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1. Supplementary Methods 
1.1. Radiomic features simulation   

We first analysed the distribution of the 168 FBP- and IR- derived features in the 
original Non-Small-Cell Lung Cancer (NSCLC) dataset [1]. We analysed them separately 
for both the outcome classes to assess their normality (Shapiro's test, p-value < 0.05) and 
the ranges they cover. Additionally, we computed Pearson's correlation among features. 
We observed that only 35 over the168 FBP-derived features (21%) and 72 over the 168 IR-
derived features (43%) were normally distributed. This fact implies not only difficulties in 
identifying known distributions, but also differences in the feature values computed by 
the two CT reconstruction algorithms. High correlation was identified among the features 
(Supplementary Figure S2). 

Then, taking advantage of the real data on NSCLC patients recruited for the previous 
study [1], we simulated 168 radiomic features to build synthetic controlled scenarios. We 
could not simulate radiomic features from scratch because of the high intra-feature corre-
lation that characterizes radiomic data and the impossibility to identify known distribu-
tion functions for large part of the features. However, both feature distributions and cor-
relation should be maintained also in the simulated dataset. 

Our simulation procedure is thus divided in two main steps (Figure 1):  
1. simulation of 168 features without association to the outcome 
2. selection of balancing and signal level and association of the simulated features and 

samples to the outcome. We applied both procedures separately to FBP and IR-de-
rived features.  
In the first step, we simulated 168 multivariate non normal distributions starting 

from correlation matrix, skewness and kurtosis of the real NSCLC features as suggested 
by Vale and Maurelli [2]. We used the R package “fungible” but we modified the provided 
function monte1 to allow the computation of Cholesky decomposition (parameter 
pivot=TRUE) also for positive semi-definite matrices. Additionally, the default final scal-
ing to normalize the distribution of the simulated variables was removed. Since the ranges 
of the radiomic features may vary a lot, we moved the obtained variables to their original 
ranges. Thus, for each feature 𝐹𝑖 distributed on the range [𝑎𝑖, 𝑏𝑖] in the original dataset, 
the intermediate simulated distribution 𝑓∗ was translated and the final distribution was 
obtained as  

 𝑓 = (𝑏 − 𝑎 )[𝑓∗ − min(𝑓∗)][max(𝑓∗) − min(𝑓∗)] + 𝑎  (1)

 



In the second main step of the simulation procedure, we associated samples and fea-
tures to different outcome classes and we introduced the possibility to create balanced/un-
balanced datasets with features carrying high or low signal.  

First, we chose the sample balancing according to an equal (balanced) or unequal 
(unbalanced) distribution of the outcome classes. In the former case we randomly as-
signed 50% of the samples to the class pN=1, in the latter only 30%. Two preliminary sets 
of data, each one consisting in 600 samples, were therefore created. 

We then associated features to the outcome, to generate the signal able to separate 
samples with different outcome class. We chose features found to be significantly associ-
ated with the positive lymph node in the original dataset[1]: ClusterShade from GLCM25 
category calculated along 135° direction with four voxels offset (F1), 70th percentile of the 
intensity values in the cumulative histogram (F2), and the maximum diameter evaluated 
on the 3D lesion volume (F3). 

If we indicate with 𝑓 ,   𝑖 ∈ {1, 2, 3} the simulated features obtained at step 1 from the 
selected ones and with mean(𝑓𝑖) their mean value over samples, then the association to 
the outcome was obtained by translation of 𝑓  by a factor dependent on the mean: 𝑠𝑓 ,{ , }  =  𝑓 ± ( ),  𝑖 ∈ {1, 2, 3} (2)

The direction of the translation was assigned according to original data: the distribu-
tion for the positive class 𝑠𝑓 ,  was obtained by addition and the distribution for the nega-
tive class 𝑠𝑓 ,  by subtraction whenever the original feature distribution for pN=1 had 
larger mean than pN=0. 

The factors 𝑘𝑖 were selected specifically to obtain simulated features highly (high sig-
nal) or poorly (low signal) associated to the outcome: in particular, they were chosen so 
that the distributions 𝑠𝑓 ,  and 𝑠𝑓 ,  could be well or poorly separated on the bases of Wil-
coxon test.  

Finally, to better resemble real radiomics data, we added gaussian noise to our sim-
ulated data. 

Four datasets including 600 simulated patients each were eventually obtained, ac-
cording to the combination of balancing (balanced/unbalanced) and signal (high/low) 
(Figure 1). 

1.2. Description of classifiers and feature selection methods 
For each of the 12 simulated scenarios, six different machine learning methods, com-

bined with five feature selection methods or no feature selection step, were investigated 
(Table 2). For each scenario, feature selection methods and classifiers were trained on the 
training set and then tested in the validation set.  

1.2.1. Feature selection methods  
The purpose of feature reduction is to select a subset of uncorrelated and useful fea-

tures in order to improve the prediction accuracy of the models. Feature selection methods 
are usually grouped into three categories: filter methods, wrapper methods and embed-
ded methods. In the present work, only filter methods were considered since the selection 
process was independent by the classifier.  

Five different supervised feature selection methods were investigated in our analysis.  
Three of them consist in the combination of a dimensionality reduction method with 

Wilcoxon Rank Sum test. Specifically, the following two steps were applied:  
1. partition of the original set of features (168) into K clusters, using one among the fol-

lowing procedures: Hierarchical, Hierachical+PCA based on Delta plot, Hierar-
chical+PCA based on proportion of explained variance (details below). 

2. use of Wilcoxon Rank Sum test to identify, in each cluster, the feature with the highest 
correlation with the outcome and select the K most predictive features. In the three 
dimensionality reduction methods, the number of K cluster was established during 



the clustering procedure. Step 1 allows therefore to group redundant features while 
step 2 acts as univariate features filter.  
The last two feature selection methods are filter-based methods consisting in a single 

step and are known as Relief and minimal Redundancy Maximum Relevance (MRMR) 
respectively. Both algorithms require the computation of a score through which feature 
importance is established. According to the scoring criteria, Relief is considered a univari-
ate method since the importance of each feature is established without taking into account 
relations between the other predictive variables. Conversely, MRMR can be considered as 
a multivariate selection method. Further details about the scoring procedure are given in 
the following for the two strategies.  

Details of each of the five methods are reported here: 
1. Hierarchical. The generic hierarchical procedure was constructed implementing an in-

house function to identify clusters of radiomic features highly correlated with each 
other. In particular, we considered the Spearman correlation and included in the same 
cluster radiomic features with a correlation ≥0.75.  

2. Hierachical+PCA based on Delta plot. This procedure is based on dimensionality reduc-
tion and it is implemented in the software R using the CLV function in the package 
“ClustVarLV” [3]. The CLV approach is based on the construction, within each clus-
ter, of a latent variable obtained as a linear combination of only the variables belong-
ing to the corresponding cluster. This was done maximizing the following criterion:  

𝑇 = 𝛿 𝑐𝑜𝑣 𝑟 (𝑥 , 𝑐 )          𝑤𝑖𝑡ℎ 𝑣𝑎𝑟(𝑐 ) = 1 (3)

were 𝑥 (𝑗 = 1, . . . , 𝑝) are the p variables to be clustered, 𝐾 is the number of clusters, 𝑐  
(k=1, …, K) is the latent variable associated with the 𝑘  cluster and 𝛿  reflects a simple 
membership, with 𝛿 = 1 if the 𝑗  variable belongs to the 𝑘  cluster and 𝛿 = 0 other-
wise.  This criterion characterizes the so-called directional method, in which, regardless 
of a positive or negative correlation, the latent variable is constructed so that its correlation 
to the observed variables is as high as possible.  In CLV approach, the choice of the number 
of clusters K is made based on an evaluation of the Delta plot, where  𝐷𝑒𝑙𝑡𝑎 = 𝑇(𝑘) − 𝑇(𝑘 − 1) . In fact, when the value of Delta clearly jumps, it means that 
there is an important loss in homogeneity of the clusters when passing from 𝐾 to 𝐾 −1 clusters, thus preferring 𝐾 clusters. 

3. Hierarchical + PCA based on proportion of explained variance. We performed this method 
by using SAS Software, VARCLUS procedure. The maximization criterion is similar 
to the above mentioned for CLV function, but we chose here a different stop criterion 
in clusters generation. Specifically, we established as 0.80 the proportion of explained 
variance by the latent variable, as previously performed [4,5], so that the number of 
clusters was automatically determined based on the capacity to maintain this propor-
tion in each cluster.  

4. Relief. Relief algorithm is based on the concept that good attributes are those with 
similar values among instances of the same class and different values among instances 
of different classes. To quantify the importance of a feature, a weight is established 
looking at the neighbors of each instance. Specifically, given an instance and its neigh-
bors, the score of a feature is derived subtracting the distance if the neighbor belongs 
to the same class and adding the distance for neighbors of a different class. Following, 
the equation applied to compute the Relief score of a feature 𝑋  is reported: 

𝐽 (𝑋 ) =  12 𝑑 𝑋 , − 𝑋 ( ), − 𝑑(𝑋 , − 𝑋 ( ), ) (4)

were 𝑋 ,  is the value of instance 𝑥  on feature 𝑋 . 𝑋 ( ),  and 𝑋 ( ),  are the values 
on the 𝑘’th feature of the nearest point to 𝑥  with the same and different class label respec-
tively, and de denotes the distance.  



5. mRMR. The MRMR algorithm relies on the combination of two constraints. Maxi-
mum-Relevance (MR) is the first constrain and consists in the maximization of the 
relevance given by the mean value of all mutual information values between individ-
ual features 𝑥  of the feature set 𝑆 and class 𝑐 as reported in the following equation:  max 𝐷(𝑆, 𝑐), 𝐷 =  1|𝑆| 𝐼(𝑥 ; 𝑐)∈   (5)

Since, according to MR, a high dependency among features can be reached, the sec-
ond constrain aims to minimize the redundancy (Minimal Redundancy, mR). To find mu-
tually exclusive features, the minimization of redundancy is applied as follows: min  𝑅(𝑆), 𝑅 =  1|𝑆| 𝐼(𝑥 , 𝑥 ), ∈   (6)

According to MRMR, the best features correspond to those with highest difference 
between the two constrains. 

1.2.2. Classification methods 
We assessed the predictive performances of six machine learning classifiers (Table 2): 

Penalized Regression methods (PR), Logistic step-wise Regression model (LSR), Random 
Forest (RF), Extreme Gradient Boosting (XGBoost), K-Nearest Neighbor (KNN) and Sup-
port Vector Machine (SVM). 

Penalized regression (PR). Penalized regression is based on a simple linear regression 
model, where a certain set of independent variables is used to predict the so-called de-
pendent variable, which can be of different types. The penalization concerns the model’s 
coefficients, and it is used to reduce their variance, without a substantial increase in bias. 
Two regularization parameters can be optimized: α and λ. The first parameter (α) defines 
the type of penalization to be applied and it can assume values from 0 (Ridge regression) 
to 1 (Lasso regression). When α=1 the penalization can be intended as operating a features 
selection because it forces the coefficients near to 0 to exactly be equal to 0. The second 
parameter (λ) regulates the penalization strength. It can assume values from 0 (no penal-
ization) to infinite, with larger values corresponding to stronger penalizations. We opti-
mized the two parameters using “cv.glmnet” in “glmnet” R package and performed the 
penalized regression specifying “glmnet” in “Caret” R package [6].  

Random Forest (RF). Random Forest is a supervised machine learning method created 
by the aggregation of a certain number of classification trees using the bagging approach. 
The basic idea of this method is that the combination of many uncorrelated trees will re-
duce the final overfitting and the predicted values are obtained calculating the mean of 
the predicted values from each tree. In Random Forest, several parameters must be set: 
the number of trees to be aggregated, the number of predictors to randomly include in 
each node and the minimum number of nodes to use in each tree. In this paper, Random 
Forest has been performed using the “ranger” method in “caret” R package [6], thus the 
first parameter has been set to 500 by the “ranger” default, while for the others a grid of 
values has been created and the values leading to the best performance (based on AUC) 
have been used. The same approach has been used to detect which nodes splitting rule 
gives the best performance among the methods available in “ranger”, that is “Gini”, “Ex-
tratrees” and “Hellinger”.  

Logistic step-wise regression model (LSR). Logistic step-wise regression model belongs 
to the linear regression model family in which the dependent variable (also called re-
sponse variable) is binary. The output of the model is the probability that a certain event 
occurs, which can be then treated as a dichotomous variable to classify the outcome. In 
order to avoid convergence problem, logistic regression model was always coupled with 
a feature selection method prior to modelling. Moreover, in case of many variables se-
lected (some dozen) and medium-small sample size, only features with p-value ≤ .15 were 
maintained for modelling. In particular, a step-wise technique was adopted, as further 
step of selection, to fit the model. In each step, a variable was added or subtracted from 



the set of explanatory variables based on the chosen criterion (p-value ≤ .15). Akaike In-
formation Criterion (AIC) was used as measure to select the final model. AIC measures 
goodness of fit, but it also includes, in its formula, a penalty that increases as the number 
of the estimated parameters gets bigger. The logistic step-wise regression model was per-
formed specifying the method “glmStepAIC” in “caret” R package [6]. 

Extreme Gradient Boosting (XGBoost). Extreme Gradient Boosting adopts the boosting 
statistical technique in which a predictive model is performed in the form of an ensemble 
of weak predictive models. This is achieved by resampling data and giving more weight 
to those which are misclassified. In this way, a new classifier that would boost the perfor-
mance is computed. This process is repeated, generating a set of classifiers, which are ul-
timately combined through voting to define the final classifier. Here, decision trees were 
chosen as weak learners and squared error was used as loss function. Each parameter was 
tuned step by step upon a well-defined search grid (for more details about tuning param-
eters see “xgboost” R package).  The Extreme Gradient Boosting model was performed 
specifying the method “xgbtree” in “caret” R package [6]. 

Support vector machine (SVM). Support vector machine is a supervised machine learn-
ing algorithm which aims in finding decision boundaries that better separates instances 
of different classes. The best boundaries correspond to those which maximize distance 
from training instances (larger margin) and minimize misclassification. The “support vec-
tors” are represented by the training set data points closest to the boundaries.   

One of the most important parameters to be optimized is the parameter “C” which 
determines margin width: a lower margin (larger C) brings to a better separation of train-
ing instances but lacks in generalization ability, while with larger margins (lower C) a 
better generalization of the model should be guaranteed at the expense of a lower accuracy 
in classifying training samples. The other parameters to be optimized are usually depend-
ent on the adopted kernel which determines how the data are mapped in a new multidi-
mensional space. Choosing the proper kernel type allows to transform data making them 
linearly separable.  

In the presented work we considered a Radial Basis Function (RBF) kernel which 
transforms data through a Gaussian function. The parameter to be optimized in this case 
is which determines the variance of the Gaussian. A small gamma implies the class of this 
support vector will have influence on deciding the class of vector. If gamma is large then 
variance is small implying the support vector does not have wide-spread influence. To 
test the RBF SVM with RBF kernel, the function “svmradial” was adopted. Using caret 
package pipeline [6], parameters C and gamma were optimized through a grid search 
investigating values in the logarithmic range 0.1-10 and 0.001-1, respectively. 

K nearest-neighbors (KNN). K nearest-neighbors is a supervised algorithm based on 
the concept that similar instances belong to the same class. The main parameter in this 
algorithm is the K which defines the number of neighbors to which the instance needs to 
be compared to estimate its class.   

The level of similarity is usually calculated through a distance function. Considering 
the class of the k nearest instances, the predicted class will be determined through a ma-
jority voting which can be also weighted according to their distance from the predicted 
variable. K is a parameter which needs to be optimized since a K to small make the classi-
fier sensitive to noise while a K too large will cause the inclusion of more samples belong-
ing to the other class. To test the KNN algorithm the R function “kknn” of “caret” R pack-
age [6] was adopted. After preliminary tests, a “triangular” kernel was set to weight the 
neighbours according to their distances while the K parameter was optimized searching 
between a set of odd values (3-47) to avoid parity conditions. 

1.3. Detailed classification framework   
Commonly to all machine learning studies, we designed a systematic classification 

framework which consists of canonical steps including: pre-processing, cross-validation, 
performance evaluation and classification.  Finally, we characterized the model with the 



optimal prediction metrics on the validation set and we analysed the stability of each ma-
chine learning method across the different scenarios. The main steps of the classification 
framework are visualized in Supplementary Figure 1 and are described below: 

1. Pre-processing: we randomly selected 2/3 of the patients as training set and the remain-
ing 1/3 as validation set. We used the same random split all over the models. In case 
of feature selection, the algorithm was applied on the training set (Supplementary 
Figure 1) and consequently only the selected features were maintained in the valida-
tion set.  Pre-processing as centering, scaling and non-zero-variance were applied to 
the entire datasets.  

2. Cross-validation (CV): 10-fold cross validation was applied to the training set for each 
considered classifier.  At each CV round, the classifier was trained using nine folds 
and evaluated by AUC on the 10th fold as test set. The hyperparameters tuning was 
computed on a well-defined search grid. After repeating the process all over the folds, 
predictions were compared with true labels, adopting the AUC as evaluation metric. 
This CV procedure was repeated three times (3X10 CV) in order to improve the accu-
racy of the parameters estimation and to reduce over-fitting. In addition, a resampling 
method was applied to the unbalanced sample. In particular, the Synthetic Minority 
Over-sampling (SMOTE) technique was chosen, as it has been shown to give con-
sistent results with respect to dataset having different unbalanced ratio [7]. SMOTE is 
an iterative method of over-sampling the minority class, in which new samplings are 
synthesized according to the closest minority neighbor (Euclidean distance), thus re-
sulting in an augmented proportion of the minority class while maintaining the same 
original dataset structure. 

3. Final model definition: to determine the best parameters among those investigated in 
the 3X10 CV, Area Under the ROC Curve (AUC) was used. The final model was then 
derived training the classifier on the entire training set and setting as hyperparame-
ters those found to be the best.   

4. Predictive performance evaluation: the performance of the final classifier was then eval-
uated on the test set through AUC, along with sensitivity and specificity. 

 



 
Figure S1. Classification procedure flow chart. After pre-processing of radiomic data, each dataset was split 
into training (2/3 of the subjects) and validation (1/3) set. After possible application of different methods of 
features selection, class imbalance correction for unbalanced datasets, and hyperparameters tuning, classifi-
cation methods were applied and their performance evaluated by the Area Under the Receiver Operating 
Characteristics Curve (AUC), Sensitivity and Specificity both in the training and in the validation set. The best 
classifiers were identified as the ones with the best performance in the validation set.  . 

 
Figure S2. Correlation among radiomic features. Correlation matrices are reported for the original NSCLC dataset (upper 
panel) and for the simulated case (lower panel) by algorithm and outcome variable. Intensity of colours represent the level 
of correlation, with blue shades used for positive and red shades for negative correlation. 
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Figure S3. Number of features correctly selected as associated with the outcome. Results for four classification methods 
for balanced (panel A) and unbalanced (panel B) dataset are reported. According to our study design, three features 
(namely F1, F2 and F3) have been simulated as to be associated with the clinical outcome. The plot reported the number 
of features among these three that were indeed correctly selected among the top 20 by the four classification methods for 
which a selection or importance values could be obtained. 



 
Figure S4. Sensitivity and specificity for unbalanced datasets with and without SMOTE correction for large dataset. Per-
formances of the Machine Learning (ML) algorithms and feature selection methods applied to the unbalanced cases are 
displayed for high signal (upper panels) and low signal (lower panels). Columns report results for analysis without (left) 
or with (right) application of smote adjustment. Colours are used to distinguish ML algorithms, shapes for feature selec-
tion methods. 

 
Figure S5. Sensitivity and specificity for unbalanced datasets with and without SMOTE correction for medium dataset. 
Performances of the Machine Learning (ML) algorithms and feature selection methods applied to the unbalanced cases 
are displayed for high signal (upper panels) and low signal (lower panels). Columns report results for analysis without 
(left) or with (right) application of smote adjustment. Colours are used to distinguish ML algorithms, shapes for feature 
selection methods. 



 
Figure S6. Sensitivity and specificity for unbalanced datasets with and without SMOTE correction for small dataset. Per-
formances of the Machine Learning (ML) algorithms and feature selection methods applied to the unbalanced cases are 
displayed for high signal (upper panels) and low signal (lower panels). Columns report results for analysis without (left) 
or with (right) application of smote adjustment. Colours are used to distinguish ML algorithms, shapes for feature selec-
tion methods. 

A)        B) 

 

 

 



 

Figure S7. Heatmap representing the predictive performance (AUC) in the validation set for unbalanced SMOTE sam-
ples. Performances for feature selection (rows) and classification (columns) methods are displayed after applying SMOTE 
correction with high signal (panel A) and low signal (panel B). 

Table S1. Baseline characteristics of the original study population [1]. 

Characteristic All patients (N = 270) 
N (%) 

Age (years)^ 67.4 (61.0–72.6) 
Gender  
Female 103 (38%) 

Male 167 (62%) 
Grading  

1 30 (13%) 
2 82 (36%) 
3 117 (51%) 

Missing 41 
Side  
Right 153 (57%) 
Left 117 (43%) 
Site  

Upper 154 (57%) 
Medium 12 (4%) 

Lower 93 (34%) 
Mixed 11 (4%) 

Nodule size (mm)^ 31 (18-45) 
pT  
0 3 (1%) 
1 97 (36%) 
2 124 (46%) 
3 46 (17%) 

pN  
pN0 199 (74%) 
pN1 71 (26%) 

Algorithm type  
FBP 187 (69%) 
IR 83 (31%) 

FBP=Filtered Back Projection; IR=Iterative Reconstructions. 

^ Median (InterQuantile Range). 

Table S2. Wilcoxon p-values for the association of features F1, F2 and F3 with outcome. The test was performed sepa-
rately for FBP and IR features on the high and low signal scenarios. The translation factors k that was applied to generate 
the signal are also reported. 

Feature High signal Low signal 
 k FBP IR k FBP IR 

F1 1/4 9.55 x 10-26 5.79 x 10-7 1/10 9.29 x 10-15 1.70 x 10-2 



F2 1/100 1.47 x 10-7 2.04 x 10-5 1/500 1.00 x 10-1 2.76 x 10-1 
F3 1/10 4.33 x 10-39 1.48 x 10-2 1/50 7.17 x 10-5 5.83 x 10-1 
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