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Abstract: Natural killer (NK) cells are lymphocytes of the innate immune response characterized by
their role in the destruction of tumor cells. Activation of NK cells depend on a fine balance between
activating and inhibitory signals mediated by different receptors. In recent years, a family of paired
receptors that interact with ligands of the Nectin/Nectin-like (Necl) family has attracted great interest.
Two of these ligands, Necl-5 (usually termed CD155 or PVR) and Nectin-2 (CD112), frequently
expressed on different types of tumor cells, are recognized by a group of receptors expressed on T and
NK cells that exert opposite functions after interacting with their ligands. These receptors include
DNAM-1 (CD226), TIGIT, TACTILE (CD96) and the recently described PVRIG. Whereas activation
through DNAM-1 after recognition of CD155 or CD112 enhances NK cell-mediated cytotoxicity
against a wide range of tumor cells, TIGIT recognition of these ligands exerts an inhibitory effect on
NK cells by diminishing IFN-γ production, as well as NK cell-mediated cytotoxicity. PVRIG has also
been identified as an inhibitory receptor that recognizes CD112 but not CD155. However, little is
known about the role of TACTILE as modulator of immune responses in humans. TACTILE control
of tumor growth and metastases has been reported in murine models, and it has been suggested that
it negatively regulates the anti-tumor functions mediated by DNAM-1. In NK cells from patients with
solid cancer and leukemia, it has been observed a decreased expression of DNAM-1 that may shift the
balance in favor to the inhibitory receptors TIGIT or PVRIG, further contributing to the diminished NK
cell-mediated cytotoxic capacity observed in these patients. Analysis of DNAM-1, TIGIT, TACTILE
and PVRIG on human NK cells from solid cancer or leukemia patients will clarify the role of these
receptors in cancer surveillance. Overall, it can be speculated that in cancer patients the TIGIT/PVRIG
pathways are upregulated and represent novel targets for checkpoint blockade immunotherapy.
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1. Introduction

The immune system response to pathogens is controlled by different regulatory mechanisms
to maintain tolerance to self and protect tissue integrity. Several signaling pathways mediated by
inhibitory receptors have been described to contribute to immune homeostasis while defending against
infected and transformed cells. Among these inhibitory receptors, cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1) have been well characterized in
T cells and have been shown to play an important role in regulating T cell activation and effector
functions, particularly in the context of cancer immunology [1]. The use of monoclonal antibodies
(mAbs) targeting CTLA-4 or PD-1 checkpoint pathways have been approved for clinical use leading to
durable clinical responses in various cancer types [2–4]. CTLA-4 is a co-inhibitory receptor that shares
the same ligands (B7 family that includes CD80 and CD86) with CD28, the main T cell co-stimulatory
signal, constituting the first evidence for paired activating-inhibitory receptors on T cells interacting
with the same ligands expressed on other cell types [5]. Thus, inhibitory signals provided by an ample
array of receptors are essential for immune homeostasis and tolerance of both T cells and natural killer
(NK) cells. However, inhibitory signals also contribute to the immunosuppressive microenvironment
in cancer and are preferred targets for cancer immunotherapy since checkpoint blockade therapy has
been particularly successful in some cancer settings such as melanoma.

CD28 and CTLA-4 are paired receptors that, by interacting with B7 family ligands, regulate T
cell activation but are not involved in the regulation of human NK cell function. Other two major
families of paired co-stimulatory and inhibitory receptors that regulate NK cell function have been
defined in humans. (i) The MHC class I-specific receptors such as Killer Immunoglobulin-like receptors
(KIR) and NKG2 families [6] that include activating and inhibitory forms, and (ii) a group of receptors
that interact with molecules of the Nectins and Nectin-like (Necls) family [7] and that include the
activating receptor DNAM-1 (DNAX-associated molecule 1) and the inhibitory receptors TIGIT (T-cell
immunoglobulin and ITIM domain), PVRIG (PVR-related Ig domain) and TACTILE (T cell activation,
increased late expression), that constitute the TIGIT/PVRIG/TACTILE inhibitory axis involved in the
control of NK cell function.

NK cells are innate lymphoid cells (ILC) playing major roles in the defense against tumors and
virus-infected cells. NK cell constitutive expression of lytic proteins makes them ready-to-lyse target
cells. NK cells recognize transformed cells that have lost the expression of major histocompatibility
complex (MHC) antigens. In humans, peripheral blood NK cells can be classified into different subsets
according to their surface receptor expression and functionality [8,9]. In addition, activated NK cells
release interferon (IFN)-γ and tumor necrosis factor (TNF)-α that are involved in the destruction of
target cells and promote inflammatory responses [10]. NK cell ability to lyse transformed cells without
antigen-specificity makes them unique candidates for cancer treatment. NK cell function depends on a
complex balance between signals transmitted through activating receptors and inhibitory receptors.

The major NK cell inhibitory receptors KIR and NKG2A recognize human leukocyte antigens
(HLA) class I molecules and prevent NK cell-mediated lysis of healthy cells [11]. HLA class I loss is a
frequent event on tumor-transformed cells and virus-infected cells that increases their susceptibility
to NK cell-mediated lysis, whereas cancer cells expressing HLA class I molecules are resistant to NK
cell-mediated lysis. The anti-leukemia role of NK cells is supported by studies on haemopoietic stem
cell transplantation showing that alloreactive NK cells (KIR mismatched) derived from haploidentical
donors kill leukemia blasts preventing leukemia relapse [12,13]. NK cells are the first lymphocytes
to appear after haemopoietic stem cell transplantation but frequently are dysfunctional compared
to NK cells from healthy donors. Different strategies have been designed for NK cell manipulation
including the use of checkpoint inhibitors [14]. Many studies have reported downregulation of
activating receptors in peripheral blood NK cells from patients with hematological malignancies and
solid cancers that correlated with disease progression. Despite the NK cells limited ability to infiltrate
solid tumors and reduced cytotoxicity, accumulated evidence shows a role for NK cells in the control
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of metastasis [15,16]. However, little is known concerning infiltrating NK cells in solid tumor and the
immunotherapeutic approaches designed to enhance NK cell activity in solid tumors [17].

Indeed, NK cell-mediated anti-tumor responses are also governed by other inhibitory receptors
expressed on different immune cells including NK cells, such as T-cell Ig and mucin-containing
domain-3 (Tim-3) [18], Lymphocyte Activation Gene 3 (LAG-3) [19] and PD-1 [20] whose ligands are
non-MHC class I related molecules (Figure 1). NK cell inhibitory receptors act as immune checkpoints
controlling NK cell activation and effector function via engagement of these checkpoints by their
ligands on target cells. In the last decade, blockade of these checkpoints offers novel opportunities for
cancer immunotherapy [21,22].
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Figure 1. Natural killer (NK) cell activating and inhibitory receptors and their ligands on tumor cells.
Inhibitory receptors are indicated in dark blue and activating receptors in light blue. While mouse
TACTILE expresses only intracytoplasmic inhibitory motifs, human TACTILE expresses both inhibitory
and activating motifs (indicated with dotted dark blue-light blue arrows).

Recently, another family of paired receptors that interact with ligands of the family of Nectins
and Nectin-like molecules (Necls) has attracted great interest [23,24]. Thus, DNAM-1 (also known as
CD226) [25], TACTILE (also known as CD96) [24,26], TIGIT [24,27], and PVRIG [28,29] are receptors
that share the same ligands, CD155 (Necl-5) and/or CD112 (Nectin-2), that are also known to exert
opposite functions on T and NK cells functions. Whereas DNAM-1 is an activating/co-stimulatory
receptor [30] involved in recognition and lysis of tumor cells, TIGIT [27] and PVRIG [28] engagement
inhibit NK cell function.

Advances in NK cell-based immunotherapy against cancer rely on the studies of NK cell phenotype
(e.g., expression of inhibitory and activating receptors) and lytic capacity (balance between activating
and inhibitory signals) that can be regulated by cytokines and on the studies of checkpoint blockade
with mAb. In this context, the analysis of the activating receptor DNAM-1 and its paired receptors
TIGIT, PVRIG and TACTILE opens new therapeutic possibilities.

2. Nectin and Nectin-Like Protein: Expression on Tumor Cells and Their Recognition by NK Cells

Nectins and nectin-like molecules (Necls) are a family of cell adhesion molecules that belong
to the immunoglobulin superfamily. They are expressed in many different cell types and mediate
both homotypic and heterotypic cell-cell adhesion. Besides their role in cell adhesion, it has been
shown that several members of this family can serve as virus receptors (herpesvirus 1 or poliovirus).
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In addition, some Nectins or Necls can be expressed on cells of the immune system playing an
immunoregulatory function by interacting with receptors expressed at the cell surface of other immune
cells [31]. As indicated above, some members of this Nectins and Necls family (Nectin-2 and Necl-5)
have attracted great interest for their potential use as cancer biomarkers, as they are overexpressed on
a variety of tumor cells from different origins, and as potential targets in cancer immunotherapy as
they can be recognized by activating and inhibitory paired-receptors expressed on NK cells [23,32–34].

2.1. CD155 or Necl-5

CD155, also referred as Necl-5, as it belongs to the Necls molecule family, was originally identified
as a poliovirus receptor (PVR). It is an immunoglobulin (Ig)-like adhesion molecule, with an important
role in cell migration and proliferation [31,35,36]. In the field of tumor immunology, CD155 has gained
an importance as it is overexpressed in various human malignancies and is involved in mediating
tumor cell invasion and migration [37,38]. As it will be reviewed below, CD155 has an important
immunoregulatory functions through its interactions with both co-stimulatory receptor DNAM-1
(CD226) and co-inhibitory receptor TIGIT and TACTILE (CD96) on NK and T cells [39–41].

2.2. CD112 or Nectin-2

Another member of the Nectin-family molecules is CD112, also termed Nectin-2 or poliovirus
receptor-related 2 protein (PVRL2). It is an adhesion molecule that belongs to the Ig gene superfamily
and it is involved in the formation of cell junctions [42]. CD112 is closely connected to tumorigenesis,
being overexpressed in different types of cancers such as acute myeloid leukemia, multiple myeloma
and epithelial cancers [43–45]. Besides, it has been reported that CD112 expression is associated
with aggressiveness and poor prognosis of gallbladder cancer [46]. CD112 is a ligand for human
DNAM-1, and its interaction along with other triggering NK receptors triggers human NK cell-mediated
cytotoxicity [39,47]. However, it has been reported that the inhibitory receptors TIGIT and PVRIG also
recognize and interact with CD112 leading to inhibition of NK cell-mediated cytotoxicity [29,41].

2.3. CD111 (Nectin-1) and CD113 (Nectin-3)

In addition to CD112 and CD155, other Nectins have been recently identified as ligands for
TACTILE and TIGIT. Thus, CD111 (Nectin-1 or PVRL1) that was previously described as a receptor for
herpes viruses [48] is also a ligand for TACTILE [49], and CD113 (Nectin-3 or PVRL3), that originally
was described as a member of Ig-like cell adhesion molecules [50], has recently been identified as a
ligand for TIGIT [51].

3. Paired Receptors for Nectin and Nectin-Like Proteins

DNAM-1, TIGIT, PVRIG and TACTILE (CD96), constitute a group of Ig superfamily receptors
that share the same ligands but show opposite functions. The DNAM-1 activating receptor and
the TIGIT/PVRIG/TACTILE inhibitory axis have been shown to be key regulators of anti-tumor
immune responses.

3.1. DNAM-1

DNAM-1 (also known as CD226) was first discovered as a costimulatory receptor in cytotoxic
T cells that was named TLiSA1 for human T lineage-specific activation antigen [52,53]. DNAM-1 is
also expressed by NK cells and other immune cells such as monocytes. The extracellular portion
of DNAM-1 contains two Ig-like domains and its cytoplasmic tail contains three tyrosine residues.
NK cell cytotoxicity is triggered by DNAM-1 cross-linking resulting in Fyn mediated tyrosine
phosphorylation [53]. DNAM-1 ligands were identified as PVR (CD155) and Nectin-2 (CD112) [39,54].
DNAM-1 is associated with NK cell education [55]. Thus, according to the expression of DNAM-1
two distinct NK cell subsets have been described in mice, the DNAM1+ and DNAM-1− subsets, with
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different functions. Specifically, DNAM-1+ NK cells express high levels of inflammatory cytokines and
high proliferative capacity whereas DNAM-1− NK cells produce high levels of chemokines and have
greater expression of NK cell receptor genes. DNAM-1− cells differentiate from DNAM-1+ NK cells,
suggesting that DNAM-1 expression distinguishes the NK cell maturation program status. DNAM-1
expression decreases during NK cells differentiation and the DNAM-1+/ DNAM-1− NK cells ratio
diminishes from birth [30]. Nevertheless, it is not clear if this model of NK cell maturation applies also
to human NK cells. Unlike the mouse, most human NK cells express DNAM-1 and its expression,
together with LFA-1, has been linked to NK cell education [56,57]. However, differences in DNAM-1
expression level can represent different maturation status of human NK cells [55]. Down-regulation of
DNAM-1 expression on human NK cells has been reported in healthy ageing and in several diseases
including cancer [58–61].

The recognition of CD155 by DNAM-1 potentiates the cytotoxicity of NK cells against a range
of tumor cells and has been shown to be critical for tumor immunosurveillance in several murine
models [62–64], although its significance in immunosurveillance has been controversial as, in some
experimental circumstances, the antitumoral effect of DNAM-1 was significant only when the
antitumoral response induced by cytokines was analyzed [65].

Cancer cells frequently express high levels of DNAM-1’s ligands and DNAM-1 activation is
involved in the killing of cancer cells [33,43,44,47,66]. Indeed, NK cell-mediated lysis of cancer cells
was associated with the expression of CD155 in tumor cells from neuroblastoma [67] and ovarian
cancer patients [68,69]. Furthermore, the expression of DNAM-1 was decreased in NK cells from acute
myeloid leukemia patients and it was negatively correlated with the expression of CD112 in blasts [43]
supporting that DNAM-1 downregulation on NK cells in patients with cancer, is a consequence of
the tumor burden. Increased expression of DNAM-1’s ligands are induced on multiple myeloma
cells after chemotherapy, increasing their susceptibility to NK cell-mediated lysis [70]. NK cells in
myelodysplastic syndrome patients show reduced levels of DNAM-1 and NKG2D that correlated
with bone marrow blast counts [61]. DNAM-1’s ligands, CD155 and CD112, can be also expressed in
some immune cells [71,72]. DNAM-1 cooperates with NKp30 in the lysis of immature dendritic cells
expressing DNAM-1 ligands [71]. Activated T cells upregulate CD155 and became susceptible to NK
cell-mediated killing, a process that requires the cooperation between DNAM-1 and NKG2D [72].

In the last decade, different experimental models have demonstrated the existence of NK cells with
adaptive capacities to remember previous encounters with pathogens such as CMV and to mediate
more effective protection against pathogens [73]. It has been shown that DNAM-1 is involved in the
generation of NK cells displaying these memory-like functions [74].

The studies of the expression of DNAM-1 in NK cells supports that its interaction with its ligands
on tumor cells plays an important role against different types of cancer. However, the discovery in
recent years that these ligands are also recognized by inhibitory receptors makes it difficult to interpret
the prognostic value of the expression of CD155 and CD112 in tumor cells.

3.2. TIGIT

TIGIT, also called VSig9, Vstm3, or WUCAM, was first identified in 2009 as a novel member of
the Ig superfamily [41,51,75,76]. TIGIT is an inhibitory receptor that is expressed on immune cells
such as effector and memory T cells, regulatory T cells, follicular T cells and NK cells [41,75–80].
The cytoplasmic tail contains an immunoreceptor tyrosine-based inhibitory motif (ITIM) and an
immunoglobulin tail tyrosine (ITT)-like motif, which are highly conserved between mouse and
human [41,51,75,76]. Similar to DNAM-1, TIGIT binds to CD112 and CD155. TIGIT also binds to
CD113, another member of the Nectin family (Figure 1) [23,51,81].

It has been suggested that the combined effects of TIGIT signaling through these pathways inhibit
cytotoxicity, granule polarization and cytokine secretion in NK cells [41,82,83]. On T cells, the inhibitory
effect of TIGIT was initially thought to be indirectly mediated by the induction of tolerogenic dendritic
cells [51]. It was later shown that TIGIT can also directly inhibit T cell activation, proliferation and
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acquisition of effector functions by targeting molecules in the TCR signaling pathway such as CD3ε
and PLCγ [75,78].

3.3. TACTILE

Human TACTILE, also known as CD96, was discovered in 1992 [84] and it has been investigated to
a lesser extent compared to DNAM-1 or TIGIT. It is a member of the Ig superfamily whose expression is
almost restricted to T and NK cells [84]. Both human and mouse TACTILE contains an ITIM-like domain
in its cytoplasmic portion that mediates inhibitory signaling after engagement with its ligand. Human
TACTILE also contains a YXXM motif similar to that of several activating receptors such as NKG2D,
however its functional relevance is poorly understood [26]. TACTILE is constitutively expressed on
resting human and murine NK cells and mediates NK cell-target cell adhesion by interacting with
CD155 [40]. In addition, it has been shown that TACTILE also binds to CD111 [23,49,85] (Figure 1).

In mice, TACTILE binding to CD155 inhibits IFN-γ production [64]. In contrast, human TACTILE
seems to have an enhancing effect in NK cell-mediated cytotoxicity [40]. However, Staniestsky et
al. failed to confirm these results [41] and in vitro blocking experiments did not demonstrate a role
of human TACTILE in NK cell killing of ovarian carcinoma cells [68] or myeloma cell lines [45].
Furthermore, no evidence of a role of TACTILE in the lysis of different tumor cells was found in
mice [85].

Despite the results obtained in preclinical models, the role of TACTILE in the modulation of
the effector function of human NK cells remains unclear and discrepant results have been reported.
The functional discrepancies between human and murine TACTILE relate to the structural differences.
The presence of the activating YXXM motif in human but not in mouse TACTILE may result in
functional divergences that require further analysis. It has been suggested that human TACTILE exerts
inhibitory or activating functions depending on the cell type [26]. Split variants of the second domain
of human TACTILE have been described with different binding affinity to CD155 that may also have
significant functional relevance [86]. In mouse models, TACTILE acts as a negative regulator of NK
cell function and blockade of TACTILE with antibodies, alone or in combination with anti-CTLA-4 or
anti-PD-1, promoted antitumor responses [40,64,87]. However, in humans, the role of TACTILE in
controlling the activity of NK cells is unclear, since this receptor has motifs of activation and inhibition
that could mediate both positive and negative signals in these cells. Additional studies are required to
characterize the role of TACTILE in the activation of human NK cells to use it as a checkpoint.

3.4. PVRIG

PVRIG, also termed as CD112R, was identified in 2016 [29] as a new inhibitory receptor adding
more complexity to this network. PVRIG interacts with CD112 but not with CD155 and represents
a novel checkpoint for human T cells [29] and NK cells [28]. PVRIG binds with high affinity to its
ligand CD112 on target cells suppressing lymphocyte cytotoxic function. It has been demonstrated that
PVRIG and TIGIT are nonredundant inhibitory receptors on CD8+ T cells and targeting both pathways
enhances antitumor responses in vitro [88].

4. DNAM-1 and TIGIT/ PVRIG/TACTILE Axis in the Recognition of Tumor Cells by NK Cells:
Blockade of TIGIT and PVRIG Checkpoints in Cancer Immunotherapy

The regulation of NK cells, and also of T cells, by DNAM-1, TIGIT, PVRIG and TACTILE receptors
is achieved by complex interactions with their ligands in tumor cells that, depending on the number
of inhibitory receptors involved and their binding affinity for CD155 and CD112 on the target cells,
will counteract or not the activation signals mediated through the DNAM-1 receptor.

The axis of DNAM-1 and TIGIT/PVRIG/TACTILE, in which shared ligands and different
receptor-ligands affinities regulate the immune response, represents a novel checkpoint for improving
immune responses against cancer. This balance between inhibitory and activating signals is mediated
through cell signaling after the recognition of their ligands that are usually upregulated in tumor
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cells [24,54,89]. CD155 interacts with DNAM-1, TIGIT and TACTILE and CD112 with DNAM-1, TIGIT
and PVRIG. This axis represents a promising target for cancer immunotherapy, but its regulation
remains largely unknown.

Studies on the affinity of these receptors for their ligands (Figure 2a) showed that TIGIT has a
higher affinity than DNAM-1 for CD155 and competes for binding to CD155, which interrupts the
activation mediated by DNAM-1 and delivers an inhibitory signal to T cells [51]. TACTILE also binds
to CD155 with greater affinity than DNAM-1 but lower than TIGIT [87]. In addition, it has been
proposed that TIGIT can disrupt DNAM-1 mediated co-stimulation of T cells by interfering with
cis-homodimerization of DNAM-1 [90]. Thus, various mechanisms are involved in TIGIT mediated
inhibition of T cells [24].
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Figure 2. DNAM-1/TIGIT/PVRIG/TACTILE network and its ligands CD155 and CD112. (a) DNAM-1,
TACTILE, TIGIT and PVRIG on NK and T cells interact with their ligands on tumor cells with different
affinities and mediate activating and inhibitory signaling on cytotoxic cells. (b) TIGIT expressed on
tumor cells may inhibit NK and T cells by interaction with CD155.

Recently, it has been described the expression of TIGIT in different murine tumor cell lines
(colon cancer, breast cancer, melanoma and lung carcinoma) and human colorectal cancer that delivers
inhibitory signals to CD8+ T cells and NK cells by engaging with CD155 expressed on these immune
cells. These results suggest a new pathway for TIGIT-mediated inhibition throughout the interaction
of TIGIT expressed in tumor cells with CD155 expressed in immune cells (Figure 2b). These findings
support a role of tumor intrinsic TIGIT, helping tumor escape by suppressing the function of NK and
CD8+ T cells. Interestingly, TIGIT or CD155 blockade with antibodies restores NK and CD8+ T cell
function further supporting that targeting TIGIT-CD155 interaction could be useful for immunotherapy
of cancer [91].

The effect of immunotherapy with checkpoint blockade has been shown to induce long-lasting
responses in some patients with solid and hematological tumors. However, blocking a single receptor
as monotherapy will unlikely elicit an effective immune response whereas combinatorial approaches
should be tested to improve immune responses against cancer (Figure 3). In a similar way the
recognition of CD112 on tumor cells by PVRIG expressed on T and NK cell is considered as a novel
checkpoint [29]. On the contrary, although TACTILE has one intracellular inhibitory motif and transmit
inhibitory signals in some experimental conditions, it also has an YxxM activating motif. Therefore,
this receptor has not been considered as a therapeutic target in the immunotherapy of cancer in humans
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and until now anti-TACTILE antibodies have not been considered for evaluation in clinical trials.
NK cell-based immunotherapies will also benefit from approaches that reverse the immunosuppressive
tumor microenvironment. In addition, chimeric antigen receptor (CAR) technology can also be used to
generate novel CAR-NK cells for adoptive therapies in order to overcome the NK cell suppression
by inhibitory receptors [92]. CAR engineered NK cell lines against several antigens for solid tumors
that specifically lyse target cells in vitro and with efficiency in preclinical studies have been generated,
as reviewed by Nayyar et al. [93].
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Figure 3. DNAM-1/TIGIT/ PVRIG/TACTILE axis in the recognition of tumor cells by NK cells. (a) The
activation signals mediated by DNAM-1 (represented in yellow) recognition of its ligands, CD155
(represented in light blue) and CD112 (represented in dark blue), can be counteracted by inhibitory
signaling through TIGIT and PVRIG inhibitory receptors (represented in purple and dark grey).
In humans, the role of TACTILE (represented in shaded-yellow) in this balance requires a more
detailed analysis. (b) Overexpression of DNAM-1 can induce lysis of some tumor cells but fails to
eliminate the tumor. (c) TIGIT or PVRIG checkpoint blockade improves the responses mediated by
DNAM-1 contributing to tumor elimination. (d) The combination of one or two checkpoint mAbs
with co-stimulatory bispecific mAb (e.g., anti-DNAM-1 × anti-CD155) may result in better antitumor
immune responses by increasing the interaction of DNAM-1 with its ligands. Cells surrounded by
dotted lines represent dead cells.

4.1. Anti-TIGIT mAbs in Clinical Trials for Checkpoint Cancer Immunotherapy

TIGIT has emerged as a novel inhibitory receptor that can be targeted by mAb and represents a
new checkpoint for the development of immunotherapy strategies against cancer. In mouse models,
TIGIT in combination with PD-1 blockade has been shown to act synergistically to enhance CD8+ T cell
function [90]. TIGIT blockade has been shown to enhance NK cell functional capacity [27]. Anti-TIGIT
mAb with different isotypes and mutant forms designed to eliminate Fc-FcγR interactions, that have
been shown to be deleterious in blocking PD-1 [94], have been developed for their potential as checkpoint
inhibitors. Many of the clinical trials designed to analyze the significance of anti-TIGIT antibodies
in cancer immunotherapy use them in combination with antibodies blocking other checkpoints,
in particular PD-1/PD-1L interactions. Expression of PD-1 in NK cells is restricted to a subset of
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functionally exhausted NK cells characterized for being CD56dim NKG2A–KIR+CD57+ [20]. In a recent
study in murine solid tumors, the presence of NK cells was shown to be critical for the therapeutic effects
of blockade of TIGIT checkpoints or the combined blockade of TIGIT and PD-1/PD-1L checkpoints [27],
supporting the relevance of the TIGIT signaling pathway in the immune escape of tumor cells. In
addition, these results also support that targeting different pathways by using combined anti-tumor
immunotherapy strategies can be critical to revert NK cell defective capacity to eliminate cancer cells
(reviewed in [93]).

The characteristics of phase 1 or phase 2 clinical trials using anti-TIGIT mAbs alone or in
combination with different anti-PD-1/PD-1L mAbs, including the recruitment status (as in April 2019)
and the estimated completion date, are summarized below and in Table 1.

Table 1. Clinical trials based on checkpoint blockade using mAbs against TIGIT.

Clinical
Trial

Identifier

Condition or
Disease α-TIGIT mAb Intervention Phase

Recruitment
Status April

2019

Estimated Study
Completion Date

NCT03119428 Advanced Cancer,
Metastatic Cancer

Etiligimab
(OMP-313M32)

OMP-313M32;
OMP-313M32 +

Nivolumab
1 Active,

not recruiting October, 2019

NCT03563716 Non-small Cell
Lung Cancer

Tiragolumab
(MTIG7192A)

MTIG7192A
Atezolizumab;

Placebo +
Atezolizumab

2 Active, not
recruiting February, 2021

NCT03628677 Advanced solid
tumors AB154

AB154; AB154 +
anti-PD1
(AB122)

1 Recruiting February, 2020

NCT02964013 Advanced solid
tumors MK-7684

MK-7684;
MK-7684+

Pembrolizumab
1 Recruiting June, 2022

NCT02913313 Advanced solid
tumors BMS-986207

BMS-986207;
BMS-986207 +

anti-PD1
1/2 Recruiting December, 2022

NCT03260322 Advanced solid
tumors ASP8374

ASP8374;
ASP8374+

Pembrolizumab
1 Recruiting July, 2021

NCT03945253 Advanced solid
tumors ASP8374 ASP8374 1 Not yet

recruiting December, 2022

Etigilimab (OMP-313M32) is an anti-TIGIT IgG1 mAb developed by OncoMed Pharmaceuticals.
It is under study in a phase 1 clinical trial (NCT031119428) in solid tumors as monotherapy or in
combination with Nivolumab (anti-PD-1).

Tiragolumab (also known as MTIG7192A and RG6058), is an anti-TIGIT mAb developed by
Genentech/Roche, is a fully human IgG1 antibody that binds to human TIGIT. A phase 2 clinical
trial (NCT03563716) is evaluating its use alone or in combination with Atezolizumab (anti-PD-1L) in
chemotherapy-naïve patients with locally advanced or metastatic non-small cell lung cancer.

AB154, an IgG4 anti-TIGIT mAb developed by Arcus Bioscience, is included in a phase 1 clinical
trial (NCT03628677) to evaluate the safety, pharmacokinetics, pharmacodynamics and preliminary
efficacy in advanced solid tumors as monotherapy or combined with AB122 (anti-PD-1).

MK-7684 (IgG1) anti-TIGIT mAb was developed by Merck Sharp & Dohme and it is being
evaluated in phase 1 in patients with advanced solid tumors either as monotherapy or in combination
with Pembrolizumab (anti-PD-1).

In addition, two mAbs with mutated Fc to avoid binding to FcγR are under study:
BMS-986207 (anti-TIGIT IgG1, FcγR-null) from Bristol-Myers Squibb is evaluated in a phase

1/2 clinical trial (NCT02913313), as monotherapy or in combination with Nivolumab (anti-PD-1) in
advanced solid tumors.
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ASP8374 (anti-TIGIT IgG1, FcγR-null) developed by Astellas Pharma; Potenza Therapeutics.
It leads to the activation of cytotoxic T-lymphocyte CTL mediated response against cancer cells. There are
currently two clinical trials with participants with locally advanced (unresectable) or metastatic solid
tumor malignancies, a phase 1 clinical trial (NCT03260322) evaluating the tolerability and safety profile
of ASP8374 when administered as a single agent and in combination with Pembrolizumab and a
phase 1 study (NCT03945253) to evaluate the tolerability and safety profile and to characterize the
pharmacokinetic profile of ASP8374.

4.2. PVRIG as a Novel Checkpoint for Cancer Immunotherapy

PVRIG is a recently identified inhibitory receptor that interacts with CD112 competing with
DNAM-1. Blocking PVRIG interaction with CD112 with antibodies enhanced T cell stimulation [29].
In humans, blockade of PVRIG and TIGIT has been shown to enhance trastuzumab-mediated NK cell
response against breast cancer [28]. Antibody dependent cell cytotoxicity (ADCC) mediated by NK
cells is one of the major mechanisms of action for trastuzumab against Her2 positive breast cancer.
It has been shown that, among the possible strategies to enhance trastuzumab-mediated ADCC by NK
cells, blockade of PVRIG enhances trastuzumab-triggered anti-breast cancer response [28], therefore
supporting that this receptor plays a suppressive function on NK cells. Based on these evidences,
PVRIG can be considered a therapeutic target and its blockade in vivo could imply a novel approach to
improve trastuzumab efficacy in human breast cancer. Up to now there is only one anti-PVRIG antibody
used in a clinical trial for cancer immunotherapy, COM701, that is being tested in a phase 1 clinical
trial (NCT03667716) to evaluate its safety, tolerability and preliminary clinical activity, as monotherapy
or in combination with Nivolumab, in patients with advanced solid tumors including non-small cell
lung cancer, ovarian, breast and endometrial cancer.

5. Conclusions

Considering the importance of the immune regulatory network mediated by DNAM-1, TIGIT,
TACTILE and PVRIG that involve Nectin and Nectin-like ligands, it is of interest to understand the
mechanisms governing this axis and the factors contributing to the inhibitory/activating outcome
after engagement. NK cells are now being considered a promising therapeutic target for cancer
immunotherapy, due to its peculiar ability to kill diverse tumor cells. Thus, understanding of the input
of immune checkpoints in the regulation of NK cell functions and determining the contribution of NK
cells to the clinical interest of blockade of these checkpoints will open the door for the discovery of
new therapies for different types of cancers.
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