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Simple Summary: Skull-base chordomas (SBC) are rare tumours with unfavourable outcomes, even
when undergoing advanced treatments such as carbon-ion radiotherapy (CIRT). By retrospectively
analysing imaging (MRI, CT), treatment (dose maps) and clinical information available before
treatment, the potential use of radiomics and dosiomics for risk modelling targeting SBC treated with
CIRT was explored. Despite the small sample size, dosiomic features appear to be promising factors
related to local control in SBC, with worse outcomes being associated to higher dose heterogeneity.
Risk models exploiting all sources of information showed slightly inferior but good performance,
suggesting that multi-parametric approaches are worth being pursued for patient risk stratification.
This study is put forward as groundwork for radiomic analyses targeting SBC in CIRT.

Abstract: Skull-base chordoma (SBC) can be treated with carbon ion radiotherapy (CIRT) to improve
local control (LC). The study aimed to explore the role of multi-parametric radiomic, dosiomic
and clinical features as prognostic factors for LC in SBC patients undergoing CIRT. Before CIRT,
57 patients underwent MR and CT imaging, from which tumour contours and dose maps were
obtained. MRI and CT-based radiomic, and dosiomic features were selected and fed to two survival
models, singularly or by combining them with clinical factors. Adverse LC was given by in-field
recurrence or tumour progression. The dataset was split in development and test sets and the models’
performance evaluated using the concordance index (C-index). Patients were then assigned a low-
or high-risk score. Survival curves were estimated, and risk groups compared through log-rank
tests (after Bonferroni correction α = 0.0083). The best performing models were built on features
describing tumour shape and dosiomic heterogeneity (median/interquartile range validation C-
index: 0.80/024 and 0.79/0.26), followed by combined (0.73/0.30 and 0.75/0.27) and CT-based
models (0.77/0.24 and 0.64/0.28). Dosiomic and combined models could consistently stratify patients
in two significantly different groups. Dosiomic and multi-parametric radiomic features showed to be
promising prognostic factors for LC in SBC treated with CIRT.

Keywords: radiomics; dosiomics; machine learning; particle therapy; oncology; radiology; personal-
ized medicine

Cancers 2021, 13, 339. https://doi.org/10.3390/cancers13020339 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0001-5504-1262
https://orcid.org/0000-0003-2899-6447
https://doi.org/10.3390/cancers13020339
https://doi.org/10.3390/cancers13020339
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13020339
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/2072-6694/13/2/339?type=check_update&version=3


Cancers 2021, 13, 339 2 of 15

1. Introduction

Particle therapy makes use of charged particles such as protons or carbon ions and is
increasingly being adopted worldwide, with over 50 facilities built in the last ten years [1].
Although carbon ion radiotherapy (CIRT) is limited to specialized centres, it shows higher
geometrical selectivity and increased radiobiological effectiveness with respect to proton
and conventional X-ray radiotherapy, thus being indicated for treating radioresistant and
deep-seated tumours [2], such as chordomas.

Skull-base chordoma (SBC) is a rare but aggressive tumour, locally invasive and
highly recurrent [3]. Given the anatomical location, the combination of surgery and particle
therapy [4] is suggested for treatment [5], but tumour response remains not satisfactory (5-
year survival rate: 45% for conventional radiotherapy, 87% for CIRT [6]; 5-year local control:
48–60% [5] and 72% [7], respectively). Additionally, the limited phenotypic characterization
of SBC prevents an optimal patient stratification to improve treatment outcomes. In this
context, the growing availability of imaging data can be favourably exploited as a source
of prognostic factors [8,9], with studies in the literature supporting the predictive power
of the appearance of chordomas on diagnostic imaging, such as CT and MRI [10]. More
recently, qualitative imaging factors are being complemented by quantitative ones, such as
radiomic features [11].

Radiomics refers to the automatic extraction of quantitative imaging features, which
can be divided in shape, first order, textural and filter-based features, according to the
specific characteristic described, to develop predictive models [12]. The general hypothesis
of radiomics is that imaging characteristics reflect physiopathological tissue information,
which is thus made accessible through quantitative features [13]. It is then reasonable to as-
sume that different imaging contrasts or modalities describe complementary characteristics
and that multi-parametric approaches can be beneficial for predictive tasks [14]. Among
image modalities, CT [15,16] and PET [17,18] were the focus of several radiomics studies,
as they are the most widely adopted and standardized imaging modalities in radiotherapy
workflows. Even if MRI exhibits a greater variability in acquisition protocols that hinders
the collection of large datasets [19], a growing interest in MRI-based radiomic features in
neuro-oncology is observed in the literature [20–22]. In addition, in conventional X-ray
radiotherapy studies [23–25], the extraction of radiomic features from dose maps (i.e.,
dosiomics) have been proposed, so that the delivered treatment can be characterized by
descriptors of spatial patterns in dose distributions, against the conventional point-wise
parameters of dose-volume histograms (DVH). Finally, the combination of multiple types
of potential prognostic factors, from radiomic to clinical features, was also suggested to
improve the performance of predictive models [26].

Despite its potential clinical usefulness, the radiomic paradigm has been applied to
few studies targeting SBC, mostly focused on diagnostic tasks [27]. Promising results in
predicting local recurrences were obtained from wavelet features extracted from contrast-
enhanced MRI on surgically-treated clival chordomas [28]. To date, however, no radiomic
model on SBC response to CIRT has been developed but, according to the radiomic concept,
it may be a valuable support to clinical decisions in the radiation therapy workflow.

The aim of this study was to explore radiomic approaches for predicting local control in
SBC treated with CIRT. Towards this goal, radiomic and dosiomic features were extracted
from routinely acquired pre-treatment imaging and dose maps, which were selected,
combined, enriched with clinical information, and fed to time-to-event models. Such
framework is, therefore, put forward as the groundwork towards the identification of the
most promising radiomic (and dosiomic) workflow for deriving prognostic factors of SBC
response to CIRT.

2. Results
2.1. Patient Data

Imaging (T1w-MRI, T2w-MRI, CT), treatment (dose maps) and clinical data was
retrospectively collected for 57 SBC patients treated with CIRT. Local control (LC), i.e.,
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favourable outcome, was found in 70% of the patients after a median follow-up time of
35.2 months (range: 2.9–66.07 months). Clinical features (Table 1) were recorded according
to clinical practice. Missing values from categorical variables (marked as n.a. in Table 1)
were replaced by the mode of each features’ distribution.

Survival models were developed exploiting 80% of the dataset (n = 45) within a
cross-validation procedure and further tested on the remaining 20% (n = 12) of the data,
to evaluate the models on totally unseen samples. Data was split randomly but ensuring
that the proportion of samples associated to adverse and favourable LC was equal (71% vs.
66% positive LC for model development and hold-out test, respectively).

Table 1. Clinical information for the whole dataset, reported as median (range) for continuous
variables and occurrences for discrete ones. Anatomical location is coded as upper (1), middle (2)
or lower clivus (3), or as a combination of those, as observed with respect to internal anatomical
landmarks [29]. GTV—gross tumour volume; LC—local control, n.a.—not available.

Continuous Variables Median (Range)

Age (Years) 58 (17–81)

GTV (cm3) 14.48 (0.39–194.70)

Categorical Variables Occurrence

Gender
Female 22

Male 35

Histology

Conventional 47
Chondroid 4

Dedifferentiated 1
n.a. 5

Anatomical location

1 6
2 4
3 2

1+2 27
2+3 6

1+2+3 11
n.a. 1

Brainstem involvement
Yes 14
No 42
n.a. 1

Optic pathway involvement

Yes 10

No 46

n.a. 1

Outcome Occurrence

LC
Favorable (censored) 40

Adverse (adverse event) 17

2.2. Single Modality

At first, the extracted features were fed to survival models, separately, to investigate
the capability of each single modality to provide prognostic features. Different feature
selection routines were evaluated, along with two survival models (i.e., linear survival
support vector machines, s-SVM, vs. Cox proportional hazards model regularized with
an elastic net penalty, r-Cox). Performance was assessed in terms of the concordance
index (C-index) computed from a stratified five-fold cross-validation (CV) routine over
the training set (validation C-index) for model development and over the hold-out test set
(test C-index).
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The signatures (supplementary materials, Section S5) associated to the best models
(i.e., highest validation C-index) in single-modality cases consisted of different features
types, as described in the following:

• Selected T1w-MRI and T2w-MRI features (supplementary materials, Figures S1 and
S2) belonged to the groups of first order, textural and shape features.

• Selected CT features (supplementary materials, Figure S3) described various image
properties, such as the distribution of low and high HU values (first order 10th
percentile and GLRLM High Gray Level Run Emphasis, HGLRE), or their variability
(e.g., first order robust Mean Absolute Deviation, rMAD). Additionally, regional (e.g.,
GLSZM Large Area Emphasis) and volume-confounded descriptors (e.g., first order
Energy) were selected.

• Selected dosiomic features (Figure 1, supplementary materials, Figure S4) mostly
described heterogeneity at different spatial scales (GLRLM run entropy, RE; GLCM
Joint Energy, JEg; GLCM Joint Entropy, JEp; GLCM sum entropy; first-order entropy)
and shape properties (elongation, flatness).

Overall, r-Cox performed better than s-SVM (Table 2, supplementary materials Table S4),
being the validation C-indices above randomness in most of the single-modality cases
(87% vs. 71% of cases for r-Cox and s-SVM). MRI-based s-SVM showed the worst re-
sults, with validation C-indices exceeding 0.50 in only 50% of the cases (80% for r-Cox).
However, s-SVM was able to achieve slightly higher peak performances. The overall best
performance was achieved by dosiomic models both for s-SVM (validation C-index as
median/interquartile range: 0.80/0.24) and r-Cox (0.79/0.26), followed by CT-based ones
(0.77/0.24 for s-SVM; 0.64/0.28 for r-Cox). The clinical signature led to sufficient validation
C-indices (0.69/0.23 for s-SVM, 0.64/0.26 for r-Cox).

Figure 1. Standardized dose features for patients as stratified by the best performing r-Cox model (i.e., highest validation
C-index) according to the risk (high in red, low in blue) of showing an adverse local control. The model was re-trained on
the whole training set (80% dataset), from which the stratification cut-off was estimated, and tested on the hold-out test set
(20% dataset). Boxplots refer to re-training data, whereas the overlaid points refer to test data.
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Table 2. Validation concordance indices (validation C-index) from s-SVM and r-Cox models built over various feature
subsets, defined by 10 features selection routines (second column, details are given in supplementary materials Table S4),
from single modalities (T1w- and T2w-MRI, CT, dose, clinical) and from a combination of those (comboAll). Values are
reported as median/interquartile range. Best cases for each modality are marked with ˆ.

Model
Feature

Selection
Routine

T1w-MRI T2w-MRI CT Dose ComboAll Clinical

s-SVM

Routine n. 1 0.58/0.17 0.50/0.22 0.61/0.24 0.73/0.19 0.69/0.27

Routine n. 2 0.58/0.17 0.45/0.24 0.62/0.19 0.74/0.25 0.60/0.20

Routine n. 3 0.36/0.21 0.60/0.27 0.77/0.24 ˆ 0.73/0.22 0.69/0.33

Routine n. 4 0.36/0.21 0.64/0.33 0.63/0.24 0.77/0.21 0.69/0.33

Routine n. 5 0.60/0.24 ˆ 0.60/0.25 0.58/0.27 0.67/0.20 0.70/0.24

Routine n. 6 0.42/0.22 0.67/0.23 ˆ 0.68/0.27 0.80/0.24 ˆ 0.46/0.21

Routine n. 7 0.54/0.24 0.63/0.22 0.50/0.24 0.74/0.23 0.58/0.25

Routine n. 8 0.56/0.23 0.41/0.18 0.54/0.27 0.23/0.24 0.54/0.25

Routine n. 9 0.40/0.18 0.47/0.19 0.55/0.31 0.62/0.30 0.73/0.30 ˆ

Routine n. 10 0.42/0.30 0.41/0.30 0.60/0.35 0.64/0.30 0.55/0.15

None 0.69/0.23

r-Cox

Routine n. 1 0.60/0.18 0.60/0.27 0.62/0.35 0.62/0.22 0.63/0.33

Routine n. 2 0.60/0.18 0.57/0.27 0.62/0.35 0.59/0.20 0.62/0.30

Routine n. 3 0.62/0.28 0.43/0.23 0.64/0.28 0.74/0.20 0.69/0.30

Routine n. 4 0.62/0.28 0.57/0.27 0.64/0.28 ˆ 0.69/0.24 0.69/0.30

Routine n. 5 0.64/0.20 0.57/0.32 0.54/0.20 0.72/0.27 0.68/0.33

Routine n. 6 0.53/0.38 0.50/0.19 0.54/0.18 0.79/0.26 ˆ 0.75/0.28 ˆ

Routine n. 7 0.65/0.21 0.50/0.24 0.48/0.25 0.73/0.25 0.57/0.32

Routine n. 8 0.65/0.21 ˆ 0.60/0.30 0.54/0.30 0.73/0.25 0.57/0.62

Routine n. 9 0.40/0.29 0.63/0.27 ˆ 0.53/0.19 0.65/0.22 0.75/0.27 ˆ

Routine n. 10 0.56/0.37 0.59/0.26 0.53/0.24 0.67/0.24 0.75/0.27

None 0.64/0.26

2.3. Combined Modalities

Following single modality analyses, imaging, dose and clinical information with the
best validation C-indices were combined to evaluate the performance of a multi-parametric
scenario.

In the best-performing cases of comboAll models, the correlation-based feature se-
lection method favoured clinical and dosiomic features, whereas the PCA-based method
retained features from all modalities (supplementary materials, Figure S5). Textural do-
siomic (GLRLM RE) and shape (flatness) features were found in all signatures fed to the
best comboAll r-Cox models.

Regarding models’ performance, the best r-Cox performed slightly better than the
best s-SVM (0.75/0.28 vs. 0.73/0.30), but they did not outperform the best single-modality
dosiomic models.

2.4. Survival Analysis

The survival curves (Figure 2) of high- and low-risk hold-out test patients, as defined
according to models’ output, significantly differed (log-rank test, α = 0.0083) only for the
dosiomic s-SVM model (Table 3). Results from re-training data, even if over-optimistic,
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show significant differences in T2w-MRI, CT, dose, comboAll and clinical models, only
for s-SVM. All the models tested on the hold-out test set showed optimal test C-indices
(supplementary materials, Section S6, Table S5), apart from MRI-based ones.

Table 3. Log-rank tests were applied to statistically describe differences between survival curves for
patients at high- and low-risk of meeting an adverse local control for the best cases of each modality
(i.e., T1w-MRI, T2w-MRI, CT, dose, clinical) and their combination (comboAll), for both s-SVM and
r-Cox models. Cases in which the p-value pointed to a statistically significant separation (α = 0.0083)
in the re-training set are marked with *, whereas ** marks cases in which significance was found in
both re-training and test sets.

Model T1w-MRI T2w-MRI CT Dose ComboAll Clinical

s-SVM 0.273 0.176 * 0.176 * 0.002 ** 0.067 0.101 *
r-Cox 0.361 0.067 0.213 0.101 0.101 0.213

Figure 2. Kaplan Meier survival curves for patients at high-(red) and low-risk (blue) of meeting an adverse local control as
stratified by s-SVM models for the best dose case (top) and comboAll (bottom), after re-training. An estimator is fit on the
re-training data (left, shaded areas depict curves’ confidence intervals) and applied to the test data (continuous lines on the
right; dashed lines represent the re-training curves shown on the left). Below each plot, the number of patients belonging to
each risk group at certain times is shown. The p-values (p) in the legends refer to the comparison of high- and low-risk
patient groups within re-training (left) or test (right) set using log-rank tests.
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3. Discussion

In this study, survival models were investigated to stratify SBC patients treated
with CIRT according to the risk of an adverse local control. Information available before
treatment was exploited, including radiomic features extracted from T1w-MRI, T2w-MRI
and CT, dosiomic features and clinical factors recorded according to the clinical practice.

3.1. Technical Evaluation

By exploring various feature selection routines, it was possible to investigate differ-
ent feature signatures while mitigating the mismatch between number of features and
sample size.

To further account for the problem of limited sample size, s-SVM was the chosen
machine learning model, as it is relatively robust to overfitting [30], and it was compared
to a traditional statistical model (r-Cox). As supported by the literature [31], no unique
combination of a feature selection method and a model outperformed the other combina-
tions across all input feature types. Both models provide linear decision boundaries, but
the possibility to tune the step size of r-Cox (supplementary materials, Section S3) may
explain its slightly higher average prognostic performance and stratification capabilities,
as suggested by the C-index and the long-rank tests, respectively. In this study, non-linear
models (e.g., kernel s-SVM) were not investigated, since a higher risk of overfitting is
associated to an increased model’s complexity [13]. Nevertheless, these models would
certainly be of interest if more data samples were available.

Additionally, the limited test set available for the current study hinders the evaluation
of the test C-index alone, which often reached its maximum value. However, this over-
optimism is expected to fade once the hold-out test data is expanded.

3.2. Single Modality

The MRI features that led to the best MRI-based models described shape, histogram
and textural properties (supplementary materials, Figures S1 and S2), but were of limited
generalizability, especially for T1w-MRI as shown by the C-indices and p-values obtained
on the hold-out test set. Such behaviour may be explained by different factors. Firstly,
MR-radiomic features were extracted from gross tumour volumes (GTV) that had been
delineated on a fused MR-CT and rigidly registered to MRIs, as no direct manual con-
tour was available for each MR modality. As such, the contour may not exactly match
the MR-visible tumour due to registration errors. Moreover, MRI were retrospectively
collected and, even if most of the acquisition parameters were matched, some of them (e.g.,
echo time) varied more if compared to acquisition and computation parameters of CT and
dose maps, respectively. This and the lack of test-retest data may cause non-reproducible
features to be fed to the models [19,32] which are not able to generalize to unseen data.
Due to the limited data available, it was not possible to separately investigate the potential
confounding factors (contouring, intrinsic features reproducibility, variations in acquisi-
tion parameters) which are known to affect the computation of radiomic features [33].
Nonetheless, given the radiological relevance of chordoma appearance on MRI [11], from
which haemorrhage, calcifications and other heterogeneous structures can be identified,
quantitative (e.g., diffusion-weighted MRI) and standardized anatomical MR sequences
(e.g., fat-saturated or contrast-enhanced) should be explored as promising sources of prog-
nostic features [27,34,35]. Indeed, textural wavelet features from anatomical T1w- and
T2w-MRI showed to be promising for SBC treated with surgery [28]. In the current study,
based on patients who already underwent surgery and enrolled for CIRT, features from
wavelet-filtered image were not analysed to reduce the risk of overfitting. Nevertheless, it
would be interesting to explore wavelet MRI features for SBC treated with CIRT, once a
larger and more homogeneous MR dataset is gathered.

Although CT offers a lower soft tissue contrast than MRI, the selected CT features
(supplementary materials, Figure S3) showed comparable or higher validation C-indices
with respect to MRI. This could be due to the tendency of chordomas to segregate, infiltrate
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and destroy bone structures [11], which are well identifiable on CT imaging. This obser-
vation seems to be supported by the choice of features pertaining low (10th percentile) or
high (GLRLM HGLRE) or differences between low and high (rMAD) HU values, in the
best performing cases. Overall, shape features also contributed to the performance of many
best models, suggesting that GTV geometry descriptors could play a role.

Dosiomic features turned out to be the most promising signatures (Table 2), as shown
by the validation C-indices, which comprised shape and dose textural features in the best
cases. This agrees with literature findings as the presence of low-dose regions and dose
inhomogeneities within the GTV is one of the primary causes of local recurrences [36].
All textural features, apart from GLCM JEg, appeared to be higher for patients showing
an adverse LC, who were thus described by lower homogeneity (GLCM JEp) and higher
heterogeneity (GLRLM RE, GLCM JEp and SE) in the planned biological dose (Figure 1,
supplementary materials Figure S4). First-order dosiomic features resembled dose-volume
histogram (DVH) indices but, apart from entropy, which still measures heterogeneity,
no first-order feature was selected in the signatures associated to the best cases. This
suggests that dose spatial patterns may have a higher impact on the success of CIRT
treatments with respect to conventional DVH metrics and future studies should focus on
their rigorous comparison [23,36]. The improved performance of dosiomic with respect to
radiomic models could be explained by the higher standardization of the dose protocol
for this patient cohort. However, since biological dose maps were employed to account
for CIRT biological effects, a generalization of these results to other radiation treatments
(e.g., proton and X-ray) cannot be directly made and should be carefully evaluated [37].
Even within CIRT doses, it would be interesting to compare these findings with those
coming from different radiobiological models, which are known to strongly affect RBE
calculations [38,39].

Models based on clinical features did not outperform dosiomic models but showed
comparable results to radiomic models. Clinical variables were limited to those available
for most of the patients but other factors, missing from the current evaluation (e.g., extent
of surgical resection), may be beneficial and their impact of LC in SBC treated with CIRT
should be investigated [8]. Clinical models may be more easily generalizable to other
treatment modalities with respect to dosiomic and radiomic models, but they may be
subject to patient selection biases. If clinical and demographic characteristics of patients
eligible for CIRT differ from those of patients undergoing X-ray or proton treatments [36],
care must be paid also when generalizing clinical models to other therapeutic strategies.

3.3. Combined Modalities

When combining all sources of information, features leading to the best models
within each group (i.e., MRI, CT, dose, clinical) were merged, selected, and evaluated
(comboAll). The best validation C-indices slightly lowered with respect to those from
dosiomic models (0.73 vs. 0.80 for s-SVM; 0.75 vs. 0.79 for r-Cox) but improved with
respect to those from radiomic and clinical models. In the best comboAll cases, the selected
clinical features were anatomical location, optic pathway involvement, and/or gender.
This agrees with recent studies [8,36] that investigated the prognostic power of clinical
factors and showed a consistent association to worse outcomes when optic pathways were
affected (clinical visual deficits or radiological involvement), which may be related to
the impact of the constraints for critical structures on the prescribed dose. The beneficial
impact of dosiomic features was confirmed by the subset of features that led to the best
r-Cox model (five dosiomic features out of the 10 selected) and by the consistent choice
of GLRLM RE in all best comboAll models (supplementary materials, Figure S5). Finally,
radiomic features from MRI also contributed to build best-performing models in comboAll,
thus (i) supporting the importance of considering different sources of information and (ii)
indicating that multi-modal approaches could potentially mitigate shortcomings related to
single modalities.
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3.4. Validity and Limitations of the Proposed Work

The clinical usefulness of dosiomic and comboAll models is supported by the separa-
tion of survival curves obtained for low- and high-risk groups. Only the dosiomic s-SVM
model could significantly separate low- and high-risk patients in both re-training and
hold-out test sets. However, the significant results observed in the re-training set, although
over-optimistic, suggest that statistical significance may be found in larger hold-out test
sets when using s-SVM models. As only a single stratification cut-off (median value)
was evaluated and these results should be considered cautiously [31], this analysis is put
forward as an example of the clinical usefulness of the proposed method.

Moreover, given the relatively small sample size and the mono-centric and retrospec-
tive study design, the reported results need to be validated by broader analyses, considering
additional data either coming from the same or an external institution [40]. In the latter
case, advanced harmonization techniques should be considered, especially for anatomical
imaging [41] and biological doses [38]. As an external validation is of paramount impor-
tance to correctly evaluate the generalization capabilities of the proposed framework [42],
future work will focus on extending the current study to data coming from other institu-
tions. Additionally, even if GTVs were delineated following institutional guidelines, future
efforts will be put in quantifying inter-observer variabilities and evaluating the feasibility
of automatic segmentation strategies for SBC [43]. Whereas delineation variabilities are
known to affect radiomic features at various degrees [19], no reproducibility study has been
conducted on dosiomic features yet. This can be explained by the difficulties arising from
the influence that contours have on both the dosiomic features and the planned doses, from
which features are then computed. Studies aiming at evaluating the impact of contouring
on dosiomic features must be carefully planned to be able to address such dependency.

Other than technical aspects, clinical and biological validations need to be addressed
before radiomic and dosiomic features can be employed as biomarkers for SBC [44]. This
is even more relevant in the case of CIRT, for which the radiobiological effectiveness is
one of the major benefits with respect to conventional radiotherapy. Finally, it should
be also considered that the relatively small sample available for this study represents a
unique dataset coming from a peculiar treatment, such as CIRT, that is often reserved to
rare tumours.

4. Materials and Methods
4.1. Patient Data and Clinical Features

Patients affected by SBC and treated with CIRT between 2013 and 2016 at the National
Center of Oncological Hadrontherapy (CNAO, Pavia, Italy) were retrospectively selected.
Inclusion criteria were: (i) prescribed biological dose of 70.4 Gy(RBE) delivered in 16
fractions, (ii) the availability of clinical follow-up at least at three months, and (iii) avail-
ability of pre-treatment T1-weighted and T2-weighted (2D, contrast-free) MRI, planning
CT and planned biological dose maps. Plans were optimized with a commercial treatment
planning system (Syngo RT Planning VC13, Siemens) using a pencil beam algorithm for
physical dose calculation and the local effect model (α/β = 2 Gy) for computing the 3D
relative biological effectiveness (RBE) [45]. Patients being re-irradiated, or with a different
prescribed dose or with different MR acquisition parameters (supplementary materials,
Table S1) were excluded from the study. All patients underwent surgery prior to CIRT (data
not available for two out of 57 patients). The study was approved by the ethical committee
at the Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo (id:
20200053536) and informed consent was obtained.

The LC was chosen as the clinical endpoint and was calculated from the last day
of therapy to the date of event or censoring. Recurrence or disease progression in the
target volume (adverse LC) was clinically assessed on radiological imaging at follow-up,
and was considered an event for survival analysis, whereas progression-free evaluation
(favourable LC) referred to censored data. Clinical features consisted of age at the time of
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treatment, gender, GTV, anatomical location [29], biopsy-proven histology, brainstem and
optic pathway involvement, as recorded in the clinical practice (Table 1).

4.2. Data Preparation

Within the clinical planning procedure, gross tumour volumes (GTVs) were manually
delineated for treatment planning on the planning CT, with the support of a fused MRI and
following institutional guidelines. Since manual MRI contours were not available and T1w-
and a T2w-MRI were acquired on the same day of the planning CT, GTV contours were con-
veyed to both T1w- and T2w-MRI through a rigid registration with CT imaging (Figure 3).
Before feature extraction, T1w- and T2w-MRI underwent bias field correction [46] and
intensity normalization, based on a histogram matching algorithm [47,48]. No denoising
strategy was applied because of the undefined noise characteristics of the employed MR se-
quences. Pre-processing steps were neither applied to CT images (expressed in Hounsfield
Units—HU) nor to biological dose maps.

Figure 3. Imaging (from left to right: T1w-MRI, T2w-MRI, CT) and dose maps (overlaid to CT) for
patients with opposite local control evaluation (top row favourable LC, bottom row adverse LC).
Tumour contours are shown as red overlays on T1w-MRI images.

4.3. Feature Extraction and Selection

Features were extracted using the open-source software pyradiomics (v2.2.0) [49],
which complies with recommendations from the Image Biomarker Standardisation Ini-
tiative [50]. Shape features (n = 14) were computed from the GTVs segmented on the CT,
whereas first-order (n = 18) and textural features (n = 75) were computed for every modal-
ity separately (CT, T1w-MRI, T2w-MRI, dose maps). Textural features described spatial
intensity patterns from gray level co-occurrence (GLCM), gray level run length (GLRLM),
gray level size zone (GLSZM), gray level dependence (GLDM), and neighbouring gray tone
difference (NGTDM) matrices. For all the modalities, features were extracted from the GTV.
Details on the feature extraction routines employed are provided in the supplementary
materials (supplementary materials, Section S1, Table S2).

Different methods for dimensionality reduction were tested to mitigate the unbalance
between number of features and sample size [51] and to investigate their interplay with
the employed models [52]. Ten feature selection routines were applied to radiomic and
dosiomic features [53] in a two-step procedure: at first, combinations of unsupervised meth-
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ods (i.e., based on correlation, clustering, and principal component analysis—PCA) were
applied repeatedly and features were then selected based on frequency. Additional details
on feature selection routines are reported in the supplementary materials (supplementary
materials, Section S2).

4.4. Survival Models

A machine learning survival model based on linear survival support vector machines
(s-SVM) [54] was adopted and compared to a conventional Cox proportional hazards model
regularized with an elastic net penalty (r-Cox, scikit-survival, v. 0.11) [55]. To highlight the
potential clinical application of the proposed models, Kaplan-Meier survival curves were
finally estimated (lifelines, v. 0.24.3, [56]) for low- and high-risk groups, defined according
to the models’ output (Section 4.5 for details).

4.5. Experiments

Before feature selection, 80% of the patients (n = 45) were assigned to the development
set, to evaluate the model building procedure, and 20% (n = 12) to the hold-out test set,
to evaluate the models on totally unseen data (Figure 4). Data was split randomly but
ensuring that the proportion of samples associated to adverse and favourable LC was
equal. Before models’ training, features were normalized (z-score for s-SVM and L2-norm
for r-Cox) and the normalization parameters applied to the unseen data (i.e., validation
fold, hold-out data) both for the development and test routines.

Figure 4. The proposed workflow. Green boxes highlight feature sources, blue boxes represent computational steps and
red boxes results. Pre-processing steps are detailed in the supplementary materials, Section S1. A stratified five-fold
cross-validation (5-CV) routine was repeated ten times and applied to the training set, for both feature selection and model
training during the development phase. The hold-out test set was used to test the re-trained models in terms of models’
performance (test C-index) and ability to stratify patients in different survival curves according to their risk of undergoing
an adverse LC event.
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During models’ development, a five-fold cross-validation routine was defined so that,
in each fold (n = 9), various follow-up time durations were present. Folds were created
10 times, each time with a different data split (repeated stratified five-fold CV). During
the development phase, feature selection was performed, as reported in Section 4.3. After
that the features’ subset was chosen, models’ hyper-parameters were defined, through
a grid search, as the combination of parameters that maximized models’ performance
(supplementary materials, Section S3, Table S3). The models’ predictive performance was
evaluated in terms of the C-index, a generalization of the area under the receiver operating
characteristic curve for censored data [57]. Specifically, the median value of the C-indices
computed from the validation fold (validation C-index) was chosen as the summarizing
metric. Clinical features underwent the same routine, except for the feature selection step,
which was not performed.

Each modality (T1w-MRI, T2w-MRI, CT, dose, clinical) was evaluated separately.
Then, the single-modality signatures that were associated to the best validation C-index,
within each modality, were retained; they were combined into a multi-parametric feature
set, to which clinical features were added (comboAll); and the development procedure was
repeated (supplementary materials, Section S4).

Subsequently, the single-modality and comboAll models with the highest validation C-
index were tested on the hold-out dataset. Since the cross-validated development phase did
not provide a unique model as output, models were re-trained on the whole development
set and tested on the hold-out dataset. This allowed evaluating the procedure on totally
unseen data as, in the development stage, data used to evaluate the models in the validation
folds had been previously used to select features and to optimize models’ hyper-parameters.
In this phase, models were evaluated in terms of C-index computed over the hold-out
testset (test C-index).

As for evaluating the clinical applicability of the proposed procedure, the stratification
cut-off was set to be the median value of the model’s output in the re-training set, and it was
applied to both re-training and test data. The estimated survival curves (i.e., Kaplan-Meier
survival curves, Section 4.4.) were compared using log-rank tests, setting the significance
at α = 0.05. To account for multiple testing, a Bonferroni correction (n = 6) was applied to
each model, thus leading to a corrected α = 0.0083.

All calculations were performed in Python 3.6, using functionalities from scikit-learn
(v. 0.21.3, [53]).

5. Conclusions

Radiomic and dosiomic analyses predicting the risk of adverse LC in SBC treated
with CIRT were implemented for the first time, integrating MRI, CT, dose maps, and
clinical features. Dosiomic and combined features showed promising results in terms
of performance and generalization abilities, but a thorough validation is needed before
these models can be applied in the clinical practice. Nevertheless, the reported findings
support further investigations on radiomic and dosiomic approaches which may improve
the understanding of how CIRT treatment affects LC in SBC.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072
-6694/13/2/339/s1. Section S1: Detailed Parameters Description, Section S2: Feature Selection
Methods, Section S3: Survival Models, Section S4: Building ComboAll Models, Section S5: Selected
Features, Table S1. Acquisition parameters for T1w-MRI, T2w-MRI and CT, Section S6: Additional
Results, Table S2. Pre-processing and feature extraction parameters for T1w-MRI, T2w-MRI, CT
and dose maps, Table S3. Hyper-parameters found for the best performing s-SVM and r-Cox, for
single modality, comboAll and clinical models, Table S4. Validation concordance indices (validation
C-index) from s-SVM and r-Cox models built over various feature subsets, Figure S1. Standardized
T1w-MRI features for high- and low-risk patients as divided by the best performing s-SVM and r-Cox
models, according to the validation C-indices, Figure S2. Standardized T2w-MRI features for high-
and low-risk patients as divided by the best performing s-SVM and r-Cox models, according to the
validation C-indices, Figure S3. Standardized CT features for high- and low-risk patients as divided
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by the best performing s-SVM and r-Cox models, according to the validation C-indices, Figure S4.
Standardized dose features for high- and low-risk patients as divided by the best performing s-SVM
and r-Cox models, according to the validation C-indices, Figure S5. Standardized comboAll features
for high- and low-risk patients as divided by the best performing s-SVM and r-Cox models, according
to the validation C-indices.
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