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Figure S1. TP53 mutation status and PRIMA-1 responsiveness in pediatric entities. PRIMA-1 sensitivity data filtered for pediatric 

entities (age < 18 when cell line was derived from patient, entities medulloblastoma and neuroblastoma were added if age was un-

known, samples: n=73) separated upon TP53 mutation status. Data derived from Cancer Cell Line Encyclopedia and CTD2 portal. 

Supp. Fig. 1: TP53 missense mutations are not related to PRIMA-1 responsiveness in pediatric entities

PRIMA-1 sensitivity data filtered for pediatric entities (age < 18 when cell line was 

derived from patient, entities medulloblastoma and neuroblastoma were also 

added if age was unknown) separated upon TP53 mutation status. Data derived 

from Cancer Cell Line Encyclopedia and CTD2 portal.
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Figure S2. APR-246 is not restoring p53 pathway activity in neuroblastoma models IMR-32 (TP53 

wt) and SK-N-BE(2)-C (TP53mut p.C135F). RT-PCR measurement of TP53 pathway activation. 

PUMA (IMR-32: (a); SK-N-BE(2)-C: (b) and GADD45A (IMR-32: (c); SK-N-BE(2)-C: (d)) expression 

are depicted as log2 transformed fold change to solvent control. Treatment was applied for 24 h 

with doxorubicin or APR-246, alone or in combination as indicated.  
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Figure S3. APR-246 is not restoring p53 pathway activity in TP53 mutant pediatric high-grade 

glioma models SJ-GBM2 (TP53mut p.R273C) and SF188 (TP53mut p.G266E). RT-PCR measurement 

of p53 pathway activation. CDKN1A (SJ-GBM2: (a); SF188: (b)) and GADD45A (SJ-GBM2: (c); 

SF188: (d)) expression are depicted as log2 transformed fold change to solvent control. Treatment 

was applied for 24 h with doxorubicin or APR-246, alone or in combination as indicated. mut, mu-

tant. 
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Figure S4. PRIMA-1 sensitivity and SLC7A11 expression correlation for Cancer Cell Line Encyclopedia and CTD2 portal cancer enti-

ties. Combination of log2 SLC7A11 expression and PRIMA-1 sensitivity stratified by all cancer cell line entities with data obtained 

from Cancer Cell Line Encyclopedia and CTD2 portal. BDC: Bile Duct Cancer, BLC: Bladder Cancer, BOC: Bone Cancer, BRC: Brain 

Cancer, BREC: Breast Cancer, CRC: Colorectal Cancer, EUC: Endometrial/Uterine Cancer, ESC: Esophageal Cancer, FBR: Fibroblast, 

GAC: Gastric Cancer, HNC: Head Neck Cancer, KC: Kidney Cancer, LEU: Leukemia, LIC: Liver Cancer, LUC: Lung Cancer, LYM: 

Lymphoma, MYE: Myeloma, NB: Neuroblastoma, OVC: Ovarian Cancer, PAC: Pancreatic Cancer, PRC: Prostatic Cancer, RBD: 

Rhabdoid, SRC: Sarcoma, SKC: Skin Cancer, TC: Thyroid Cancer 
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Figure S5. SK-N-AS has significantly lower basal ROS level compared to IMR-32 and vorinostat induces ROS in neuroblastoma cell 

line model. (a): Basal ROS level in IMR-32 and SK-N-AS detected after DCFDA staining by FACS, results were normalized to IMR-

32 signal; (b): Increasing percentage of ROS positive IMR-32 cells after treatment with 1 µM vorinostat for 48 hours compared to 

solvent control (DMSO) detected after DCFDA staining by FACS.  
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Original Western Blots  

 
Lane Order: KNS-42, SJ-GBM2, SF188, SK-N-BE(2)-C, IMR-32, NB1 (NB1 not shown in publication 

Antibody order (from top to bottom): anti-p53, anti-actin (not shown), GAPDH 
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R Script 
 

#libraries#### 

library(readxl) 

library(writexl) 

library(tidyverse) 

library(janitor) 

setwd("~/Desktop") 

 

#data#### 

 

#data is a tibble containing the samplenames, the drug response 

#and the zscores of 171 Genes for 405 samples. The colnames correspond to the gene names 

data <- read_xlsx("gene_expression_and_responsiveness.xlsx") 

#gene_type lets you know which genes are classified as upregulated and which as downregulated 

gene_type <- read_xlsx("gene_type.xlsx") 

gene_names <- gene_type$gene_name 

#test_projection functions#### 

 

#test_projection_single calculates how many of which types of errors were made  

#by the projection and outputs these numbers in a named vector.  

#the projection is made via the rule 

#gene is responsive <-> zScore < 0 if gene is upregulated or zScore > 0 if gene is downregulated 

test_projection_single <- function(gene_name, data){ 

  #get the gene's values 

  index <- which(gene_names == gene_name) 

  values <- data[,index+2] 

  #make projection 

  if(gene_type[index, 2] == "down"){ 

    projections <- values < 0 

  } else{ 

    projections <- values > 0 

  } 

  #the following values store the row number in data of the projected or actual 

  #responsive (=positive) and non-responsive (=negative) celllines 

  projected_positives <- which(projections)  

  projected_negatives <- which(!projections) 

  actual_positives <- which(data$sensitivity) 

  actual_negatives <- which(!data$sensitivity) 

  #the following values count the different types of errors/successes of the projection 

  num_true_positives <- sum(projected_positives %in% actual_positives) 

  num_true_negatives <- sum(projected_negatives %in% actual_negatives) 

  num_false_positives <- sum(projected_positives %in% actual_negatives) 

  num_false_negatives <- sum(projected_negatives %in% actual_positives) 

  result <- c("true_positives" = num_true_positives, "true_negatives" = num_true_negatives,  

              "false_positives" = num_false_positives, "false_negatives" = num_false_negatives) 

  dim(projections) <- NULL 

  projection_tib <- tibble(data$samplenames,projections) 

  colnames(projection_tib) <- c("samplenames", paste0("projection_based_on_", gene_name)) 

  return(result) 

} 
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#group is a vector of gene names test_projection_group returns the analysis in the same way as test_projection_single 

#the projection is made via the rule:  

#responsive <-> sum of the downregulated Gene's values > 0 and sum of the upregulated Gene's values < 0 

#if there are only upregulated Genes, only that part of the rule is used, same goes for the downregulated Genes. 

test_projection_group <- function(group, data){ 

  size <- length(group) 

  indices <- numeric(size) 

  for(i in 1:size){ 

    indices[i] <- which(gene_names == group[i]) 

  } 

  types <- gene_type[indices, 2] 

  indices_down <- indices[which(types == "down")] 

  indices_up <- indices[which(types == "up")] 

  values_down <- data[ ,indices_down +2, drop = FALSE] 

  values_down %>% mutate("sum" = rowSums(.)) -> values_down 

  values_up <- data[, indices_up +2, drop = FALSE] 

  values_up %>% mutate("sum" = rowSums(.)) -> values_up 

  #make projection 

  if(length(indices_up) == 0) { 

    projections <- values_down$sum < 0 

  } else if (length(indices_down) == 0){ 

    projections <- values_up$sum > 0 

  } else{ 

    projections <- values_down$sum < 0 & values_up$sum > 0 

  } 

  #same as above 

  projected_positives <- which(projections)  

  projected_negatives <- which(!projections) 

  actual_positives <- which(data$sensitivity) 

  actual_negatives <- which(!data$sensitivity) 

  #the following values count the different types of errors/successes of the projection 

  num_true_positives <- sum(projected_positives %in% actual_positives) 

  num_true_negatives <- sum(projected_negatives %in% actual_negatives) 

  num_false_positives <- sum(projected_positives %in% actual_negatives) 

  num_false_negatives <- sum(projected_negatives %in% actual_positives) 

  result <- c("true_positives" = num_true_positives, "true_negatives" = num_true_negatives,  

              "false_positives" = num_false_positives, "false_negatives" = num_false_negatives) 

  return(result) 

} 

 

#analysis##### 

n <- length(gene_names) 

#make empty table for storing the results 

single_gene_analysis <- tibble("gene_name" = gene_names, "true_positives" = numeric(n), "true_negatives" = nu-

meric(n), 

                               "false_positives" = numeric(n), "false_negatives" = numeric(n)) 

#iterate through genes and perform the individual analysis 

for (i in 1:n){ 

  result <- test_projection_single(gene_names[i], data) 

  single_gene_analysis[i, 2:5] <- t(result) 

} 
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single_gene_analysis %>% mutate("sum_of_errors" = false_positives + false_negatives) %>%  

  mutate("percent_of_errors" = sum_of_errors/405, "sensitivity" = true_positives/(true_positives +false_negatives), 

         "specificity" = true_negatives/(true_negatives + false_positives))-> single_gene_analysis 

 

write_xlsx(single_gene_analysis, "single_gene_full_analysis.xlsx") 

 

 

 

set1 <- filter(gene_type, type == "up")$gene_name 

set2 <- rbind(arrange(single_gene_analysis, desc(sensitivity))[1:20, 1], 

                arrange(single_gene_analysis, desc(specificity))[1:20, 1]) 

set3 <- filter(gene_type, type =="down")$gene_name 

 

#analyse all sets of all sizes of upregulated genes 

gene_set <- unlist(set1) 

names(gene_set) <- NULL 

combinations <- Map(combn, list(gene_set), seq_along(gene_set), simplify = FALSE) 

combinations <- unlist(combinations, recursive = FALSE) 

combinations <- lapply(combinations, function(x) {names(x) <- NULL; return(x)}) 

combinations_string <- sapply(combinations, function(x){str_c(x, collapse = ", ")}) 

 

n <- length(combinations) 

multiple_genes_analysis <- tibble("gene_names" = combinations_string, "true_positives" = numeric(n), "true_nega-

tives" = numeric(n), 

                                  "false_positives" = numeric(n), "false_negatives" = numeric(n)) 

for(i in 1:n){ 

  if(i<length(gene_set)+1){ 

    gene_name <- combinations[[i]] 

    result <- test_projection_single(gene_name, data)[[1]] 

    multiple_genes_analysis[i, 2:5] <- t(result) 

  }else{ 

    active_group <- combinations[[i]] 

    result <- test_projection_group(active_group, data) 

    multiple_genes_analysis[i, 2:5] <- t(result) 

  } 

} 

 

multiple_genes_analysis %>% mutate("sum_of_errors" = false_positives + false_negatives) %>%  

  mutate("percent_of_errors" = sum_of_errors/405,  "sensitivity" = true_positives/(true_positives + false_negatives), 

         "specificity" = true_negatives/(true_negatives + false_positives))-> multiple_genes_analysis 

 

write_xlsx(multiple_genes_analysis, "upregulated_genes_full_analysis.xlsx") 

 

#analyse sets of five genes from set2 

gene_set <- unlist(set2) 

names(gene_set) <- NULL 

combinations <- combn(gene_set,5) 

combinations <- lapply(seq_len(ncol(combinations)), function(i) combinations[,i]) 

combinations_string <- sapply(combinations, function(x){str_c(x, collapse = ", ")}) 

 

n <- length(combinations) 
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multiple_genes_analysis <- tibble("gene_names" = combinations_string, "true_positives" = numeric(n), "true_nega-

tives" = numeric(n), 

                                  "false_positives" = numeric(n), "false_negatives" = numeric(n)) 

for(i in 1:n){ 

  active_group <- combinations[[i]] 

  result <- test_projection_group(active_group, data) 

  multiple_genes_analysis[i, 2:5] <- t(result) 

} 

 

multiple_genes_analysis %>% mutate("sum_of_errors" = false_positives + false_negatives) %>%  

  mutate("percent_of_errors" = sum_of_errors/405,  "sensitivity" = true_positives/(true_positives + false_negatives), 

         "specificity" = true_negatives/(true_negatives + false_positives))-> multiple_genes_analysis 

 

write_xlsx(multiple_genes_analysis, "20_best_sens_and_20_best_spec_groups_of_five_analysis.xlsx") 

 


