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Simple Summary: Exosomes, carrying small non-coding RNA (miRNA), are known to play a
pivotal role in the process of tumor progression. In this prospective study, we identified miR-16,
miR-146a, miR-192, and miR- 221 to be significantly deregulated in the plasma of patients with
hepatocellular carcinoma (HCC) compared to patients with liver cirrhosis and healthy individuals.
MiR-146a revealed diagnostic potential to differentiate HCC patients from liver cirrhosis patients
with a sensitivity of 81% and a specificity of 58% in logistic regression model. Furthermore, miR- 192
independently correlated with overall survival in patients with HCC.

Abstract: We aimed to identify a specific microRNA (miRNA) pattern to determine diagnostic
and prognostic value in plasma exosomes of hepatocellular carcinoma (HCC) patients. A two-
stage study was carried out: exosomal miRNAs were quantified in plasma of HCC patients and
healthy individuals by PCR-based microarray cards containing 45 different miRNAs (training cohort).
Then, four deregulated miRNAs (miR-16, miR-146a, miR-192, and miR-221) were quantified in the
validation analysis using exosomes derived from 85 HCC patients, 50 liver cirrhosis patients, and 20
healthy individuals. Exosomal miR-146a (p = 0.0001), miR-192 (p = 0.002) and miR-221 (p = 0.032)
were upregulated only in HCC patients. Repeated 10-fold cross validation showed that miR-146a
differentiated HCC from liver cirrhosis patients with AUC of 0.80 £ 0.14 (sensitivity: 81 £ 13%,
specificity: 58 & 22%) in a logistic regression model. High miR-192 presence is associated with poor
overall survival (OS) in all HCC patients (p = 0.027) and was predictor of OS in HCC patients in an
uni- and multivariate Cox regression model. Moreover, decreased miR-16 levels correlated with OS
in liver cirrhosis patients (p = 0.034). Our results emphasized that exosomes secreted into the plasma
carry differentially expressed miRNAs of which in particular, miR-192, miR-146, and miR-16 are
promising diagnostic and prognostic markers for both HCC and liver cirrhosis patients.

Keywords: microRNAs; exosomes; hepatocellular carcinoma; liver cirrhosis; survival prediction

1. Introduction

Hepatocellular carcinoma (HCC) is the most common primary liver tumor and one
of the leading cause of cancer related death worldwide [1]. The tumor primarily arises in
patients with liver cirrhosis and it is estimated that approximately one third of patients
with liver cirrhosis will develop liver cancer during their lifetime [2]. Prognosis of HCC is
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dismal because the diagnosis is often established in an advanced stage when tumor spread
or vascular invasion hamper curative surgery or liver transplantation [3,4].

Of note, survival is impacted not only by the tumor burden, but also by the function
of the underlying liver cirrhosis. Therefore, liver function is incorporated into the most
relevant clinical classification systems (e.g., Okuda system, Barcelona Clinic Liver Cancer
Classification (BCLC) and Cancer of Liver Italian Program (CLIP) classification). This il-
lustrates the complexity of tumor therapy and the poor prognosis in patients with HCC
and liver cirrhosis [5-8]. Furthermore, as therapeutic options for patients with advanced
HCC have improved gradually over the past few years, it is crucial to identify prognostic
markers predicting tumor progression and deterioration of the liver function in order to
switch patients to more effective treatment lines [9-12].

MicroRNAs (miRNA) are small non-coding RNA molecules with a length of approxi-
mately 24 nucleotides. The main function of miRNAs is to inhibit the translation of their
target mRNAs into protein. In this regard, they bind to complementary sequences in the
3" untranslated-region (3'UTR) of their target mRNAs [13]. MiRNAs are released into
blood circulation either passively by apoptosis and necrosis, or actively in exosomes from
various cell types [14]. Exosomes are small membrane-embedded vesicles of about 100 nm,
mediating cell-to-cell communication by transferring their oncogenic cargo. Exosomal
miRNAs can modulate the genotype and phenotype of the recipient cell due to their spe-
cific function, that is, i.e., by altering cellular signal pathways and gene expression and
inducing tumor progression and metastasis [14]. In this regard, levels of secreted exosomes
have been associated with tumor invasiveness both in vitro and in vivo and are, therefore,
of great interest as promising biomarkers [15].

In the present study, we investigated the diagnostic and prognostic relevance of
miR-16, miR-146a, miR-192, and miR-221 in HCC and liver cirrhosis using two different
analytical methods. We also demonstrate their differential expression in plasma exosomes
in a cohort of patients with liver cirrhosis and HCC.

2. Materials and Methods
2.1. Study Populations

This study included a total of 84 HCC patients and 50 liver cirrhosis patients, who were
treated at the I. Department of Medicine of the University Medical Center Hamburg-
Eppendorf between November 2017 and July 2019. Liver cirrhosis was diagnosed either
histologically or by non-invasive assessment of liver stiffness (e.g., Fibroscan® (Ecosense,
Paris, France); a mean value from 10 valid measurements > 16 kPa was considered signifi-
cant) and imaging criteria (e.g., nodular margin of the liver, hypertroph of lobus caudatus,
or lobar atrophy, signs of portal hypertension in the absence of portal vein thrombosis,
ascites). The presence of ascites was diagnosed on admission or presentation to outpa-
tient department either by ultrasound or by radiology imaging (e.g., CT, MRI) when fluid
in abdominal cavity was present without evidence of portal vein thrombosis. Hepatic
encephalopathy was diagnosed in patients presenting with cognitive impairment in the
absence of underlying neurologic or psychiatric disease by psychometric test according to
recent guidelines [16]. Hepatorenal syndrome was diagnosed according to the criteria of
the International Club of Ascites as recommended in recent guidelines [17,18].

Diagnosis of HCC was histologically confirmed or based on defined imaging criteria
according to recent guidelines [19]. Tumor staging was performed according to the BCLC
classification system and the study only included patients classified as having early (BCLC
A), intermediated (BCLC B) or advanced stage (BCLC C). Treatment modalities comprised
trans-arterial chemoembolization (TACE] for stage A and B HCC patients, and systemic
therapy using sorafenib, lenvatinib or cabozantinib for stage C patients. Written informed
consent was obtained from all participants prior to any study procedure. Blood speci-
mens were obtained by venous puncture and were immediately centrifuged at 3600 rpm
at room temperature for 10 min. Plasma samples were stored at —80 °C prior to analy-
sis. Blood collection and experiments were performed in compliance with the Helsinki
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Declaration and were approved by the local Ethics Committee (Ethik-Kommission der
Arztekammer Hamburg, Hamburg, PV-3578). For quantification of exosomal miRNAs
using array cards containing 47 miRNAs, we analyzed plasma samples from 24 HCC
patients, 37 liver cirrhosis patients, and 20 healthy individuals (training cohort, clinical
parameters are listed in Table 1). In a second step, a validation cohort was established for
single cell analysis. This cohort was made up 84 HCC patients, 50 liver cirrhosis patients
and 20 healthy controls, resulting in a total amount of 154 patients (validation cohort,
clinical parameters are depicted in Table 2). Follow-up was completed on 18 November
2019. Electronic patient files were reviewed to assess the clinical course. The period of
follow-up was determined based on the date when blood specimens were obtained upon
patient’s death or the previous follow-up.

Table 1. Clinicopathological parameters of hepatocellular carcinoma (HCC) and liver cirrhosis (LC)
patients (training cohort). The cohort included 24 HCC patients (median age: 65; range 44-79), 37 LC
patients (59; 32-78) and 20 healthy controls.

Characteristics HCC Patients LC Patients
Gender (1; %) Male 20 (83.3) 22 (59.5)
Etiology of LC Alcoholic 9 (39.1) 20 (54.1)
Non-alcoholic 14 (60.9) 17 (45.9)
MELD <20 24 (100) 25 (67.6)
>20 0 12 (32.4)
CPS A 9 (37.5) 6(16.2)
B 11 (45.8) 14 (37.8)
C 4 (16.7) 17 (46.0)
History of Decompensation
Ascites 9 (37.5) 27 (73)
HE 0 9 (24.3)
HRS 0 9(24.3)
Variceal bleeding 0 3(8.1)
Tumor Characteristics
BCLC A 5 (20.9) n.a.
B 10 (41.6) n.a.
C 9 (37.5) n.a.
Distant metastases (1) 5(20.8) n.a.
Tumor nodules (1) 2 (1-5) n.a.
Sum of largest diameter (cm) 7 (3-16) n.a.
Baseline Blood Results
WBC (10°/L) 6.2 (2.1-14.7) 7.4 (1.4-21.0)
Platelets (10% /L) 138 (33-298) 117 (11-354)
Albumin (g/L) 31 (19-39) 22 (10-34)
Bilirubin (mg/dL) 1.3 (0.2-6.1) 5.3 (0.5-30)
Creatinine (mg/dL)) 1.0 (0.5-1.6) 1.5 (0.4-5.0)
GFR (ml/min) 81 (41-119) 65 (12-126)
AST (U/L) 67 (21-172) 91 (21-472)
ALT (U/L) 50 (18-108) 73 (13-767)
vyGT (U/L) 290 (40-1378) 184 (27-1063)
CRP (mg/L) 22 (5-131) 32 (5-151)
AFP (kU/L) 2698 (2-23082) 8 (2-50)
INR 1.3 (1.0-1.9) 1.4 (1.0-2.3)
Healthy Individuals (1 = 20)
Gender (1, %) Male: 12 (60)

Abbreviations: AFP, alpha-fetoprotein; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BCLC,
Barcelona Clinic for Liver Cancer classification; CPS, Child Pugh Score; CRP, c-reactive protein; GFR, glomerula
filtration rate; yGT, gamma-glutamyltransferase; HE, hepatic encephalopathy; HRS, hepato-renal syndrome;
INR, international normalized ratio; MELD, model of end-stage liver disease; non-alcoholic etiology, including
non-alcoholic fatty liver disease, hepatitis B, hepatitis C, autoimmune hepatitis, primary biliary cholangitis,
primary sclerosic cholangitis; WBC, white blood cells.
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Table 2. Clinicopathological parameters of HCC and liver cirrhosis (LC) patients analyzed using
single TagMan PCR (validation cohort). This cohort included 86 HCC patients (median age: 67; range
39-86), 51 LC patients (51; 21-78) and 20 healthy individuals (40; 20-67).

Characteristics HCC Patients LC Patients
Gender (1; %) Male 74 (86) 33 (64.7)
Etiology of LC Alcoholic 41 (47.7) 25 (49)
Non-alcoholic: 45 (52.3) 26 (51)
NAFLD 17 (19.8) 3(5.9)
HBV 7 (8.1) 3(5.9)
HCV 2(2.3) 2 (3.9)
PSC 0 2 (3.9)
Others * 19 (22.1) 10 (19.6)
MELD <20 70 (96) 35(71.4)
>20 34.1) 14 (28.6)
CPS A 39 (45.3) 11 (21.6)
B 29 (33.7) 20 (39.2)
C 18 (20.9) 20 (39.2)
History of Decompensation
Ascites 22 (25.9) 34 (66.7)
HE 2(2.4) 13 (25.5)
HRS 1(1.2) 9 (17.6)
Variceal bleeding 2 (24) 6 (11.8)
Total 23 (27.1) 38 (74.5)
Tumor Characteristics
BCLC A 7 (8) n.a.
B 39 (38) n.a.
C 40 (54) n.a.
Distant metastases (1) 19 (22) n.a.
Tumor nodules (1) 2 (1-6) n.a.
Sum of largest diameter (cm) 7 (1-26) n.a.
Progressive disease 38 (46.3) na.
Opverall survial alive/dead 51/33 n.a.
Baseline Blood Results
WBC (10° /L) 6.3 (1.4-14.7) 6.8 (1.1-21.0)
Platelets (10° /L) 155 (33-555) 120 (11-354)
Albumin (g/L) 30 (15-43) 24 (10-42)
Bilirubin (mg/dL) 1.5 (0.2-11.5) 4.7 (0.2-30)
Creatinine (mg/dL) 1.2 (0.5-9.0) 1.3 (0.4-5.0)
GFR (ml/min) 75 (6-119) 75 (12-151)
AST (U/L) 92 (11-2017) 83 (21-472)
ALT (U/L) 56 (16-810) 67 (13-767)
yGT (U/L) 262 (40-1421) 179 (14-1063)
CRP (mg/L) 20 (5-161) 27 (5-151)
AFP (kU/L) 11.961 (2-373.358) 8.4 (1.5-49.6)
INR 1.3 (0.9-11.0) 1.4 (1.0-2.3)

Abbreviations: AFP, alpha-fetoprotein; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BCLC,
Barcelona Clinic for Liver Cancer classification; CPS, Child Pugh Score; CRP, c-reactive protein; GFR, glomerula
filtration rate; yGT, gamma-glutamyltransferase; HBV, hepatitis B virus related; HCV, hepatitis C virus related,
HE, hepatic encephalopathy; HRS, hepato-renal syndrome; INR, international normalized ratio; MELD, model of
end-stage liver disease; NAFLD, non-alcoholic fatty liver disease, PSC, primary sclerosic cholangitis..; WBC,
white blood cells. * other non-alcoholic etiology, including autoimmune hepatitis, primary biliary cholangitis,
secondary sclerosic cholangitis, hemochromatosis.

2.2. Verification of Hemolysis in Plasma Samples

To avoid quantifying exosomal miRNAs in hemolytic plasma samples that may in-
fluence our results, we performed hemoglobin measurements by spectral analysis [20].
In 7 mL of whole blood, red blood cells were lysed by erythrocyte lysis buffer (containing
0.3 M sucrose, 10 mM Tris pH 7.5, 5 mM MgCl2, and 1% Triton x100). A dilution series
(undiluted; diluted 1:1, 1:3, 1:4, 1:6, 1:8, 1:10, 1:12, 1:14, 1:18, 1:20 with plasma] of lysed red
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blood cells in plasma was prepared that served as a standard curve for the measurement
of hemolysis in all plasma samples. Then, 50 pL of each plasma sample (standard and
plasma of interest) were measured in duplicates on a Microplate reader (Tecan, Ménner-
dorf, Switzerland). Absorbance peaks at 414, 541, and 576 nm were indicative for free
hemoglobin, with the highest peak at 414 nm. The higher the absorption in samples,
the higher is the degree of hemolysis. The average values and standard deviations were
calculated from the duplicates (Supplementary Figures).

2.3. Exosome Extraction

Exosomes were isolated from plasma samples with the ExoQuick kit (BioCat, Hei-
delberg, Germany). Briefly, 500 puL plasma was removed from cells and debris by two
centrifugation steps at 3000 x g for 15 min., and incubated with 120 pL ExoQuick exosome
precipitation solution at 4 °C, for 30 min. Following centrifugation at 1500 x g for 30 min.
and at 1500 g for 5 min., the pellet contained the exosomes.

2.4. Western Blot

The protein concentrations were measured with the DC Protein Assay Kit (BioRad,
Munich, Germany) at a wavelength of 650 nm on a spectrophotometric plate reader (Tecan).
A standard curve of 0, 0.15625, 0.3125, 0.625, 1.25, 2.5, 5, and 10 mg/mL bovine serum
albumin (BSA; Sigma—Aldrich Chemie, Munich, Germany) was applied by the double-
dilution method. Then, 2.5 pL of exosomes and BSA standard samples, all resuspended
in Phosphate-Buffered Saline (PBS) buffer (Life Technologies, Paisley, UK) were added to
96-well plates according to the manufacturer’s instructions. The protein concentrations
were calculated according to a linear equation of y = mx + n by applying the linear
regression method. For Western blot, 30 pg of exosomes resuspended in PBS buffer
(Life Technologies) were electrophoretically separated and blotted onto a polyvinylidene
difluoride (PVDF) membrane (Millipore, Billerica, MA, USA) which was subsequently
incubated with an antibody specific for the exosomal marker CD63 (Abgent, San Diego, CA,
USA) overnight. Detection of the proteins was carried out using a peroxidase-conjugated
secondary antibody (Dako, Glostrup, Denmark) and a chemiluminescence ECL detection
solution (Sigma-Aldrich, St. Louis, MO, USA).

2.5. Extraction of miRNAs from Exosomes

MiRNAs were extracted from exosomes resuspended in 150 pL lysis buffer (Thermo
Fisher Scientific, Vilnius, Lithuania) and 50 uL PBS (Life Technologies] by using the Tag-
Man miRNA ABC Purification Buffer Kit (Thermo Fisher Scientific). According to the
manufacturer’s instructions, the exosomal miRNAs were bound to 80 pL anti-miR beads
using the TagMan miRNA ABC Purification Bead kit Human panel A (Thermo Fisher
Scientific). To avoid technical variability, 2 pL of 1 nM synthetic non-human cel-miR-39
were added as an exogenous spike in control.

2.6. Conversion of Exosomal miRNAs into cDNA

Reverse transcription was carried out using modified protocols of TagMan MicroRNA
Reverse Transcription kit (Thermo Fisher Scientific). For PCR-based TagMan miRNA array;,
the reaction contained 6.0 uL. Custom RT Primer Pool, 0.3 uL. ANTPs with 100 mM dTTP,
3.0 uL (50 U/pL) MultiScribe Reverse Transcriptase, 1.5 uL 10xRT Buffer, 0.19 uL (20 U/uL)
RNase Inhibitor and 4 uL exosomal miRNAs. For single TagMan PCR analyses, the reaction
contained 4.0 uL RT Primer Pool (RT primer of miR-484, cel-miR-39, miR-16, miR-30b,
and miR-93 mixture diluted in Tris-EDTA (TE) 1:100), 0.2 uL. dNTPs with 100 mM dTTP,
2.0 uL (50 U/ pL) MultiScribe Reverse Transcriptase, 1 uL 10xRT Buffer, 0.127 pL (20 U/uL)
RNase Inhibitor, and 2 ul. exosomal miRNAs. The reactions were carried out at 16 °C for
30 min, 42 °C for 30 min and 85 °C for 5 min on an MJ Research PTC-200 Peltier Thermal
Cycler (Global Medical Instrumentation, Ramsey, MN, USA).
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2.7. Preamplification of cDNA

To increase input of cDNA, a preamplification step of cDNA was included. For PCR-
based TagMan miRNA array analyses, 25 uL preamplification reaction mix contained
12.5 uL TagMan PreAmp Master Mix, 3.75 uL Custom PreAmp Primer Pool (Thermo
Fisher Scientific) and 5 pL. cDNA. For single TagMan PCR analyses of miR-16, miR-30b,
and miR-93, cDNA of the reference miR-484 and miR-39 was also preamplified. Here, 1 uL
cDNA were preamplified in 5 uL Tagman PreAmp Master Mix (Thermo Fisher Scientific)
and 1.5 pL PreAmp primer pool (TagMan miRNA primers of miR-484, cel-miR-39, miR-16,
miR-30b, and miR-93 mixture diluted in TE 1:100). The reactions were run on an M]J
Research PTC-200 Peltier Thermal Cycler (Global Medical Instrumentation): 1 cycle at
95 °C for 10 min, 55 °C for 2 min, 72 °C for 2 min; 16 cycles at 95 °C for 15 s, 60 °C for
4 min; and a final cycle at 99.9 °C for 10 min. A negative control without any templates
was also included from the starting point of reverse transcription.

2.8. PCR-Based TagMan miRNA Arrays

Custom real-time PCR-based TagMan miRNA array cards (Thermo Fisher Scientific)
were used for miRNA profiling. These array cards contain assays to detect 45 human
miRNAs of interest, 1 endogenous reference miRNA (miR-484), and 1 exogenous reference
miRNA (cel-miR-39) for data normalization and 1 assay with an N/A-4343438-Blank
(negative control). For the array cards, we selected the 45 miRNAs of interest because
they have previously been described to be clinically relevant in cancer, with an exclusive
consideration for HCC. These miRNAs of interest were then mounted on the array cards by
the company Thermo Fisher Scientific and are as follows: RNU6, miR-9, miR-10b, miR-15b,
miR-16, miR-18a, miR-19a, miR-20a, miR-21, miR-23a, miR-23b, miR-24, miR-27b, miR-31,
miR-34c-3p, miR-92a, miR-96, miR-101, miR-106b, miR-107, miR-122, miR-130b, miR-135a,
miR-143, miR-146a-5p, miR-155, miR-181a, miR-182, miR-183, miR-192, miR-210, miR-221,
miR-222, miR-223, miR-224, miR-330-5p, miR-367, miR-374, miR-425-5p, miR-454, miR-484,
miR-494, miR-519a, miR-522, miR-548a-5p, miR-888-5p.

For miRNA array analyses, we modified the protocol of Thermo Fisher Scientific as
follows: The 112.5 uL PCR reaction contained 56.25 pL. TagMan Universal Master Mix
I and 2 puL PreAmp product. PCR array cards were run on a 7900 HT Fast Real-Time
PCR System (Applied Biosystems): 1 cycle at 95 °C for 10 min, 40 cycles at 95 °C for 15 s,
and 60 °C for 1 min.

2.9. Single TaqMan PCR Analyses

For quantitative real-time PCR, the TagMan miRNA assays (Thermo Fisher Scientific)
for miR-484 and cel-miR-39 (reference miRNAs), and miR-16, miR-146a, miR-192, and miR-
221 were used. In a 10 pL-reaction, 0.5 pL preamplified cDNA were mixed with 5 uL
TagMan Universal PCR Master Mix and 0.5 pL. TagMan MicroRNA Assay Quantitative
real-time PCR reaction was performed at 95 °C for 10 min and in 40 cycles at 95 °C for 15 s
and 60 °C for 60 s, on a C1000 Touch real-time PCR device (Bio-Rad, Hercules, CA, USA).

2.10. Data Normalization and Statistical Analyses

Data analyses were performed using the Thermo Fisher Scientific Analysis Software,
Relative Quantification Analysis Module, version 3.1 (www.aps.thermofisher.com, accessed
on 9 May 2019), and SPSS software package, version 22.0 (SPSS Inc., Chicago, IL, USA).

As there is no consensus on a reference miRINA for data normalization, we chose exoso-
mal miR-484 and cel-miR-39 as an endogenous and exogenous reference geneto normalize
our miRNA data. MiR-484 showed the smallest variation between healthy individuals,
HCC patients, and liver cirrhosis patients. The inter-individual variability of the efficiency
of our procedures was controlled by spiking of cel-miR-39-3p. The obtained data of the
miRNA expression levels were calculated by the ACt method as follows: ACt = mean value
Ct (reference cel-miR-39 + miR-484) — mean value Ct (miRNA of interest). The Thermo
Fisher Scientific Analysis Software was used for performing hierarchical clustering (heat


www.aps.thermofisher.com

Cancers 2021, 13, 2484

7 of 17

map) and volcano plots: To detect potential clusters in rows (miRNAs) and columns (plasma
samples) of the normalized expression matrix, hierarchical clustering was performed de-
rived from analyses of the array cards. The ACt values of miRNAs vs. the mean of references
miR-484 and cel-miR-39 among all 81 samples that were analyzed using the micro array
cards were median-centered and clustered by unsupervised hierarchical clustering based
on average linkage and Pearson’s correlation as distance metric. The similarity matrix
contains all pairwise similarities of the exosome samples from plasma of HCC patients,
liver cirrhosis patients and healthy controls. Subsequently, the relative expression data
were 2°(ACt) transformed in order to obtain normal distribution data. The confidence of
2°(ACt) data were verified by amplification curves and Ct confidence (0-1, whereby 1 refers
to the highest confidence). Our data showed a Ct confidence of 0.95. Statistical difference
of exosomal miRNA expressions between healthy controls, HCC patients, liver cirrhosis
patients, and healthy individuals were calculated using two-tailed student t-test, corrected
according to the Benjamini and Hochberg method and depicted as a volcano plot.

For nonparametric comparisons of two independent variables, miRNA differences
in group levels were compared by the Mann-Whitney-U test. Correlations of miRNA
levels with the clinical parameters were calculated using ANOVA with Tukey’s HSD test
for all pairwise comparisons that correct the experiment related error rate. Two-sample
comparisons were performed using student’s t-test for equal or unequal variance where
appropriate. Univariate and multivariate analyses were performed for prognostic factors
of OS using the Cox regression model. Kaplan-Meier plots were drawn to estimate OS,
and the log-rank test was applied for statistical analyses. Missing data were handled by
pairwise deletion. p-values below 0.05 were considered statistically significant. All p-
values are two-sided. Discriminating HCC from liver cirrhosis patients was modeled from
logarithmized miR146a concentration using logistic regression and repeated (50 repeats)
10-fold cross validation using the R package caret version 6.0-86 (https://CRAN.R-project.
org/package=caret, accessed on 14 May 2020). Model performance was evaluated using
receiver operator characteristics (ROC) curve and summarized with mean and standard
deviation of area under the ROC curve (AUC), as well as sensitivity and specificity for the
results of the repeated cross-validation runs.

3. Results
3.1. Verification of Plasma Samples and Exosomes

To avoid analyzing hemolytic plasma samples, we carried out a hemolysis assay. As ex-
pected, plasma samples from HCC patients and healthy individuals were not hemolytic.
However, the measurements of hemolysis in the plasma samples from liver cirrhosis
patients were affected by hyperbilirubenimia in plasma samples (p = 0.029, Figure 1A).
Therefore, hemolysis could not be determined in these samples, but these results show an
interesting aspect of the extent of bilirubin secretion into the plasma. Extraction of exo-
somes from three plasma samples was verified by Western Blot using an antibody specific
for the exosomal marker CD63. As shown by the 45-kDa band on the blot, the CD63-specific
antibody recognized non-lysed exosomes in our samples (Figure 1B). Additionally, extrac-
tion of exosomes has already been confirmed by our previous study visualizing exosomes
by confocal microscopy [21].
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Figure 1. Verification of plasma samples and exosomes. Hemolysis was assessed by spectrophotome-
try at wavelengths from 350 to 650 nm. The degree of hemolysis was determined based on the optical
density (OD) at 414 nm (absorbance peak of free hemoglobin, called Soret band), with additional
peaks at 541 and 576 nm. Samples were classified as being hemolyzed if the OD at 414 exceeded 0.3.
The box blot shows the levels of hemolysis in plasma samples from HCC and liver cirrhosis patients
compared with those from healthy individuals with the p-values (A). Exosomes were precipitated
from 3 plasma samples of HCC patients by the agglutinating agent ExoQuick and analyzed by a
Western blot using an antibody specific for the exosomal marker CD63. The percentages under the
blot show intensities of the areas of three bands (B).

3.2. MiRNA Profiling in Exosomes Using Microarray Cards

In a two-step analysis, we first quantified miRNAs in exosomes derived from the
plasma of 24 (14 early and 10 advanced) HCC patients, 37 liver cirrhosis patients and
20 healthy individuals (training cohort). MiRNAs were selected as listed in Materials and
Methods for the assembly of the 48-microarray cards based on our previous studies [22-25]
and research in PubMed based on their significant deregulation in HCC, and with pref-
erence to upregulated oncogenic miRNAs. Expression analysis identified clusters of up-
and downregulated miRNAs (heat map, Figure S1. The relative upregulatedand downreg-
ulated miRNAs are indicated by red and green, respectively). Using the ACt method to
determine relative expression, we demonstrated that eight and five miRNAs were signifi-
cantly enriched in exosomes from plasma of HCC and liver cirrhosis patients, respectively,
as compared with those of healthy individuals (Figure 2). The levels of six exosomal
miRNAs could discriminate between HCC and cirrhosis patients (Figure 2). For a better
overview, a Supplemental Figure (Figure S2) depicts the results as box plots, and addi-
tionally, the difference between early and advanced HCC patient subgroups is shown.
Significantly deregulated miRNAs (p-values below 5%) calculated from the array cards
are depicted in Tables S1 and S2. In particular, miR-16 was decreased in exosomes from
cirrhosis patients (p = 0.0001) and miR-16 levels were differentially expressed between
patients with and without liver cirrhosis (p = 0.019). The levels of exosomal miR-146a
(p = 0.002), miR-192 (p = 0.0001) and miR-221 (p = 0.0004) were significantly increased in
HCC patients, but not deregulated in cirrhosis patients, and, therefore, could discriminate
HCC from cirrhosis patients, suggesting their HCC-specific enrichments in exosomes.
Of note, the levels of exosomal miR-21 (p = 0.002) were only increased in HCC patients
and could not discriminate between patients with and without HCC while the levels of
miR-24 (p = 0.002, p = 0.005, respectively) and miR-122 (p = 0.005, p = 0.026, respectively)
were enriched in exosomes from both HCC and cirrhosis patient cohorts compared to
healthy patients (Table S1, Table S2, Figure S2). Based on the data obtained with array
cards, we selected miR-16, miR-146a, miR-192, and miR-221 for further analyses using
single TagMan real-time PCR assays.
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of p = 0.05. Significantly downregulated exosomal miRNAs are shown as green dots, significantly upregulated exosomal
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3.3. Exosomal miR-16, miR-146a, miR-192, and miR-221 Profiling Using Single TagMan
Real-Time PCR Assays

We analyzed the expression of miR-16, miR-146a, miR-192, and miR-22 using single
TagMan real-time PCR in the training cohort and in plasma samples from an additional
60 HCC patients and 13 patients with liver cirrhosis, leading to a total number of 84 HCC pa-
tients, 50 liver cirrhosis patients, and 20 healthy individuals (validation cohort). As shown
in Figure 3 and Table S2, right panels, the significantly lower levels of exosomal miR-16
detected in the plasma of liver cirrhosis patients compared to healthy individuals using the
array cards were confirmed by the single target analyses with RT-PCR (p = 0.0001). The dif-
ference in the levels of this miRNA between HCC and cirrhosis patients were also similar
using both techniques (p = 0.015, 0.019, Table S2). In contrast to array cards, the single Tag-
Man PCR assays with a larger HCC cohort showed significantly lower levels of exosomal
miR-16 in HCC than in healthy individuals (p = 0.0001). The single TagMan PCR assays
also confirmed that the levels of exosomal miR-146a, miR-192, and miR-221 were upregu-
lated in HCC patients compared with healthy individuals (p = 0.0001, p = 0.002, p = 0.032,
respectively) and with cirrhosis patients (p = 0.0001, p = 0.078, p = 0.001, respectively),
whereas they were not deregulated in cirrhosis patients (Table S2 and Figure 3).
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Figure 3. Significant deregulation of exosomal miR-16, miR-146a, miR-192 and miR-221. The box plots compare the
exosomal levels of miR-16, miR-146a, miR-192, and miR-221 in the plasma of 84 HCC patients, 50 liver cirrhosis patients,
and 20 healthy individuals, as derived from the data of single TagMan real-time PCR assays. The significant p-values of the
statistical evaluations are summarized in the table below the box blots. * p < 0.05; ** p < 0.001. -, -, extreme values.

3.4. Correlations of Exosomal miR-16, miR-146a, miR-192, and miR-221 with the
Clinicopathological Parameters

To determine diagnostic value of miR-16, miR-146a, miR-192, and miR-221 logistic
regression models were calculated using repeated cross-validation and evaluated using
receiver operating characteristics (ROC) curves. From the four miRNAs, miR-146a showed
an area under the ROC curve (AUC) of 0.80 = 0.1476 with a sensitivity of 81 & 13% 61%
and a specificity of 78% 58 £ 22%. In terms of diagnosis it was alsosuperior to miR-16
(ROC AUC 0.63 +/ — 0.16; sensitivity 88% +/ — 12%, specificity 7.6% +/— 11%), miR-221
(ROC AUC 0.69 +/ — 0.14; sensitivity 90% +/— 11%, specificity is 27% +/— 19%), and miR-
192 (ROC AUC is 0.59 +/— 0.16; sensitivity 93% +/— 9.0%, specificity is 10% +/— 13%).
A combination of the log values of all 4 miRNAs demonstrated an identical sensitivity
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(ROC AUC 0.78 +/— 0.13, sensitivity 81% +/— 14%, specificity 56% +/— 22%), but was less
specific when compared to miR-146a. Compared with the biomarker AFP, no significant
correlation was found in pairwise spearman correlation including AFP and all four selected
miRNA (Table S3).

In patients with liver cirrhosis, expression miR-146a, miR-192, and miR-221 was sig-
nificantly lower in patients with compensated cirrhosis compared to decompensated liver
cirrhosis (e.g., presence of ascites, hepatorenal syndrome (HRS) and hepatic encephalopa-
thy (HE)): miR-146a and miR-192 were significantly decreased in patients with ascites
(p = 0.01 and 0.04, respectively). Furthermore, in patients with HRS, miR-16 (p = 0.02)
and miR-146 (p = 0.002) were significantly decreased while only miR-146a (p = 0.03) was
decreased in patients with HE. In HCC patients, expression of miR-16 significantly differs
between tumor stage BCLC A, B and C/D (p = 0.004) using Kruska-Wallis rank sum test.
No significant difference was found in the expression of miR-16 (p = 0.611), miR-146a
(p = 0.206), miR- 192 (p = 0.127), and miR-221 (p = 0.596) of patients with alcoholic vs.
non-alcoholic liver cirrhosis.

3.5. Prognostic Relevance of miR-192, miR-146a for HCC and miR-16 for Liver Cirrhosis

Kaplan-Meier and log-rank models were carried out to assess the prognostic potential
of our miRNA panel in HCC and liver cirrhosis patients. The median follow-up time was
246 days (range: 2 to 697 days) for HCC patients and 543 days (range: 9 to 778 days) for
liver cirrhosis patients. Median values of exosomal miRNAs were used for grouping the
miRNAs according to their low and high presence in exosomes. As shown in Figure 4,
high levels of exosomal miR-192 correlated with poor OS in all HCC patients (p = 0.027,
log-rank test, A) and the HCC subgroup of BCLC stage A and stage B patients (p = 0.017,
A). No correlation could be found in the subgroup of BCLC C. Univariate analysis with the
Cox proportional hazards showed that exosomal miR-192 was a prognostic factor (p = 0.031,
HR: 2.241, 95% CI: 1.079-4.656) for overall survival. In multivariate Cox regression analysis,
the levels of miR-192 (HR: 3.44, 95% CI: 1.32-8.91; p = 0.01), miR-146a (HR: 0.22; 95% CI:
0.061-0.81, p = 0.02), Child Pugh Score (HR: 3.08; 95% CI: 1.65-5.72, p < 0.001), and AFP
(HR: 2.1; 95% CI: 1.52-2.92, p < 0.001) were independent predictors of OS in HCC patients
(Figure 5). As depicted in Figure 4, in cirrhosis patients, the low levels of exosomal miR-
16 correlated with poor OS (p = 0.034) while multivariate regression analysis including
patients age, miR-16, miR-146a, miR-192, miR-221, and MELD-Score only revealed MELD
score as independently associated with OS (HR 1.1; 95% CI: 1.03-1.2, p = 0.007).
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4. Discussion

Emerging evidence indicates that exosome-mediated transfer of miRNAs may con-
tribute to the development and progression of HCC [26]. Our study served to gain a better
understanding on this. To this end, we first identified a panel of significantly deregulated
miRNAs in both, liver cirrhosis and HCC patients. For further single miRNA analyses,
we chose miR-16 because of its cirrhosis-specific lower packing into exosomes and miR-
146a, miR-192, and miR-221 because of their HCC-specific expression. Our single TagMan
PCR assays confirmed our array data, demonstrating that all four exosomal miRNAs were
deregulated in HCC patients.

The most noteworthy finding of our study was that the plasma levels of exosomal
miR-192 had diagnostic and prognostic value in our HCC patient cohort and that exosomal
occurrence of miR-192 was associated with decreased overall survival (OS). In line with
these finding, Xue et al. [27] showed elevated levels of exosomal miR-192 in serum of HCC
patients. They, however, did not determine any association with OS. There may be several
reasons for the discrepancy between Xue et al. and our result. Xue et al. used serum
instead of plasma. Anticoagulants required for the preparation of plasma, such as heparin,
acid citrate dextrose (ACD), or EDTA agents, and preanalytical variables may have brought
about a difference in the data [28]. Nowadays, the use of plasma is preferred. Another
reason might be the different spectrum of underlying liver disease in the cohort of Xue et al.
compared to our cohort: in the Asian cohort, the majority of patients had chronic viral
hepatitis and liver cirrhosis was present only in 37% of the patients, while the main etiology
of liver cirrhosis in our cohort was alcoholic liver disease. Furthermore, Zhu et al. [29]
showed that high serum levels of exosome- and cell-free circulating miR-192 were associated
with poor OS. Thus, the enrichment of miR-192 in exosomes can add prognostic value,
especially for patients in an early or intermediated tumor stage because these patients were
treated with surgical resection, microwave ablation (MWA) or TACE. Suheiro et al. recently
demonstrated that alterations in the expression of exosomal miR-122 is associated with
survival in HCC patients treated with TACE, underlining the ability of miRNAs to serve
as biomarkers for therapy monitoring [30]. Detecting deregulated miR-192 in plasma of
HCC patients may, therefore, be useful to characterize patients with poor prognosis who
could be considered for adjuvant therapy or who may benefit from an early transition to
systemic therapy.

MiR-16 is known to be downregulated in HCC cells and its overexpression inhibits
proliferation, invasion, and metastasis of HCC cells [31], suggesting that miR-16 acts as
a tumor suppressor. MiR-16 is able to suppress HCC cell progression by targeting the
immunogenic protein faint expression in normal tissues, aberrant overexpression in tumors
(FEAT) and inhibiting epithelial-mesenchymal transition (EMT) and the nuclear factor-xB
(NF-kB) [32]. Therefore, the use of miR-16 as internal reference should be circumvented
for miRNA data normalization [33,34]. In our study, we found lower levels of miR-16 in
exosomes of HCC patients compared to healthy individuals. Expression levels of miR-16
was also associated with BCLC staging and tumor metastasis. As far as we know, miR-16
has not yet been quantified in exosomes from HCC patients. However, there are some
studies on circulating miR-16 in serum of HCC patients. To this regard, Ge et al. [35]
detected that miR-16 expression was down-regulated in HCC patients with a tumor more
than 5 cm in diameter and correlated with quantitative clinical features, such as platelet
counts and serum bilirubin. Qu et al. [36] also observed decreased serum levels of miR-16
in HCC and their association with tumor size. Taken together, our findings indicate the
role of miR-16 as a surrogate marker for tumor progression and dissemination. In addition,
we found that exosomal miR-16 is both a diagnostic and prognostic factor in liver cirrhosis
patients. In our study, we show for the first time in liver cirrhosis patients an under-
presentation of miR-16 in exosomes in non-cancerous liver disease. A deregulation of
miR-16 was also detected in a liver fibrosis animal model and patients with severe fibrosis.
As demonstrated by Kim et al., downregulation of miR-16 promoted progression of liver
fibrosis via activated hepatic stellate cells [37]. Advanced fibrosis and alterations of the
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hepatic architecture led to an increase in portal vascular resistance and finally, portal
hypertension [30]. As portal hypertensions often resulted in development of esophageal
varices and ascites, representing severe complications of the liver cirrhosis, this might be
explanation for the prognostic impact of miR-16.

The role of miR-146a in patients with HCC is controversial: recent studies have re-
ported that miR-146 acts as both an oncogene and a tumor suppressor gene, participating in
several pathogenic pathways associated with hepatocarcinogenesis [38]. As an oncogene,
miR-146a seems to play a key role in regulating the angiogenic activity of endothelial cells
in HCC through its participation in the platelet-derived growth factor receptor a«-BRCA1
pathway [39]. In addition, in HCC patients, upregulated miR-146a expression contributed
to natural killer cell dysfunction by targeting signal transducer and activator of transcrip-
tion 1 (STAT1) [40]. Interestingly, Yin et al. showed that HCC-derived exosomes could
remodel macrophages by activating NF-«B signaling and inducing pro-inflammatory fac-
tors. These exosomes were enriched with miR-146a and promoted M2-polarization of
tumor-associated macrophages [41]. In our study, miR-146a is enriched in exosomes of
HCC patients, but not in liver cirrhosis patients. Multivariate analysis revealed that exoso-
mal enrichment of miR-146a is statistical significantly associated with reduced hazard ratio
for death, strongly suggestion that miR-146a primarily acts as a tumor suppressor. Fur-
thermore, we demonstrated that the levels of miR-146a can distinguish between cirrhotic
patients with and without HCC with a ROC/AUC of 0.80, comparable to the established
tumor marker AFP (ROC/AUC: 0.83) [42]. As tumor markers are urgently needed for HCC,
the promising diagnostic function of miR-146a should be further evaluated in a larger
cohort of patients.

MiR-221 is an oncogenic miRNA that plays a crucial role in the carcinogenesis of HCC
by modulating the PTEN/PI3K/AKT and JAK-STAT3 signaling pathways [43,44]. MiR-221
also mediates EMT in HCC cells [45]. Sohn et al. detected higher serum levels of exosomal
miR-221 in HCC patients than in liver cirrhosis patients [46]. We made similar observations
in plasma. In our analyses, miR-221 was enriched in exosomes of HCC patients, but not
in liver cirrhosis patients as compared with healthy individuals, illustrating the possible
usefulness of miR-221 as a tumor marker for HCC screening in patients with liver cirrhosis.

We found that in patients with decompensated liver cirrhosis (with and without HCC),
the levels of miR-146a, miR-192 and miR-221 were downregulated compared to patients
with compensated liver cirrhosis. Waidmann et al. reported a similar effect of miR-122
which was downregulated in patients with decompensated liver cirrhosis and was an
independent marker for OS [47]. However, in our study, a Cox regression model includ-
ing MELD score and all three miRNAs showed that only MELD score was significantly
associated with OS. Furthermore, as mentioned above, the exosomal levels of miR-16
were associated with impaired survival in patients with liver cirrhosis, but interestingly,
miR-16 expression was not significantly different between patients with compensated or
decompensated cirrhosis.

5. Conclusions

In summary, we identified three miRNAs that are significantly upregulated in HCC
patients and could use these to discriminate between tumor patients, patients with liver
cirrhosis and healthy individuals. Furthermore, we demonstrated the prognostic impact
of miR-192 and miR146a in patients with early and intermediated stage HCC. In liver
cirrhosis patients, we identified miR-16 as a prognostic marker that was associated with
OS. Therefore, miR-16 may serve as a non-invasive surrogate parameter in future studies
to predict progression of fibrosis in patients with chronic liver disease.

Collectively, our findings indicate the role of selected miRNAs as biomarkers for
diagnosis, prognosis, and therapy monitoring in HCC patients. However, beyond that,
the results of our study confirm that miRNAs are also prognostic markers in patients with
liver cirrhosis and may, therefore, help to improve risk stratification in these patients.
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