture Airc, a detailed description of the MYNERVA
project is available at http://www.progettoagimm.it.) by GIMEMA Foundation and PRIN grant N. 2017WXR7ZT
to MTV. The APC was funded by MYNERVA project #21267.

Acknowledgments: This review is dedicated to the memory of our mentor and friend Francesco Lo Coco, who
passed away in March 2019 after over 30 years dedicated to the cure of Acute Promyelocytic leukemia.

Conflicts of Interest: The authors declare no conflicts of interests.

References

1. De Thé, H.; Chomienne, C.; Lanotte, M.; Degos, L.; Dejean, A. The t(15;17) translocation of acute promyelocytic
leukaemia fuses the retinoic acid receptor α gene to a novel transcribed locus. Nature 1990, 347, 558–561.
[CrossRef] [PubMed]

2. Alcalay, M.; Zangrilli, D.; Pandolfi, P.P.; Longo, L.; Mencarelli, A.; Giacomucci, A.; Rocchi, M.; Biondi, A.;
Rambaldi, A.; Lo Coco, F.; et al. Translocation breakpoint of acute promyelocytic leukemia lies within the
retinoic acid receptor α locus. Proc. Natl. Acad. Sci. USA 1991, 88, 1977–1981. [CrossRef] [PubMed]

http://www.progettoagimm.it
http://dx.doi.org/10.1038/347558a0
http://www.ncbi.nlm.nih.gov/pubmed/2170850
http://dx.doi.org/10.1073/pnas.88.5.1977
http://www.ncbi.nlm.nih.gov/pubmed/1848017


Cancers 2019, 11, 1591 15 of 21

3. Grignani, F.; Ferrucci, P.F.; Testa, U.; Talamo, G.; Fagioli, M.; Alcalay, M.; Mencarelli, A.; Grignani, F.;
Peschle, C.; Nicoletti, I.; et al. The acute promyelocytic leukemia-specific PML-RARα fusion protein inhibits
differentiation and promotes survival of myeloid precursor cells. Cell 1993, 74, 423–431. [CrossRef]

4. Di Masi, A.; Leboffe, L.; De Marinis, E.; Pagano, F.; Cicconi, L.; Rochette-Egly, C.; Lo-Coco, F.; Ascenzi, P.;
Nervi, C. Retinoic acid receptors: From molecular mechanisms to cancer therapy. Mol. Aspects Med. 2015.
[CrossRef]

5. Hadjimichael, C.; Chanoumidou, K.; Nikolaou, C.; Klonizakis, A.; Theodosi, G.I.; Makatounakis, T.;
Papamatheakis, J.; Kretsovali, A. Promyelocytic leukemia protein is an essential regulator of stem cell
pluripotency and somatic cell reprogramming. Stem Cell Rep. 2017, 8, 1366–1378. [CrossRef]

6. Lallemand-Breitenbach, V.; de Thé, H. PML nuclear bodies. Cold Spring Harb. Perspect. Biol. 2010. [CrossRef]
7. Grignani, F.; De Matteis, S.; Nervi, C.; Tomassoni, L.; Gelmetti, V.; Cioce, M.; Fanelli, M.; Ruthardt, M.;

Ferrara, F.F.; Zamir, I.; et al. Fusion proteins of the retinoic acid receptor-α recruit histone deacetylase in
promyelocytic leukaemia. Nature 1998, 391, 815–818. [CrossRef]

8. Wang, K.; Wang, P.; Shi, J.; Zhu, X.; He, M.; Jia, X.; Yang, X.; Qiu, F.; Jin, W.; Qian, M.; et al. PML/RARα
targets promoter regions containing PU.1 consensus and RARE half sites in acute promyelocytic leukemia.
Cancer Cell 2010, 17, 186–197. [CrossRef]

9. Martens, J.H.A.; Brinkman, A.B.; Simmer, F.; Francoijs, K.J.; Nebbioso, A.; Ferrara, F.; Altucci, L.;
Stunnenberg, H.G. PML-RARα/RXR alters the epigenetic landscape in acute promyelocytic leukemia.
Cancer Cell 2010, 17, 173–185. [CrossRef]

10. Fabiani, E.; Falconi, G.; Noguera, N.I.; Saulle, E.; Cicconi, L.; Divona, M.; Banella, C.; Picardi, A.; Cerio, A.M.;
Boe, L.; et al. The forkhead box C1 (FOXC1) transcription factor is downregulated in acute promyelocytic
leukemia. Oncotarget 2017, 8, 84074–84085. [CrossRef]

11. Koken, M.H.; Puvion-Dutilleul, F.; Guillemin, M.C.; Viron, A.; Linares-Cruz, G.; Stuurman, N.; de Jong, L.;
Szostecki, C.; Calvo, F.; Chomienne, C. The t(15;17) translocation alters a nuclear body in a retinoic
acid-reversible fashion. EMBO J. 1994, 13, 1073–1083. [CrossRef] [PubMed]

12. Brown, D.; Kogan, S.; Lagasse, E.; Weissman, I.; Alcalay, M.; Pelicci, P.G.; Atwater, S.; Bishop, J.M. A PMLRARα
transgene initiates murine acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 1997, 94, 2551–2556.
[CrossRef] [PubMed]

13. Bischof, O.; Kirsh, O.; Pearson, M.; Itahana, K.; Pelicci, P.G.; Dejean, A. Deconstructing PML-induced
premature senescence. EMBO J. 2002, 21, 3358–3369. [CrossRef] [PubMed]

14. Gottifredi, V.; Prives, C. P53 and PML: New partners in tumor suppression. Trends Cell Biol. 2001, 11, 184–187.
[CrossRef]

15. De Stanchina, E.; Querido, E.; Narita, M.; Davuluri, R.V.; Pandolfi, P.P.; Ferbeyre, G.; Lowe, S.W. PML is a
direct p53 target that modulates p53 effector functions. Mol. Cell 2004, 13, 523–535. [CrossRef]

16. Zhu, J.; Lallemand-Breitenbach, V.; De Thé, H. Pathways of retinoic acid- or arsenic- trioxide-induced
PML/RARα catabolism, role of oncogene degradation in disease remission. Oncogene 2001, 20, 7257–7265.
[CrossRef]

17. Lo-Coco, F.; Hasan, S.K. Understanding the molecular pathogenesis of acute promyelocytic leukemia.
Best Pract. Res. Clin. Haematol. 2014, 27, 3–9. [CrossRef]

18. Di Masi, A.; Cilli, D.; Berardinelli, F.; Talarico, A.; Pallavicini, I.; Pennisi, R.; Leone, S.; Antoccia, A.;
Noguera, N.I.; Lo-Coco, F.; et al. PML nuclear body disruption impairs DNA double-strand break sensing
and repair in APL. Cell Death Dis. 2016. [CrossRef]

19. Voisset, E.; Moravcsik, E.; Stratford, E.W.; Jaye, A.; Palgrave, C.J.; Hills, R.K.; Salomoni, P.; Kogan, S.C.;
Solomon, E.; Grimwade, D. PML nuclear body disruption cooperates in APL pathogenesis and impairs DNA
damage repair pathways in mice. Blood 2018, 131, 636–648. [CrossRef]

20. Pennisi, R.; Ascenzi, P.; di Masi, A. Hsp90: A new player in DNA Repair? Biomolecules 2015, 5, 2589–2618.
[CrossRef]

21. Piredda, M.L.; Gaur, G.; Catalano, G.; Divona, M.; Banella, C.; Travaglini, S.; Puzzangara, M.C.; Voso, M.T.;
Lo-Coco, F.; Noguera, N.I. PML/RARA inhibits expression of HSP90 and its target AKT. Br. J. Haematol. 2019,
184, 937–948. [CrossRef] [PubMed]

22. Ito, K.; Bernardi, R.; Morotti, A.; Matsuoka, S.; Saglio, G.; Ikeda, Y.; Rosenblatt, J.; Avigan, D.E.;
Teruya-Feldstein, J.; Pandolfi, P.P. PML targeting eradicates quiescent leukaemia-initiating cells. Nature 2008,
453, 1072–1078. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/0092-8674(93)80044-F
http://dx.doi.org/10.1016/j.mam.2014.12.003
http://dx.doi.org/10.1016/j.stemcr.2017.03.006
http://dx.doi.org/10.1101/cshperspect.a000661
http://dx.doi.org/10.1038/35901
http://dx.doi.org/10.1016/j.ccr.2009.12.045
http://dx.doi.org/10.1016/j.ccr.2009.12.042
http://dx.doi.org/10.18632/oncotarget.21101
http://dx.doi.org/10.1002/j.1460-2075.1994.tb06356.x
http://www.ncbi.nlm.nih.gov/pubmed/8131741
http://dx.doi.org/10.1073/pnas.94.6.2551
http://www.ncbi.nlm.nih.gov/pubmed/9122233
http://dx.doi.org/10.1093/emboj/cdf341
http://www.ncbi.nlm.nih.gov/pubmed/12093737
http://dx.doi.org/10.1016/S0962-8924(01)01983-3
http://dx.doi.org/10.1016/S1097-2765(04)00062-0
http://dx.doi.org/10.1038/sj.onc.1204852
http://dx.doi.org/10.1016/j.beha.2014.04.006
http://dx.doi.org/10.1038/cddis.2016.115
http://dx.doi.org/10.1182/blood-2017-07-794784
http://dx.doi.org/10.3390/biom5042589
http://dx.doi.org/10.1111/bjh.15715
http://www.ncbi.nlm.nih.gov/pubmed/30536958
http://dx.doi.org/10.1038/nature07016
http://www.ncbi.nlm.nih.gov/pubmed/18469801


Cancers 2019, 11, 1591 16 of 21

23. Regad, T.; Bellodi, C.; Nicotera, P.; Salomoni, P. The tumor suppressor Pml regulates cell fate in the developing
neocortex. Nat. Neurosci. 2009, 12, 132–140. [CrossRef] [PubMed]

24. Yilmaz, Ö.H.; Valdez, R.; Theisen, B.K.; Guo, W.; Ferguson, D.O.; Wu, H.; Morrison, S.J. Pten dependence
distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006, 441, 475–482. [CrossRef]
[PubMed]

25. Zhang, J.; Grindley, J.C.; Yin, T.; Jayasinghe, S.; He, X.C.; Ross, J.T.; Haug, J.S.; Rupp, D.; Porter-Westpfahl, K.S.;
Wiedemann, L.M.; et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia
prevention. Nature 2006, 441, 518–522. [CrossRef] [PubMed]

26. Song, M.S.; Salmena, L.; Carracedo, A.; Egia, A.; Lo-Coco, F.; Teruya-Feldstein, J.; Pandolfi, P.P.
The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature
2008, 455, 813–817. [CrossRef] [PubMed]

27. Noguera, N.I.; Song, M.S.; Divona, M.; Catalano, G.; Calvo, K.L.; García, F.; Ottone, T.; Florenzano, F.;
Faraoni, I.; Battistini, L.; et al. Nucleophosmin/B26 regulates PTEN through interaction with HAUSP in acute
myeloid leukemia. Leukemia 2013, 27, 1037–1043. [CrossRef]

28. Orfali, N.; O’Donovan, T.R.; Nyhan, M.J.; Britschgi, A.; Tschan, M.P.; Cahill, M.R.; Mongan, N.P.; Gudas, L.J.;
McKenna, S.L. Induction of autophagy is a key component of all-trans-retinoic acid-induced differentiation
in leukemia cells and a potential target for pharmacologic modulation. Exp. Hematol. 2015, 43, 781–793.
[CrossRef]

29. Brigger, D.; Proikas-Cezanne, T.; Tschan, M.P. WIPI-Dependent autophagy during neutrophil differentiation
of NB4 acute promyelocytic leukemia cells. Cell Death Dis. 2014. [CrossRef]

30. Jin, J.; Britschgi, A.; Schläfli, A.M.; Humbert, M.; Shan-Krauer, D.; Batliner, J.; Federzoni, E.A.; Ernst, M.;
Torbett, B.E.; Yousefi, S.; et al. Low autophagy (ATG) gene expression is associated with an immature AML
blast cell phenotype and can be restored during AML differentiation therapy. Oxid. Med. Cell. Longev. 2018.
[CrossRef]

31. Klionsky, D.J. Autophagy: From phenomenology to molecular understanding in less than a decade. Nat. Rev.
Mol. Cell Biol. 2007, 11, 931–937. [CrossRef] [PubMed]

32. Moosavi, M.A.; Djavaheri-Mergny, M. Autophagy: New Insights into mechanisms of action and resistance
of treatment in acute promyelocytic leukemia. Int. J. Mol. Sci. 2019, 20, 3559. [CrossRef] [PubMed]

33. Ronchini, C.; Brozzi, A.; Riva, L.; Luzi, L.; Gruszka, A.M.; Melloni, G.E.M.; Scanziani, E.; Dharmalingam, G.;
Mutarelli, M.; Belcastro, V.; et al. PML-RARA-Associated cooperating mutations belong to a transcriptional
network that is deregulated in myeloid leukemias. Leukemia 2017, 31, 1975–1986. [CrossRef] [PubMed]

34. Huang, Y.; Hou, J.K.; Chen, T.T.; Zhao, X.Y.; Yan, Z.W.; Zhang, J.; Yang, J.; Kogan, S.C.; Chen, G.Q. PML-RARα
enhances constitutive autophagic activity through inhibiting the Akt/mTOR pathway. Autophagy 2011, 7,
1132–1144. [CrossRef]

35. Yamamoto, J.F.; Goodman, M.T. Patterns of leukemia incidence in the United States by subtype and
demographic characteristics, 1997–2002. Cancer Causes Control 2008, 19, 379–390. [CrossRef]

36. Douer, D. The epidemiology of acute promyelocytic leukaemia. Best Pract. Res. Clin. Haematol. 2003, 16,
357–367. [CrossRef]

37. Matasar, M.J.; Ritchie, E.K.; Consedine, N.; Magai, C.; Neugut, A.I. Incidence rates of acute promyelocytic
leukemia among Hispanics, blacks, Asians, and non-Hispanic whites in the United States. Eur. J. Cancer Prev.
2006, 15, 367–370. [CrossRef]

38. Kogan, S.C. Mouse models of acute promyelocytic leukemia. Curr. Top. Microbiol. Immunol. 2007, 313, 3–29.
39. Wartman, L.D.; Larson, D.E.; Xiang, Z.; Ding, L.; Chen, K.; Lin, L.; Cahan, P.; Klco, J.M.; Welch, J.S.; Li, C.;

et al. Sequencing a mouse acute promyelocytic leukemia genome reveals genetic events relevant for disease
progression. J. Clin. Investig. 2011, 121, 1445–1455. [CrossRef]

40. Agger, K.; Cloos, P.A.C.; Christensen, J.; Pasini, D.; Rose, S.; Rappsilber, J.; Issaeva, I.; Canaani, E.; Salcini, A.E.;
Helin, K. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development.
Nature 2007, 449, 731–734. [CrossRef]

41. Terashima, M.; Ishimura, A.; Yoshida, M.; Suzuki, Y.; Sugano, S.; Suzuki, T. The tumor suppressor Rb and its
related Rbl2 genes are regulated by Utx histone demethylase. Biochem. Biophys. Res. Commun. 2010, 399,
238–244. [CrossRef] [PubMed]

42. Wang, J.K.; Tsai, M.C.; Poulin, G.; Adler, A.S.; Chen, S.; Liu, H.; Shi, Y.; Chang, H.Y. The histone demethylase
UTX enables RB-dependent cell fate control. Genes Dev. 2010, 24, 327–332. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/nn.2251
http://www.ncbi.nlm.nih.gov/pubmed/19136970
http://dx.doi.org/10.1038/nature04703
http://www.ncbi.nlm.nih.gov/pubmed/16598206
http://dx.doi.org/10.1038/nature04747
http://www.ncbi.nlm.nih.gov/pubmed/16633340
http://dx.doi.org/10.1038/nature07290
http://www.ncbi.nlm.nih.gov/pubmed/18716620
http://dx.doi.org/10.1038/leu.2012.314
http://dx.doi.org/10.1016/j.exphem.2015.04.012
http://dx.doi.org/10.1038/cddis.2014.261
http://dx.doi.org/10.1155/2018/1482795
http://dx.doi.org/10.1038/nrm2245
http://www.ncbi.nlm.nih.gov/pubmed/17712358
http://dx.doi.org/10.3390/ijms20143559
http://www.ncbi.nlm.nih.gov/pubmed/31330838
http://dx.doi.org/10.1038/leu.2016.386
http://www.ncbi.nlm.nih.gov/pubmed/28025581
http://dx.doi.org/10.4161/auto.7.10.16636
http://dx.doi.org/10.1007/s10552-007-9097-2
http://dx.doi.org/10.1016/S1521-6926(03)00065-3
http://dx.doi.org/10.1097/00008469-200608000-00011
http://dx.doi.org/10.1172/JCI45284
http://dx.doi.org/10.1038/nature06145
http://dx.doi.org/10.1016/j.bbrc.2010.07.061
http://www.ncbi.nlm.nih.gov/pubmed/20650264
http://dx.doi.org/10.1101/gad.1882610
http://www.ncbi.nlm.nih.gov/pubmed/20123895


Cancers 2019, 11, 1591 17 of 21

43. Herz, H.M.; Madden, L.D.; Chen, Z.; Bolduc, C.; Buff, E.; Gupta, R.; Davuluri, R.; Shilatifard, A.; Hariharan, I.K.;
Bergmann, A. The H3K27me3 demethylase dUTX is a suppressor of notch- and rb-dependent tumors in
drosophila. Mol. Cell. Biol. 2010, 30, 2485–2497. [CrossRef] [PubMed]

44. Madan, V.; Shyamsunder, P.; Han, L.; Mayakonda, A.; Nagata, Y.; Sundaresan, J.; Kanojia, D.; Yoshida, K.;
Ganesan, S.; Hattori, N.; et al. Comprehensive mutational analysis of primary and relapse acute promyelocytic
leukemia. Leukemia 2016, 30, 2430. [CrossRef]

45. Yin, J.; Sun, A.N.; Tian, X.P.; Tian, H.; Wang, R.X.; Yang, Z.; Wang, X.L.; Wu, D.P.; Qiu, H.Y.; Pan, J.L.; et al.
Clinical significance of common leukemia gene mutations in patients with acute promyelocytic leukemia.
Zhongguo Shi Yan Xue Ye Xue Za Zhi 2013. [CrossRef]

46. Iaccarino, L.; Ottone, T.; Alfonso, V.; Cicconi, L.; Divona, M.; Lavorgna, S.; Travaglini, S.; Ferrantini, A.;
Falconi, G.; Baer, C.; et al. Mutational landscape of patients with acute promyelocytic leukemia at diagnosis
and relapse. Am. J. Hematol. 2019, 94, 1091–1097. [CrossRef]

47. Calvo, K.L.; Ojeda, M.J.; Ammatuna, E.; Lavorgna, S.; Ottone, T.; Targovnik, H.M.; Lo-Coco, F.; Noguera, N.I.
Detection of the nucleophosmin gene mutations in acute myelogenous leukemia through RT-PCR and
polyacrylamide gel electrophoresis. Eur. J. Haematol. 2009, 82, 69–72. [CrossRef]

48. Gaur, G.C.; Ramadan, S.M.; Cicconi, L.; Noguera, N.I.; Luna, I.; Such, E.; Lavorgna, S.; Di Giandomenico, J.;
Sanz, M.A.; Lo-Coco, F. Analysis of mutational status, SNP rs16754, and expression levels of Wilms tumor 1
(WT1) gene in acute promyelocytic leukemia. Ann. Hematol. 2012, 91, 1855–1860. [CrossRef]

49. Noguera, N.I.; Breccia, M.; Divona, M.; Diverio, D.; Costa, V.; De Santis, S.; Avvisati, G.; Pinazzi, M.B.;
Petti, M.C.; Mandelli, F.; et al. Alterations of the FLT3 gene in acute promyelocytic leukemia: Association
with diagnostic characteristics and analysis of clinical outcome in patients treated with the Italian AIDA
protocol. Leukemia 2002, 16, 2185–2189. [CrossRef]

50. Beitinjaneh, A.; Jang, S.; Roukoz, H.; Majhail, N.S. Prognostic significance of FLT3 internal tandem duplication
and tyrosine kinase domain mutations in acute promyelocytic leukemia: A systematic review. Leuk. Res.
2010, 34, 831–836. [CrossRef]

51. Kelly, L.M.; Kutok, J.L.; Williams, I.R.; Boulton, C.L.; Amaral, S.M.; Curley, D.P.; Ley, T.J.; Gilliland, D.G.
PML/RARα and FLT3-ITD induce an APL-like disease in a mouse model. Proc. Natl. Acad. Sci. USA 2002, 99,
8283–8288. [CrossRef] [PubMed]

52. McCormack, E.; Bruserud, O.; Gjertsen, B.T. Review: Genetic models of acute myeloid leukaemia. Oncogene
2008, 27, 3765–3779. [CrossRef] [PubMed]

53. Esnault, C.; Rahmé, R.; Rice, K.L.; Berthier, C.; Gaillard, C.; Quentin, S.; Maubert, A.L.; Kogan, S.; de Thé, H.
FLT3-ITD impedes retinoic acid, but not arsenic, responses in murine acute promyelocytic leukemias. Blood
2019, 133, 1495–1506. [CrossRef] [PubMed]

54. Sanz, M.A.; Fenaux, P.; Tallman, M.S.; Estey, E.H.; Löwenberg, B.; Naoe, T.; Lengfelder, E.; Döhner, H.;
Burnett, A.K.; Chen, S.J.; et al. Management of acute promyelocytic leukemia: Updated recommendations
from an expert panel of the European LeukemiaNet. Blood 2019, 133, 1630–1643. [CrossRef] [PubMed]

55. Hecht, A.; Nowak, D.; Nowak, V.; Hanfstein, B.; Büchner, T.; Spiekermann, K.; Weiß, C.; Hofmann, W.K.;
Lengfelder, E.; Nolte, F. A molecular risk score integrating BAALC, ERG and WT1 expression levels for risk
stratification in acute promyelocytic leukemia. Leuk. Res. 2015. [CrossRef]

56. Hecht, A.; Doll, S.; Altmann, H.; Nowak, D.; Lengfelder, E.; Röllig, C.; Ehninger, G.; Spiekermann, K.;
Hiddemann, W.; Weiß, C.; et al. Validation of a molecular risk score for prognosis of patients with
acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy-containing regimens.
Clin. Lymphoma Myeloma Leuk. 2017, 17, 889–896.e5. [CrossRef]

57. Lucena-Araujo, A.R.; Coelho-Silva, J.L.; Pereira-Martins, D.A.; Silveira, D.R.; Koury, L.C.; Melo, R.A.M.;
Bittencourt, R.; Pagnano, K.; Pasquini, R.; Nunes, E.C.; et al. Combining gene mutation with gene expression
analysis improves outcomes prediction in acute promyelocytic leukemia. Blood 2019. [CrossRef]

58. Paietta, E.; Goloubeva, O.; Neuberg, D.; Bennett, J.M.; Gallagher, R.; Racevskis, J.; Dewald, G.; Wiernik, P.H.;
Tallman, M.S. A surrogate marker profile for PML/RAR? expressing acute promyelocytic leukemia and the
association of immunophenotypic markers with morphologic and molecular subtypes. Cytometry 2004, 59,
1–9. [CrossRef]

59. Paietta, E. Expression of cell-surface antigens in acute promyelocytic leukaemia. Best Pract. Res. Clin.
Haematol. 2003, 16, 369–385. [CrossRef]

http://dx.doi.org/10.1128/MCB.01633-09
http://www.ncbi.nlm.nih.gov/pubmed/20212086
http://dx.doi.org/10.1038/leu.2016.237
http://dx.doi.org/10.7534/j.issn.1009-2137.2013.01.009
http://dx.doi.org/10.1002/ajh.25573
http://dx.doi.org/10.1111/j.1600-0609.2008.01155.x
http://dx.doi.org/10.1007/s00277-012-1546-7
http://dx.doi.org/10.1038/sj.leu.2402723
http://dx.doi.org/10.1016/j.leukres.2010.01.001
http://dx.doi.org/10.1073/pnas.122233699
http://www.ncbi.nlm.nih.gov/pubmed/12060771
http://dx.doi.org/10.1038/onc.2008.16
http://www.ncbi.nlm.nih.gov/pubmed/18264136
http://dx.doi.org/10.1182/blood-2018-07-866095
http://www.ncbi.nlm.nih.gov/pubmed/30674471
http://dx.doi.org/10.1182/blood-2019-01-894980
http://www.ncbi.nlm.nih.gov/pubmed/30803991
http://dx.doi.org/10.1016/j.leukres.2015.08.010
http://dx.doi.org/10.1016/j.clml.2017.08.095
http://dx.doi.org/10.1182/blood.2019000239
http://dx.doi.org/10.1002/cyto.b.20001
http://dx.doi.org/10.1016/S1521-6926(03)00042-2


Cancers 2019, 11, 1591 18 of 21

60. Albano, F.; Mestice, A.; Pannunzio, A.; Lanza, F.; Martino, B.; Pastore, D.; Ferrara, F.; Carluccio, P.; Nobile, F.;
Castoldi, G.; et al. The biological characteristics of CD34+ CD2+ adult acute promyelocytic leukemia and the
CD34- CD2- hypergranular (M3) and microgranular (M3v) phenotypes. Haematologica 2006, 91, 311–316.

61. Montesinos, P.; Rayón, C.; Vellenga, E.; Brunet, S.; González, J.; González, M.; Holowiecka, A.; Esteve, J.;
Bergua, J.; González, J.D.; et al. Clinical significance of CD56 expression in patients with acute promyelocytic
leukemia treated with all-trans retinoic acid and anthracycline-based regimens. Blood 2011, 117, 1799–1805.
[CrossRef]

62. Gong, J.Y.; Li, Y.Y.; Li, C.W.; Wang, Y.S.; Liu, Y.; Wang, C.; Ru, K.; Mi, Y.C.; Wang, J.X.; Wang, H.J. Application
of immunophenotypic analysis and molecular genetics in the diagnosis of acute promyelocytic leukemia.
Zhonghua Xue Ye Xue Za Zhi 2019, 40, 288–293. [CrossRef] [PubMed]

63. Shao, W.; Benedetti, L.; Lamph, W.W.; Nervi, C.; Miller, W.H. A retinoid-resistant acute promyelocytic
leukemia subclone expresses a dominant negative PML-RARαmutation. Blood 1997, 89, 4282–4289. [CrossRef]
[PubMed]

64. Gallagher, R.E.; Moser, B.K.; Racevskis, J.; Poiré, X.; Bloomfield, C.D.; Carroll, A.J.; Ketterling, R.P.;
Roulston, D.; Schachter-Tokarz, E.; Zhou, D.C.; et al. Treatment-influenced associations of PML-RARα
mutations, FLT3 mutations, and additional chromosome abnormalities in relapsed acute promyelocytic
leukemia. Blood 2012, 120, 2098–2108. [CrossRef] [PubMed]

65. Lehmann-Che, J.; Bally, C.; Letouzé, E.; Berthier, C.; Yuan, H.; Jollivet, F.; Ades, L.; Cassinat, B.; Hirsch, P.;
Pigneux, A.; et al. Dual origin of relapses in retinoic-Acid resistant acute promyelocytic leukemia.
Nat. Commun. 2018, 9, 2407. [CrossRef] [PubMed]

66. Jeanne, M.; Lallemand-Breitenbach, V.; Ferhi, O.; Koken, M.; Le Bras, M.; Duffort, S.; Peres, L.; Berthier, C.;
Soilihi, H.; Raught, B.; et al. PML/RARA oxidation and arsenic binding initiate the antileukemia response of
As2O3. Cancer Cell 2010, 18, 88–98. [CrossRef]

67. Van Delft, F.W.; Horsley, S.; Colman, S.; Anderson, K.; Bateman, C.; Kempski, H.; Zuna, J.; Eckert, C.; Saha, V.;
Kearney, L.; et al. Clonal origins of relapse in ETV6-RUNX1 acute lymphoblastic leukemia. Blood 2011, 117,
6247–6254. [CrossRef]

68. Lo-Coco, F.; Avvisati, G.; Vignetti, M.; Thiede, C.; Orlando, S.M.; Iacobelli, S.; Ferrara, F.; Fazi, P.; Cicconi, L.;
Di Bona, E.; et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N. Engl. J. Med. 2013,
369, 111–121. [CrossRef]

69. Burnett, A.K.; Russell, N.H.; Hills, R.K.; Bowen, D.; Kell, J.; Knapper, S.; Morgan, Y.G.; Lok, J.; Grech, A.;
Jones, G.; et al. Arsenic trioxide and all-trans retinoic acid treatment for acute promyelocytic leukaemia in all
risk groups (AML17): Results of a randomised, controlled, phase 3 trial. Lancet Oncol. 2015, 16, 1295–1305.
[CrossRef]

70. Isakson, P.; Bjørås, M.; Bøe, S.O.; Simonsen, A. Autophagy contributes to therapy-induced degradation of the
PML/RARA oncoprotein. Blood 2010, 116, 2324–2331. [CrossRef]

71. Wang, Z.; Cao, L.; Kang, R.; Yang, M.; Liu, L.; Zhao, Y.; Yu, Y.; Xie, M.; Yin, X.; Livesey, K.M.; et al. Autophagy
regulates myeloid cell differentiation by p62/SQSTM1-mediated degradation of PML-RARα oncoprotein.
Autophagy 2011, 7, 401–411. [CrossRef] [PubMed]

72. Qian, W.; Liu, J.; Jin, J.; Ni, W.; Xu, W. Arsenic trioxide induces not only apoptosis but also autophagic cell
death in leukemia cell lines via up-regulation of Beclin-1. Leuk. Res. 2007, 31, 329–339. [CrossRef] [PubMed]

73. Alex, A.A.; Chendamarai, E.; Ganesan, S.; Balasundaram, N.; Palani, H.K.; David, S.; Mathews, V. Arsenic
trioxide resistance: More to it than mutations in PML-RARalpha. Blood 2014, 124, 3605. [CrossRef]

74. Balasundaram, N.; Ganesan, S.; Palani, H.K.; Alex, A.A.; David, S.; Korula, A.; George, B.; Chomienne, C.;
Balasubramanian, P.; Mathews, V. Metabolic Rewiring Drives Resistance to Arsenic Trioxide in Acute
Promyelocytic Leukemia. Blood 2016, 128, 3956. [CrossRef]

75. Chendamarai, E.; Ganesan, S.; Alex, A.A.; Kamath, V.; Nair, S.C.; Nellickal, A.J.; Janet, N.B.; Srivastava, V.;
Lakshmi, K.M.; Viswabandya, A. Comparison of newly diagnosed and relapsed patients with acute
promyelocytic leukemia treated with arsenic trioxide: Insight into mechanisms of resistanc. PLoS ONE 2015,
10, e0121912. [CrossRef]

76. Takeshita, A.; Shinjo, K.; Naito, K.; Matsui, H.; Shigeno, K.; Nakamura, S.; Horii, T.; Maekawa, M.;
Kitamura, K.; Naoe, T.; et al. P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP1)
are induced by arsenic trioxide (As2O3), but are not the main mechanism of As2O3-resistance in acute
promyelocytic leukemia cells. Leukemia 2003. [CrossRef]

http://dx.doi.org/10.1182/blood-2010-04-277434
http://dx.doi.org/10.3760/cma.j.issn.0253-2727.2019.04.005
http://www.ncbi.nlm.nih.gov/pubmed/31104439
http://dx.doi.org/10.1182/blood.V89.12.4282
http://www.ncbi.nlm.nih.gov/pubmed/9192750
http://dx.doi.org/10.1182/blood-2012-01-407601
http://www.ncbi.nlm.nih.gov/pubmed/22734072
http://dx.doi.org/10.1038/s41467-018-04384-5
http://www.ncbi.nlm.nih.gov/pubmed/29795382
http://dx.doi.org/10.1016/j.ccr.2010.06.003
http://dx.doi.org/10.1182/blood-2010-10-314674
http://dx.doi.org/10.1056/NEJMoa1300874
http://dx.doi.org/10.1016/S1470-2045(15)00193-X
http://dx.doi.org/10.1182/blood-2010-01-261040
http://dx.doi.org/10.4161/auto.7.4.14397
http://www.ncbi.nlm.nih.gov/pubmed/21187718
http://dx.doi.org/10.1016/j.leukres.2006.06.021
http://www.ncbi.nlm.nih.gov/pubmed/16882451
http://dx.doi.org/10.1182/blood.V124.21.3605.3605
http://dx.doi.org/10.1182/blood.V128.22.3956.3956
http://dx.doi.org/10.1371/journal.pone.0121912
http://dx.doi.org/10.1038/sj.leu.2402851


Cancers 2019, 11, 1591 19 of 21

77. Conserva, M.R.; Anelli, L.; Zagaria, A.; Specchia, G.; Albano, F. The pleiotropic role of retinoic acid/retinoic
acid receptors signaling: from vitamin a metabolism to gene rearrangements in acute promyelocytic leukemia.
Int. J. Mol. Sci. 2019, 20, 2921. [CrossRef]

78. Hisada, K.; Hata, K.; Ichida, F.; Matsubara, T.; Orimo, H.; Nakano, T.; Yatani, H.; Nishimura, R.; Yoneda, T.
Retinoic acid regulates commitment of undifferentiated mesenchymal stem cells into osteoblasts and
adipocytes. J. Bone Miner. Metab. 2013, 31, 53–63. [CrossRef]

79. Cao, J.; Ma, Y.; Yao, W.; Zhang, X.; Wu, D. Retinoids regulate adipogenesis involving the TGFβ/SMAD and
Wnt/β-catenin pathways in human bone marrow mesenchymal stem cells. Int. J. Mol. Sci. 2017, 18, 842.
[CrossRef]

80. Su, M.; Alonso, S.; Jones, J.W.; Yu, J.; Kane, M.A.; Jones, R.J.; Ghiaur, G. All-trans retinoic acid activity in
acute myeloid leukemia: Role of cytochrome P450 enzyme expression by the microenvironment. PLoS ONE
2015, 10, e0127790. [CrossRef]

81. Wang, Y.T.; Chen, J.; Chang, C.W.; Jen, J.; Huang, T.Y.; Chen, C.M.; Shen, R.; Liang, S.Y.; Cheng, I.C.; Yang, S.C.;
et al. Ubiquitination of tumor suppressor PML regulates prometastatic and immunosuppressive tumor
microenvironment. J. Clin. Investig. 2017, 127, 2982–2997. [CrossRef] [PubMed]

82. Ganesan, S.; Alex, A.A.; Chendamarai, E.; Balasundaram, N.; Palani, H.K.; David, S.; Kulkarni, U.; Aiyaz, M.;
Mugasimangalam, R.; Korula, A.; et al. Rationale and efficacy of proteasome inhibitor combined with
arsenic trioxide in the treatment of acute promyelocytic leukemia. Leukemia 2016, 30, 2169–2178. [CrossRef]
[PubMed]

83. Sainty, D.; Liso, V.; Cantu-Rajnoldi, A.; Head, D.; Mozziconacci, M.J.; Arnoulet, C.; Benattar, L.; Fenu, S.;
Mancini, M.; Duchayne, E.; et al. A new morphologic classification system for acute promyelocytic leukemia
distinguishes cases with underlying PLZF/RARA gene rearrangements. Blood 2000, 96, 1287–1296. [PubMed]

84. Wells, R.A.; Catzavelos, C.; Kamel-Reid, S. Fusion of retinoic acid receptor α to NuMA, the nuclear mitotic
apparatus protein, by a variant translocation in acute promyelocytic leukaemia. Nat. Genet. 1997, 17, 109–113.
[CrossRef]

85. Arnould, C.; Philippe, C.; Bourdon, V.; Grégoire, M.J.; Berger, R.; Jonveaux, P. The signal transducer and
activator of transcription STAT5b gene is a new partner of retinoic acid receptor α in acute promyelocytic-like
leukaemia. Hum. Mol. Genet. 1999, 8, 1741–1749. [CrossRef]

86. Kondo, T.; Mori, A.; Darmanin, S.; Hashino, S.; Tanaka, J.; Asaka, M. The seventh pathogenic fusion gene
FIP1L1-RARA was isolated from a t(4;17)-positive acute promyelocytic leukemia. Haematologica 2008, 93,
1414–1416. [CrossRef]

87. Qiu, J.J.; Lu, X.; Zeisig, B.B.; Ma, Z.; Cai, X.; Chen, S.; Gronemeyer, H.; Tweardy, D.J.; So, C.W.E.; Dong, S.
Leukemic transformation by the APL fusion protein PRKAR1A-RARα critically depends on recruitment of
RXRα. Blood 2010, 115, 643–652. [CrossRef]

88. Adams, J.; Nassiri, M. Acute promyelocytic leukemia a review and discussion of variant translocations. Arch.
Pathol. Lab. Med. 2015, 139, 1308–1313. [CrossRef]

89. Ichikawa, S.; Ichikawa, S.; Ishikawa, I.; Takahashi, T.; Fujiwara, T.; Harigae, H. Successful treatment of acute
promyelocytic leukemia with a t(X;17)(p11.4;q21) and BCOR-RARA fusion gene. Cancer Genet. 2015, 208,
162–163. [CrossRef]

90. Won, D.; Shin, S.Y.; Park, C.J.; Jang, S.; Chi, H.S.; Lee, K.H.; Lee, J.O.; Seo, E.J. OBFC2A/RARA: A novel fusion
gene in variant acute promyelocytic leukemia. Blood 2013, 121, 1432–1435. [CrossRef]

91. Chen, Y.; Li, S.; Zhou, C.; Li, C.; Ru, K.; Rao, Q.; Xing, H.; Tian, Z.; Tang, K.; Mi, Y.; et al. TBLR1 fuses to
retinoid acid receptor α in a variant t(3;17)(q26;q21) translocation of acute promyelocytic leukemia. Blood
2014, 124, 936–945. [CrossRef] [PubMed]

92. Li, J.; Zhong, H.Y.; Zhang, Y.; Xiao, L.; Bai, L.H.; Liu, S.F.; Zhou, G.B.; Zhang, G. Sen GTF2I-RARA is a novel
fusion transcript in a t(7;17) variant of acute promyelocytic leukaemia with clinical resistance to retinoic acid.
Br. J. Haematol. 2015, 168, 904–908. [CrossRef] [PubMed]

93. Yin, C.C.; Jain, N.; Mehrotra, M.; Zhang, J.; Protopopov, A.; Zuo, Z.; Pemmaraju, N.; DiNardo, C.;
Hirsch-Ginsberg, C.; Wang, S.A.; et al. Identification of a novel fusion gene, IRF2BP2-RARA, in acute
promyelocytic leukemia. J. Natl. Compr. Cancer Netw. 2015, 13, 19–22. [CrossRef] [PubMed]

94. Cheng, C.K.; Wang, A.Z.; Wong, T.H.Y.; Wan, T.S.K.; Cheung, J.S.; Raghupathy, R.; Chan, N.P.H.; Ng, M.H.L.
To the editor: FNDC3B is another novel partner fused to RARA in the t(3;17)(q26;q21) variant of acute
promyelocytic leukemia. Blood 2017, 129, 2705–2709. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/ijms20122921
http://dx.doi.org/10.1007/s00774-012-0385-x
http://dx.doi.org/10.3390/ijms18040842
http://dx.doi.org/10.1371/journal.pone.0127790
http://dx.doi.org/10.1172/JCI89957
http://www.ncbi.nlm.nih.gov/pubmed/28691927
http://dx.doi.org/10.1038/leu.2016.227
http://www.ncbi.nlm.nih.gov/pubmed/27560113
http://www.ncbi.nlm.nih.gov/pubmed/10942370
http://dx.doi.org/10.1038/ng0997-109
http://dx.doi.org/10.1093/hmg/8.9.1741
http://dx.doi.org/10.3324/haematol.12854
http://dx.doi.org/10.1182/blood-2009-07-232652
http://dx.doi.org/10.5858/arpa.2013-0345-RS
http://dx.doi.org/10.1016/j.cancergen.2015.01.008
http://dx.doi.org/10.1182/blood-2012-04-423129
http://dx.doi.org/10.1182/blood-2013-10-528596
http://www.ncbi.nlm.nih.gov/pubmed/24782508
http://dx.doi.org/10.1111/bjh.13157
http://www.ncbi.nlm.nih.gov/pubmed/25284716
http://dx.doi.org/10.6004/jnccn.2015.0005
http://www.ncbi.nlm.nih.gov/pubmed/25583766
http://dx.doi.org/10.1182/blood-2017-02-767707
http://www.ncbi.nlm.nih.gov/pubmed/28314734


Cancers 2019, 11, 1591 20 of 21

95. Guidez, F.; Parks, S.; Wong, H.; Jovanovic, J.V.; Mays, A.; Gilkes, A.F.; Mills, K.I.; Guillemin, M.C.; Hobbs, R.M.;
Pandolfi, P.P.; et al. RARα-PLZF overcomes PLZF-mediated repression of CRABPI, contributing to retinoid
resistance in t(11;17) acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 2007, 104, 18694–18699.
[CrossRef]

96. Breccia, M.; Diverio, D.; Noguera, N.I.; Visani, G.; Santoro, A.; Locatelli, F.; Damiani, D.; Marmont, F.;
Vignetti, M.; Petti, M.C.; et al. Clinico-biological features and outcome of acute promyelocytic leukemia
patients with persistent polymerase chain reaction-detectable disease after AIDA front-line induction and
consolidation therapy. Haematologica 2004, 89, 29–33. [PubMed]

97. Sanz, M.A.; Lo-Coco, F. Modern approaches to treating acute promyelocytic leukemia. J. Clin. Oncol. 2011,
29, 495–503. [CrossRef]

98. Montesinos, P.; González, J.D.; González, J.; Rayón, C.; De Lisa, E.; Amigo, M.L.; Ossenkoppele, G.J.;
Peñarrubia, M.J.; Pérez-Encinas, M.; Bergua, J.; et al. Therapy-related myeloid neoplasms in patients with
acute promyelocytic leukemia treated with all-trans-retinoic acid and anthracycline-based chemotherapy.
J. Clin. Oncol. 2010, 28, 3872–3879. [CrossRef]

99. Fenaux, P.; Wang, Z.Z.; Degos, L. Treatment of acute promyelocytic leukemia by retinoids. Curr. Top.
Microbiol. Immunol. 2007, 313, 101–128.

100. De Thé, H.; Pandolfi, P.P.; Chen, Z. Acute promyelocytic leukemia: A paradigm for oncoprotein-targeted
cure. Cancer Cell 2017, 32, 552–560. [CrossRef]

101. Watts, J.M.; Tallman, M.S. Acute promyelocytic leukemia: What is the new standard of care? Blood Rev. 2014,
28, 205–212. [CrossRef] [PubMed]

102. Takeshita, A.; Asou, N.; Atsuta, Y.; Sakura, T.; Ueda, Y.; Sawa, M.; Dobashi, N.; Taniguchi, Y.; Suzuki, R.;
Nakagawa, M.; et al. Tamibarotene maintenance improved relapse-free survival of acute promyelocytic
leukemia: A final result of prospective, randomized, JALSG-APL204 study. Leukemia 2019, 33, 358–370.
[CrossRef] [PubMed]

103. Zhou, D.C.; Kim, S.H.; Ding, W.; Schultz, C.; Warrell, R.P.; Gallagher, R.E. Frequent mutations in the
ligand-binding domain of PML-RARα after multiple relapses of acute promyelocytic leukemia: Analysis for
functional relationship to response to all-trans retinoic acid and histone deacetylase inhibitors in vitro and
in vivo. Blood 2002, 99, 1356–1363. [CrossRef] [PubMed]

104. Lo-Coco, F.; Cimino, G.; Breccia, M.; Noguera, N.I.; Diverio, D.; Finolezzi, E.; Pogliani, E.M.; Di Bona, E.;
Micalizzi, C.; Kropp, M.; et al. Gemtuzumab ozogamicin (Mylotarg) as a single agent for molecularly
relapsed acute promyelocytic leukemia. Blood 2004, 104, 1995–1999. [CrossRef] [PubMed]

105. Gale, R.E.; Hills, R.; Pizzey, A.R.; Kottaridis, P.D.; Swirsky, D.; Gilkes, A.F.; Nugent, E.; Mills, K.I.; Wheatley, K.;
Solomon, E.; et al. Relationship between FLT3 mutation status, biologic characteristics, and response to
targeted therapy in acute promyelocytic leukemia. Blood 2005, 106, 3768–3776. [CrossRef] [PubMed]

106. Lo Coco, F.; Ammatuna, E.; Noguera, N. Treatment of acute promyelocytic leukemia with gemtuzumab
ozogamicin. Clin. Adv. Hematol. Oncol. 2006, 4, 57–62, 76–77.

107. Noguera, N.I.; Pelosi, E.; Angelini, D.F.; Piredda, M.L.; Guerrera, G.; Piras, E.; Battistini, L.; Massai, L.;
Berardi, A.; Catalano, G.; et al. High-dose ascorbate and arsenic trioxide selectively kill acute myeloid
leukemia and acute promyelocytic leukemia blasts in vitro. Oncotarget 2017, 8, 32550–32565. [CrossRef]

108. Mastrangelo, D.; Massai, L.; Lo Coco, F.; Noguera, N.I.; Borgia, L.; Fioritoni, G.; Berardi, A.; Iacone, A.;
Muscettola, M.; Pelosi, E.; et al. Cytotoxic effects of high concentrations of sodium ascorbate on human
myeloid cell lines. Ann. Hematol. 2015, 94, 1807–1816. [CrossRef]

109. Bernardini, S.; Nuccetelli, M.; Noguera, N.I.; Bellincampi, L.; Lunghi, P.; Bonati, A.; Mann, K.; Miller, W.H., Jr.;
Federici, G.; Lo Coco, F. Role of GSTP1-1 in mediating the effect of As2O3 in the acute promyelocytic leukemia
cell line NB4. Ann. Hematol. 2006, 85, 681–687. [CrossRef]

110. De Thé, H.; Le Bras, M.; Lallemand-Breitenbach, V. Acute promyelocytic leukemia, arsenic, and PML bodies.
J. Cell Biol. 2012, 198, 11–21. [CrossRef]

111. Mastrangelo, D.; Massai, L.; Fioritoni, G.; Coco, F.L.; Noguera, N.; Testa, U. High doses of vitamin C and
leukemia: In vitro update. In Myeloid Leukemia; Lasfar, A., Ed.; IntechOpen: London, UK, 2018.

112. Chen, Q.; Espey, M.G.; Sun, A.Y.; Pooput, C.; Kirk, K.L.; Krishna, M.C.; Khosh, D.B.; Drisko, J.; Levine, M.
Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in
mice. Proc. Natl. Acad. Sci. USA 2008, 105, 11105–11109. [CrossRef] [PubMed]

http://dx.doi.org/10.1073/pnas.0704433104
http://www.ncbi.nlm.nih.gov/pubmed/14754603
http://dx.doi.org/10.1200/JCO.2010.32.1067
http://dx.doi.org/10.1200/JCO.2010.29.2268
http://dx.doi.org/10.1016/j.ccell.2017.10.002
http://dx.doi.org/10.1016/j.blre.2014.07.001
http://www.ncbi.nlm.nih.gov/pubmed/25107311
http://dx.doi.org/10.1038/s41375-018-0233-7
http://www.ncbi.nlm.nih.gov/pubmed/30093681
http://dx.doi.org/10.1182/blood.V99.4.1356
http://www.ncbi.nlm.nih.gov/pubmed/11830487
http://dx.doi.org/10.1182/blood-2004-04-1550
http://www.ncbi.nlm.nih.gov/pubmed/15187030
http://dx.doi.org/10.1182/blood-2005-04-1746
http://www.ncbi.nlm.nih.gov/pubmed/16105978
http://dx.doi.org/10.18632/oncotarget.15925
http://dx.doi.org/10.1007/s00277-015-2464-2
http://dx.doi.org/10.1007/s00277-006-0139-8
http://dx.doi.org/10.1083/jcb.201112044
http://dx.doi.org/10.1073/pnas.0804226105
http://www.ncbi.nlm.nih.gov/pubmed/18678913


Cancers 2019, 11, 1591 21 of 21

113. Chen, Q.; Espey, M.G.; Sun, A.Y.; Lee, J.H.; Krishna, M.C.; Shacter, E.; Choyke, P.L.; Pooput, C.; Kirk, K.L.;
Buettner, G.R.; et al. Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and
hydrogen peroxide in extracellular fluid in vivo. Proc. Natl. Acad. Sci. USA 2007, 104, 8749–8754. [CrossRef]
[PubMed]

114. Masciarelli, S.; Capuano, E.; Ottone, T.; Divona, M.; De Panfilis, S.; Banella, C.; Noguera, N.I.; Picardi, A.;
Fontemaggi, G.; Blandino, G.; et al. Retinoic acid and arsenic trioxide sensitize acute promyelocytic leukemia
cells to ER stress. Leukemia 2018, 32, 285–294. [CrossRef] [PubMed]

115. Gu, Z.M.; Wu, Y.L.; Zhou, M.Y.; Liu, C.X.; Xu, H.Z.; Yan, H.; Zhao, Y.; Huang, Y.; Sun, H.D.; Chen, G.Q.
Pharicin B stabilizes retinoic acid receptor-α and presents synergistic differentiation induction with ATRA in
myeloid leukemic cells. Blood 2010, 116, 5289–5297. [CrossRef] [PubMed]

116. Wang, X.; Lin, Q.; Lv, F.; Liu, N.; Xu, Y.; Liu, M.; Chen, Y.; Yi, Z. LG-362B targets PML-RARα and blocks
ATRA resistance of acute promyelocytic leukemia. Leukemia 2016, 30, 1465–1474. [CrossRef]

117. Calvo, K.L.; Ronco, M.T.; Noguera, N.I.; García, F. Benznidazole modulates cell proliferation in acute
leukemia cells. Immunopharmacol. Immunotoxicol. 2013, 35, 478–486. [CrossRef]

118. Ying, L.; Jin-Song, Y.; Li, X.; Kang Qin, Q.-Q.Y.; Hong-Tao, X.; Meng-Qing, G.; Xiao-Ning, Q.; Yu-Ting, S.;
Guo-Qiang, C. 2-Bromopalmitate targets retinoic acid receptor alpha and overcomes all-trans retinoic acid
resistance of acute promyelocytic leukemia. Haematologica 2019, 104, 102–112. [CrossRef]

119. Hussain, L.; Maimaitiyiming, Y.; Su, L.D.; Wang, Q.Q.; Naranmandura, H. Phenylarsine oxide can induce
degradation of PLZF-RARα variant fusion protein of acute promyelocytic leukemia. Chem. Res. Toxicol.
2019, 32, 548–550. [CrossRef]

120. Furuya, A.; Kawahara, M.; Kumode, M.; Ohira, Y.; Usui, A.; Nagai, S.; Hosoba, S.; Minamiguchi, H.;
Kito, K.; Andoh, A. Central nervous system involvement of acute promyelocytic leukemia, three case reports.
Clin. Case Rep. 2017, 5, 645–653. [CrossRef]

121. Montesinos, P.; Díaz-Mediavilla, J.; Debén, G.; Prates, V.; Tormo, M.; Rubio, V.; Pérez, I.; Fernández, I.;
Viguria, M.; Rayón, C.; et al. Central nervous system involvement at first relapse in patients with acute
promyelocytic leukemia treated with all-trans retinoic acid and anthracycline monochemotherapy without
intrathecal prophylaxis. Haematologica 2009. [CrossRef]

122. Sanz, M.A.; Grimwade, D.; Tallman, M.S.; Lowenberg, B.; Fenaux, P.; Estey, E.H.; Naoe, T.; Lengfelder, E.;
Büchner, T.; Döhner, H.; et al. Management of acute promyelocytic leukemia: Recommendations from an
expert panel on behalf of the European LeukemiaNet. Blood 2009, 113, 1875–1891. [CrossRef] [PubMed]

123. Specchia, G.; Lo Coco, F.; Vignetti, M.; Avvisati, G.; Fazi, P.; Albano, F.; Di Raimondo, F.; Martino, B.;
Ferrara, F.; Selleri, C.; et al. Extramedullary involvement at relapse in acute promyelocytic leukemia patients
treated or not with all-trans retinoic acid: A report by the Gruppo Italiano Malattie Ematologiche dell’Adulto.
J. Clin. Oncol. 2001, 19, 4023–4028. [CrossRef] [PubMed]

124. Abaza, Y.; Kantarjian, H.; Garcia-Manero, G.; Estey, E.; Borthakur, G.; Jabbour, E.; Faderl, S.; O’Brien, S.;
Wierda, W.; Pierce, S.; et al. Long-term outcome of acute promyelocytic leukemia treated with all-trans-retinoic
acid, arsenic trioxide, and gemtuzumab. Blood 2017, 129, 1275–1283. [CrossRef] [PubMed]

125. Iland, H.J.; Collins, M.; Bradstock, K.; Supple, S.G.; Catalano, A.; Hertzberg, M.; Browett, P.; Grigg, A.;
Firkin, F.; Campbell, L.J.; et al. Use of arsenic trioxide in remission induction and consolidation therapy
for acute promyelocytic leukaemia in the Australasian Leukaemia and Lymphoma Group (ALLG) APML4
study: A non-randomised phase 2 trial. Lancet Haematol. 2015, 2, e357–e366. [CrossRef]

126. Osman, A.E.G.; Anderson, J.; Churpek, J.E.; Christ, T.N.; Curran, E.; Godley, L.A.; Liu, H.; Thirman, M.J.;
Odenike, T.; Stock, W.; et al. Treatment of acute promyelocytic leukemia in adults. J. Oncol. Pract. 2018, 14,
649–657. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1073/pnas.0702854104
http://www.ncbi.nlm.nih.gov/pubmed/17502596
http://dx.doi.org/10.1038/leu.2017.231
http://www.ncbi.nlm.nih.gov/pubmed/28776567
http://dx.doi.org/10.1182/blood-2010-02-267963
http://www.ncbi.nlm.nih.gov/pubmed/20739655
http://dx.doi.org/10.1038/leu.2016.50
http://dx.doi.org/10.3109/08923973.2013.811597
http://dx.doi.org/10.3324/haematol.2018.191916
http://dx.doi.org/10.1021/acs.chemrestox.9b00072
http://dx.doi.org/10.1002/ccr3.919
http://dx.doi.org/10.3324/haematol.2009.007872
http://dx.doi.org/10.1182/blood-2008-04-150250
http://www.ncbi.nlm.nih.gov/pubmed/18812465
http://dx.doi.org/10.1200/JCO.2001.19.20.4023
http://www.ncbi.nlm.nih.gov/pubmed/11600603
http://dx.doi.org/10.1182/blood-2016-09-736686
http://www.ncbi.nlm.nih.gov/pubmed/28003274
http://dx.doi.org/10.1016/S2352-3026(15)00115-5
http://dx.doi.org/10.1200/JOP.18.00328
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	APL Pathophysiology 
	Additional Genetic Events 
	Immunophenotypic Characteristics 
	Insight into the Mechanisms of Treatment Resistance in APL 
	Experimental Strategies for the Treatment of Resistant APL 
	Prophylaxis for Incidence of CNS Relapse 
	Conclusions and Future Perspectives 
	References

