

Cancers 2021, 13, 4476. https://doi.org/10.3390/cancers13174476 www.mdpi.com/journal/cancers

Supplementary material

Combining APR-246 and HDAC-Inhibitors: A Novel Targeted

Treatment Option for Neuroblastoma

Michael Müller, Lisa Rösch, Sara Najafi, Charlotte Gatzweiler, Johannes Ridinger, Xenia F. Gerloff, David T. W.

Jone, Jochen Baßler, Sina Kreth, Sabine Hartlieb, Karen Frese, Benjamin Meder, Frank Westermann, Till Milde,

Heike Peterziel, Olaf Witt and Ina Oehme

Figure S1. TP53 mutation status and PRIMA-1 responsiveness in pediatric entities. PRIMA-1 sensitivity data filtered for pediatric

entities (age < 18 when cell line was derived from patient, entities medulloblastoma and neuroblastoma were added if age was un-

known, samples: n=73) separated upon TP53 mutation status. Data derived from Cancer Cell Line Encyclopedia and CTD2 portal.

Supp. Fig. 1: TP53 missense mutations are not related to PRIMA-1 responsiveness in pediatric entities

PRIMA-1 sensitivity data filtered for pediatric entities (age < 18 when cell line was

derived from patient, entities medulloblastoma and neuroblastoma were also

added if age was unknown) separated upon TP53 mutation status. Data derived

from Cancer Cell Line Encyclopedia and CTD2 portal.

0

50

100

150

wt splice siteother-
missense

silent in frame DNA-
missense

frame shift

IC
5
0
 P

R
IM

A
-1

 [
µ

M
]

Cancers 2021, 13, 4476 2 of 10

Figure S2. APR-246 is not restoring p53 pathway activity in neuroblastoma models IMR-32 (TP53

wt) and SK-N-BE(2)-C (TP53mut p.C135F). RT-PCR measurement of TP53 pathway activation.

PUMA (IMR-32: (a); SK-N-BE(2)-C: (b) and GADD45A (IMR-32: (c); SK-N-BE(2)-C: (d)) expression

are depicted as log2 transformed fold change to solvent control. Treatment was applied for 24 h

with doxorubicin or APR-246, alone or in combination as indicated.

Cancers 2021, 13, 4476 3 of 10

Figure S3. APR-246 is not restoring p53 pathway activity in TP53 mutant pediatric high-grade

glioma models SJ-GBM2 (TP53mut p.R273C) and SF188 (TP53mut p.G266E). RT-PCR measurement

of p53 pathway activation. CDKN1A (SJ-GBM2: (a); SF188: (b)) and GADD45A (SJ-GBM2: (c);

SF188: (d)) expression are depicted as log2 transformed fold change to solvent control. Treatment

was applied for 24 h with doxorubicin or APR-246, alone or in combination as indicated. mut, mu-

tant.

Cancers 2021, 13, 4476 4 of 10

Figure S4. PRIMA-1 sensitivity and SLC7A11 expression correlation for Cancer Cell Line Encyclopedia and CTD2 portal cancer enti-

ties. Combination of log2 SLC7A11 expression and PRIMA-1 sensitivity stratified by all cancer cell line entities with data obtained

from Cancer Cell Line Encyclopedia and CTD2 portal. BDC: Bile Duct Cancer, BLC: Bladder Cancer, BOC: Bone Cancer, BRC: Brain

Cancer, BREC: Breast Cancer, CRC: Colorectal Cancer, EUC: Endometrial/Uterine Cancer, ESC: Esophageal Cancer, FBR: Fibroblast,

GAC: Gastric Cancer, HNC: Head Neck Cancer, KC: Kidney Cancer, LEU: Leukemia, LIC: Liver Cancer, LUC: Lung Cancer, LYM:

Lymphoma, MYE: Myeloma, NB: Neuroblastoma, OVC: Ovarian Cancer, PAC: Pancreatic Cancer, PRC: Prostatic Cancer, RBD:

Rhabdoid, SRC: Sarcoma, SKC: Skin Cancer, TC: Thyroid Cancer

Cancers 2021, 13, 4476 5 of 10

Figure S5. SK-N-AS has significantly lower basal ROS level compared to IMR-32 and vorinostat induces ROS in neuroblastoma cell

line model. (a): Basal ROS level in IMR-32 and SK-N-AS detected after DCFDA staining by FACS, results were normalized to IMR-

32 signal; (b): Increasing percentage of ROS positive IMR-32 cells after treatment with 1 µM vorinostat for 48 hours compared to

solvent control (DMSO) detected after DCFDA staining by FACS.

Cancers 2021, 13, 4476 6 of 10

Original Western Blots

Lane Order: KNS-42, SJ-GBM2, SF188, SK-N-BE(2)-C, IMR-32, NB1 (NB1 not shown in publication

Antibody order (from top to bottom): anti-p53, anti-actin (not shown), GAPDH

Cancers 2021, 13, 4476 7 of 10

R Script

#libraries####

library(readxl)

library(writexl)

library(tidyverse)

library(janitor)

setwd("~/Desktop")

#data####

#data is a tibble containing the samplenames, the drug response

#and the zscores of 171 Genes for 405 samples. The colnames correspond to the gene names

data <- read_xlsx("gene_expression_and_responsiveness.xlsx")

#gene_type lets you know which genes are classified as upregulated and which as downregulated

gene_type <- read_xlsx("gene_type.xlsx")

gene_names <- gene_type$gene_name

#test_projection functions####

#test_projection_single calculates how many of which types of errors were made

#by the projection and outputs these numbers in a named vector.

#the projection is made via the rule

#gene is responsive <-> zScore < 0 if gene is upregulated or zScore > 0 if gene is downregulated

test_projection_single <- function(gene_name, data){

 #get the gene's values

 index <- which(gene_names == gene_name)

 values <- data[,index+2]

 #make projection

 if(gene_type[index, 2] == "down"){

 projections <- values < 0

 } else{

 projections <- values > 0

 }

 #the following values store the row number in data of the projected or actual

 #responsive (=positive) and non-responsive (=negative) celllines

 projected_positives <- which(projections)

 projected_negatives <- which(!projections)

 actual_positives <- which(data$sensitivity)

 actual_negatives <- which(!data$sensitivity)

 #the following values count the different types of errors/successes of the projection

 num_true_positives <- sum(projected_positives %in% actual_positives)

 num_true_negatives <- sum(projected_negatives %in% actual_negatives)

 num_false_positives <- sum(projected_positives %in% actual_negatives)

 num_false_negatives <- sum(projected_negatives %in% actual_positives)

 result <- c("true_positives" = num_true_positives, "true_negatives" = num_true_negatives,

 "false_positives" = num_false_positives, "false_negatives" = num_false_negatives)

 dim(projections) <- NULL

 projection_tib <- tibble(data$samplenames,projections)

 colnames(projection_tib) <- c("samplenames", paste0("projection_based_on_", gene_name))

 return(result)

}

Cancers 2021, 13, 4476 8 of 10

#group is a vector of gene names test_projection_group returns the analysis in the same way as test_projection_single

#the projection is made via the rule:

#responsive <-> sum of the downregulated Gene's values > 0 and sum of the upregulated Gene's values < 0

#if there are only upregulated Genes, only that part of the rule is used, same goes for the downregulated Genes.

test_projection_group <- function(group, data){

 size <- length(group)

 indices <- numeric(size)

 for(i in 1:size){

 indices[i] <- which(gene_names == group[i])

 }

 types <- gene_type[indices, 2]

 indices_down <- indices[which(types == "down")]

 indices_up <- indices[which(types == "up")]

 values_down <- data[,indices_down +2, drop = FALSE]

 values_down %>% mutate("sum" = rowSums(.)) -> values_down

 values_up <- data[, indices_up +2, drop = FALSE]

 values_up %>% mutate("sum" = rowSums(.)) -> values_up

 #make projection

 if(length(indices_up) == 0) {

 projections <- values_down$sum < 0

 } else if (length(indices_down) == 0){

 projections <- values_up$sum > 0

 } else{

 projections <- values_down$sum < 0 & values_up$sum > 0

 }

 #same as above

 projected_positives <- which(projections)

 projected_negatives <- which(!projections)

 actual_positives <- which(data$sensitivity)

 actual_negatives <- which(!data$sensitivity)

 #the following values count the different types of errors/successes of the projection

 num_true_positives <- sum(projected_positives %in% actual_positives)

 num_true_negatives <- sum(projected_negatives %in% actual_negatives)

 num_false_positives <- sum(projected_positives %in% actual_negatives)

 num_false_negatives <- sum(projected_negatives %in% actual_positives)

 result <- c("true_positives" = num_true_positives, "true_negatives" = num_true_negatives,

 "false_positives" = num_false_positives, "false_negatives" = num_false_negatives)

 return(result)

}

#analysis#####

n <- length(gene_names)

#make empty table for storing the results

single_gene_analysis <- tibble("gene_name" = gene_names, "true_positives" = numeric(n), "true_negatives" = nu-

meric(n),

 "false_positives" = numeric(n), "false_negatives" = numeric(n))

#iterate through genes and perform the individual analysis

for (i in 1:n){

 result <- test_projection_single(gene_names[i], data)

 single_gene_analysis[i, 2:5] <- t(result)

}

Cancers 2021, 13, 4476 9 of 10

single_gene_analysis %>% mutate("sum_of_errors" = false_positives + false_negatives) %>%

 mutate("percent_of_errors" = sum_of_errors/405, "sensitivity" = true_positives/(true_positives +false_negatives),

 "specificity" = true_negatives/(true_negatives + false_positives))-> single_gene_analysis

write_xlsx(single_gene_analysis, "single_gene_full_analysis.xlsx")

set1 <- filter(gene_type, type == "up")$gene_name

set2 <- rbind(arrange(single_gene_analysis, desc(sensitivity))[1:20, 1],

 arrange(single_gene_analysis, desc(specificity))[1:20, 1])

set3 <- filter(gene_type, type =="down")$gene_name

#analyse all sets of all sizes of upregulated genes

gene_set <- unlist(set1)

names(gene_set) <- NULL

combinations <- Map(combn, list(gene_set), seq_along(gene_set), simplify = FALSE)

combinations <- unlist(combinations, recursive = FALSE)

combinations <- lapply(combinations, function(x) {names(x) <- NULL; return(x)})

combinations_string <- sapply(combinations, function(x){str_c(x, collapse = ", ")})

n <- length(combinations)

multiple_genes_analysis <- tibble("gene_names" = combinations_string, "true_positives" = numeric(n), "true_nega-

tives" = numeric(n),

 "false_positives" = numeric(n), "false_negatives" = numeric(n))

for(i in 1:n){

 if(i<length(gene_set)+1){

 gene_name <- combinations[[i]]

 result <- test_projection_single(gene_name, data)[[1]]

 multiple_genes_analysis[i, 2:5] <- t(result)

 }else{

 active_group <- combinations[[i]]

 result <- test_projection_group(active_group, data)

 multiple_genes_analysis[i, 2:5] <- t(result)

 }

}

multiple_genes_analysis %>% mutate("sum_of_errors" = false_positives + false_negatives) %>%

 mutate("percent_of_errors" = sum_of_errors/405, "sensitivity" = true_positives/(true_positives + false_negatives),

 "specificity" = true_negatives/(true_negatives + false_positives))-> multiple_genes_analysis

write_xlsx(multiple_genes_analysis, "upregulated_genes_full_analysis.xlsx")

#analyse sets of five genes from set2

gene_set <- unlist(set2)

names(gene_set) <- NULL

combinations <- combn(gene_set,5)

combinations <- lapply(seq_len(ncol(combinations)), function(i) combinations[,i])

combinations_string <- sapply(combinations, function(x){str_c(x, collapse = ", ")})

n <- length(combinations)

Cancers 2021, 13, 4476 10 of 10

multiple_genes_analysis <- tibble("gene_names" = combinations_string, "true_positives" = numeric(n), "true_nega-

tives" = numeric(n),

 "false_positives" = numeric(n), "false_negatives" = numeric(n))

for(i in 1:n){

 active_group <- combinations[[i]]

 result <- test_projection_group(active_group, data)

 multiple_genes_analysis[i, 2:5] <- t(result)

}

multiple_genes_analysis %>% mutate("sum_of_errors" = false_positives + false_negatives) %>%

 mutate("percent_of_errors" = sum_of_errors/405, "sensitivity" = true_positives/(true_positives + false_negatives),

 "specificity" = true_negatives/(true_negatives + false_positives))-> multiple_genes_analysis

write_xlsx(multiple_genes_analysis, "20_best_sens_and_20_best_spec_groups_of_five_analysis.xlsx")

