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Simple Summary: We have previously reported that a combination of clinical chemotherapies and
oncolytic HSV-1 works to sensitize tumors to respond to immune checkpoint blockade. We further
showed that this therapeutic platform worked via the upregulation of B cells and the concomitant
control of immunosuppressive myeloid cells. In this manuscript, we sought to further dissect the
mechanism of myeloid cell regulation and differentiation and to identify a therapeutically driven
gene signature that is associated with the switch in the myeloid phenotype. This work not only
impacts triple-negative breast cancer but all solid tumor phenotypes as we aim to better understand
the underlying immunology associated with responses to immune checkpoint therapies in these
typically refractory disease types.

Abstract: The era of immunotherapy has seen an insurgence of novel therapies driving oncologic
research and the clinical management of the disease. We have previously reported that a combination
of chemotherapy (FEC) and oncolytic virotherapy (oHSV-1) can be used to sensitize otherwise non-
responsive tumors to immune checkpoint blockade and that tumor-infiltrating B cells are required
for the efficacy of our therapeutic regimen in a murine model of triple-negative breast cancer. In
the studies herein, we have performed gene expression profiling using microarray analyses and
have investigated the differential gene expression between tumors treated with FEC + oHSV-1
versus untreated tumors. In this work, we uncovered a therapeutically driven switch of the myeloid
phenotype and a gene signature driving increased tumor cell killing.

Keywords: triple-negative breast cancer; breast cancer; immunotherapy; B cells; myeloid cells; tumor
microenvironment; oncolytic virotherapy; chemotherapy

1. Introduction

In recent years, we have seen an insurgence of novel immunotherapies in both pre-
clinical and clinical development, changing the face of cancer therapy and the clinical
management of the disease. However, the percentage of patients that benefit from these
highly efficacious therapies is low, and recent focus has shifted towards the need for a more
comprehensive understanding of the immune system and immune interactions within the
ever-changing tumor microenvironment (TME) [1]. With renewed attention to fundamental
tumor immunology, myeloid cells have been presented as a vital and fluid population
of cells that drive immune response, promote the activation and expansion of effector T
cells, and also simultaneously play a role in the maintenance of tissue homeostasis and in
promoting immune tolerance [2]. Tumor-infiltrating myeloid cells are found abundantly in
the tumor stroma, and their levels strongly correlate to patient outcomes in many forms of
cancer [3]. Additionally, tumors can co-opt myeloid cells to promote cancer growth and
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increase metastatic potential [3]. Recent years have uncovered a crucial role of myeloid cell-
driven immune escape in the TME, and it has become widely recognized that myeloid cells
play a central but not fully understood role in the response to many types of therapy [4].

In cancer, a decrease in peripheral myeloid cells drives myelopoiesis, increasing
the migration of these cells before they have completely differentiated [5]. This results
in an influx of myeloid cells with strong immunosuppressive patterns and abnormal
functions [6,7]. Due to their myeloid origin, this heterogenous population of cells has been
termed myeloid-derived suppressor cells (MDSCs), representing a distinct population of
immature myeloid cells that are activated under sustained inflammation. In breast cancer,
MDSCs have been demonstrated as a major driver of immune escape and the main reason
for therapeutic resistance and cancer relapse, particularly in the case of immunotherapy [4,8].
Circulating MDSCs in the peripheral blood of breast cancer patients are elevated in all
stages of the disease and are directly correlated with clinical cancer stage and metastatic
burden [9,10]. While MDSCs are a major source of immunosuppression within the TME,
tumor-associated macrophages (TAMs) also represent a distinct suppressive population of
cells that is known to drive tumorigenesis and metastasis [11].

We have previously reported an immunotherapy platform targeting immune-bare
triple-negative breast cancer (TNBC) tumors using a clinical chemotherapy cocktail (FEC;
5-fluorouracil, epirubicin, cyclophosphamide) in combination with an oncolytic Herpes
Simplex virus type 1 (oHSV-1) [12]. In this work, we showed that FEC + oHSV-1 therapy
sensitized tumors to immune checkpoint blockade (ICB) and the requirements of tumor-
infiltrating B cells to combat MDSC-driven immunosuppression in the TME. Herein, we
have further investigated these effects and have focused on the transcriptomic changes of
FEC + oHSV-1 therapy to switch the genomic landscape of a murine TNBC tumor from
that of immunosuppressive myeloid phenotypes to those with antitumorigenic functions.
In particular, we looked at macrophage frequencies, as previous data support a role for B
cells in mediating macrophage polarization [13–15].

Preliminary data for this work were conducted in subcutaneous tumors, which fail to
accurately recapitulate de novo tumor formation and lack other cell types that may be found
in naturally occurring TMEs. To assess the locational differences between subcutaneous
tumors and those in the more appropriate location of the mammary fat pad, genome-wide
transcriptome analysis was performed in both subcutaneous and orthotopically implanted
tumors. While these studies are specific to breast cancer, the underlying immunological
functions can carry through to other solid tumor phenotypes.

2. Materials and Methods
2.1. Cell Lines

Human osteosarcoma cells (U2OS; ATCC, Manassas, VA, USA) were used for virus
preparation. U2OS cells were maintained in Dulbecco’s modified Eagle’s media (DMEM)
and were supplemented with 10% fetal bovine serum (FBS; ATCC 30-2020), 2 mmol/L
L-glutamine, 100 U/mL penicillin, and 100 µg/mL streptomycin (Gibco, Grand Island, NY,
USA). Murine breast adenocarcinoma cells were isolated from a spontaneous tumor in a
C57/Bl6 mouse (E0771; CH3 Biosystems, Amherst, NY, USA) and were used for in vivo
experiments. E0771 cells were maintained in Roswell Park Memorial Institute (RPMI)
medium supplemented with 10% FBS and 2 mmol/L L-glutamine. All of the cell lines used
in our experiments were grown in an incubator that was maintained at 37 ◦C with 5% CO2.

2.2. Mouse Experiments

All of the mouse experiments were completed in the McMaster University Central
Animal Facility. All procedures using mice were conducted in compliance with the Cana-
dian Council on Animal Care and under the approval of the Animal Research Ethics Board
of McMaster University (Animal Utilization Protocol 17-05-22). Six- to eight-week-old
female C57/Bl6 mice (Charles River Laboratories, Wilmington, MA) were used in all of
the mouse experiments. For subcutaneous the E0771 tumors, 5 × 106 cells in 200 µL PBS
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were implanted on the left flank. For orthotopic tumors, 2 × 105 cells in 50 µL PBS were
implanted on the lower-left mammary fat pad. For all of the experiments, the mice were
housed 5/cage, fed a normal diet, and kept at room temperature. After tumor implantation,
it took approximately twelve days for palpable tumors to arise (50–100 mm3). All of the
mice were randomized before treatment commenced. FEC was given on day 1 (20 mg/kg
5-fluorouracil in 200 µL saline, followed by 3 mg/kg epirubicin in 200 µL saline, followed
by 20 mg/kg cyclophosphamide in 200 µL saline 1 h later; intraperitoneally). oHSV-1
was given on days 2, 3, and 4 (2 × 107 pfu oHSV-1 dICP0 in 50 µL PBS, intratumorally).
Tumors were measured every 2 days with calipers, and tumor volumes were calculated as
volume = length × width2/2. For the survival studies, the mice were classified as reaching
endpoint when their tumor volume reached 1000 mm3, when they lost 20% of their original
body weight, or when they had a body score of 1.

2.3. Chemotherapy Treatments

All chemotherapies were stored as per the manufacturer’s recommendation and
were resuspended to the desired concentration in sterile saline on the same day that they
were to be used [5-fluorouracil, Sigma Aldrich (St. Louis, MO, USA), F6627, 2 mg/mL;
Epirubicin, Cayman Chemicals, 12,091, 0.3 mg/mL; cyclophosphamide, Sigma Aldrich,
C0768, 2 mg/mL].

2.4. Oncolytic Virus Treatments

Oncolytic HSV-1 was produced by a homologous recombination using infectious DNA
of luciferase-expression wild-type HSV-1 KOS/Dluc/oriL [16]. HSV-1 dICP0 contains a
deletion of the entire ICP0 coding region. oHSV-1 was propagated and titered on U2OS
cells with 3 mmol/L hexamethylene bisacetamide (Sigma) and were purified via sucrose
cushion ultracentrifugation. The final purified virus was resuspended in PBS to the desired
concentration and were stored in aliquots at −80 ◦C for experimental use.

2.5. Survival Analysis: Kaplan–Meier and ROC Plots

The publicly available online software KMplot.com was used to generate the Kaplan–
Meier survival plots in Figure 3 [17]. This database contains breast cancer microarray
datasets derived from multiple publicly available datasets available on the NCBI Gene
Expression Omnibus (GEO). The use of this tool is described in detail by the developers in
Győrffy et al. 2010 [17]. Probes were selected using JetSet optimization, and the average
expression of the macrophage signature (Table 1) was analyzed using mRNA expression
logarithmic values above (high) or below (low) either the median or upper tertile for
relapse-free survival. ROCplot.org was used to assess the prognostic significance of S100A8
and S100A9 (Figure 7) [18]. Patient microarrays with treatment and response annotation
were accrued by the developers using the NCBI GEO [18]. They defined a pathologically
complete response as being a pathologically complete response versus residual disease
after completing therapy. S100A8 and S100A9 mRNA expression were independently
assessed as predictors of a pathologically complete response in any patients treated with
combined 5-fluorouracil, epirubicin, and cyclophosphamide (FEC) therapy, and the mRNA
expression of S100A8 and S100A9 was plotted for responders versus non-responders using
Graphpad Prism.

2.6. Clariom S Assay

RNA was extracted from whole tumor digests using the Qiagen RNA extraction
kit (Cat #74004). Extracted RNA was diluted to a concentration of 100 ng/50 µL and
underwent reverse transcription. sscDNA was purified using magnetic beads and frag-
mented using UDG. The fragmented sample was hybridized to the Affymetrix Clariom S
mouse arrays, and the stained arrays were scanned to generate intensity data. All of the
reagents for this assay were developed by and purchased from Thermo Fisher Scientific
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(Loughborough, UK). Raw data was analyzed using the Thermo Fisher Transcriptome Anal-
ysis Console software. The complete dataset can be found in the GEO database, GSE183864.

Table 1. Macrophage-associated genes highly upregulated by FEC + oHSV-1 therapy.

Gene. F + O vs. P(Fold Change) Function

LCN2 632.83
Regulator of macrophage polarization via STAT3 activation [19]

Modulates iNOS and Arg1 in macrophages to
promote the anti-inflammatory function [20]

CXCL2 308.84 Secreted by macrophages, regulator of myeloid cell migration

SAA3 180.26 Marker of macrophage infiltration [21]
Promotes macrophage differentiation [22]

CXCL3 50.83 Mediator of macrophage recruitment [23]

CCL3 37.62 Macrophage recruitment [24]

IL1A 34.53 Associated with activated macrophages [13]

IL1B 27.81 Associated with activated macrophages [13]
Macrophage recruitment [25]

CLEC4E 13.73 Macrophage activation and differentiation [26]

2.7. Flow Cytometry

Cells were extracted from spleens by pressing them between two glass slides, and
blood was collected from the periorbital sinus. Red blood cells from all of the samples
were lysed using ACK buffer. The PBMCs were treated with Fc block (anti-CD16/CD32;
BD Biosciences (Mississauga, Ont., Canada), #553141) and surface stained antibodies for
FVS (BD Biosciences, #564406), CD19 (Fisher Scientific, #14-019-482), B220 (BD Biosciences,
#563894), CD4 (BD Biosciences, #561830), CD8 (BD Biosciences, #563046), CD11b (BD
Biosciences, #553311), Ly6C (BD Biosciences, #553104), Ly6G (BD Biosciences, #560602),
F4/80 (BD Biosciences, #743282), and S100A8/A9 (Novus Biologicals, #NBP2-47667AF700).
The LSRFortessa flow cytometer was used to run samples, and FACSDiva software (BD
Biosciences) was used for data acquisition. FlowJo software was used to analyze the flow
cytometry data.

2.8. Statistical Analysis

One-way analysis and t test were used to determine the statistical significance of the
differences in the means between groups. The log-rank (Mantel–Cox) test was used to
analyze the statistical significance between the groups in the Kaplan–Meier survival graphs.
All statistics were conducted using GraphPad Prism (La Jolla, CA, USA).

3. Results
3.1. FEC + oHSV-1 Improves Survival Outcomes

C57/Bl6 mice were implanted with E0771 tumors subcutaneously on the left flank and
were treated with either PBS, a combination of clinical chemotherapies (FEC; 5-fluorouracil,
epirubicin and cyclophosphamide), oncolytic HSV-1 (oHSV-1), or FEC + oHSV-1. While
neither therapy showed as much of an effect on tumor growth as the monotherapy approach
did, the mice treated with the dual combination of FEC + oHSV-1 had delayed tumor
progression and 10–20% durable responses to treatment (Figure 1). These data are consistent
with our previously published findings using this therapeutic combination [12].

3.2. FEC + oHSV-1 Upregulates Inflammatory Myeloid Cell Pathways

To validate previously published findings from RNA sequencing data, we performed
gene expression profiling using the microarray technique. C57/Bl6 mice were implanted with
E0771 cells subcutaneously on the left flank and were treated with either PBS (n = 5) or FEC +
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oHSV-1 (n = 10). Tumors were harvested on day 5, and RNA was extracted from the whole
tumor digests. The principal component analysis of the data shows that mice treated with
FEC + oHSV-1 cluster distinctly from those treated with PBS (Figure 2A). The pathway
enrichment analysis shows that FEC + oHSV-1 therapy switches the myeloid phenotype in
the tumor from that of an immunosuppressive nature to that of an inflammatory one. This
switch is characterized by STAT5 and STAT3 signaling with a strong inflammatory response
and the upregulation of genes associated with apoptosis. Gene-set enrichment analysis also
revealed a strong downregulation of MTORC1 signaling, a known driver of myeloid cell
differentiation to the immunosuppressive MDSC phenotype (Figure 2C) [27]. Asper our
previous publications, microarray analysis showed that FEC + oHSV-1 therapy increased
the genes associated with the B cell receptor signaling pathways. Of the top 100 genes from
the B cell signature gene list that we previously published [12], 64 overlapped with the
current dataset (Table S1).
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n = 9), oncolytic virus (oHSV-1, n = 9), or chemotherapy + oncolytic virus (FEC + oHSV-1, n = 14). * Created using BioRen-
der.com. (B) Tumor volumes were measured every 2–3 days from the start of treatment until mice reached tumor endpoint
(volume = 1000 mm3). Each line represents an individual mouse within the group. (C) Kaplan–Meier survival curves of
each group. * Mantel–Cox test was used for statistical analyses.
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Figure 2. FEC + oHSV-1 therapy upregulates many immune pathways and processes associated with myeloid cells in
subcutaneous E0771 tumors; C57/Bl6 mice bearing E0771 subcutaneous tumors were treated with either PBS or FEC + oHSV-
1. Tumors were harvested on day 5, and RNA was extracted from whole tumor digests and sent for Clariom analysis. (A) A
3-D cluster plot showing the RNA expression correlations between mice treated with PBS (blue; n = 5) and FEC + oHSV-1
(red; n = 10). (B) Volcano plot showing differentially expressed genes between tumors treated with FEC + oHSV-1 and PBS.
(C) Heat map showing the normalized expression values of genes across all samples. (D) Bar plot illustrating the results of
hallmark pathway enrichment analysis performed on samples from mice treated with FEC + oHSV-1 compared to those
treated with PBS alone.

Consistent with FEC + oHSV-1 therapy achieving durable responses in 10–20% of
treated mice (Figure 1C and [11]), the transcriptomic profiling of the FEC + oHSV-1-treated
mice shows that 80% of the mice clustered more similarly to the PBS-treated mice, with
20% of the mice having a distinct expression profile (Figure 2D). We speculate that the mice
with a distinct expression profile correspond to responders to therapy, though the causal
relationship cannot be shown, as different cohorts of mice were used for each experiment.
Further, to determine whether these results were biased by the subcutaneous nature of the
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tumors, orthotopic implantation was used to more closely mimic the true microenviron-
ment of breast tumors (Figure S1). Data are consistent between both implantation models,
but gene expression differences were more pronounced in the tumors derived from the
mammary fat pad.

Of the top upregulated genes (Figure 2B), many are associated with macrophages (LCN2,
CXCL2, SAA3, CXCL3, CCL3, IL1A, IL1B, CLEC4E), which are key myeloid-derived cells that
are known to play a primary role in epigenetic reprogramming [28–30]. To assess the clinical
impact of these findings, we assessed the prognostic significance of this macrophage gene
signature that was upregulated by FEC + oHSV-1 therapy (Table 1) in a combined cohort
of publicly available clinical microarray data [17]. The mean expression of this signature
above median was associated with better relapse-free survival (RFS) in TNBC-restricted
patient data (HR = 0.49 (0.3–0.82); logrank p value = 0.0051) (Figure 3A) and across all
breast cancer patients combined (HR = 1.73 (1.32–2.27); logrank p value < 0.01) (Figure 3B).
These findings suggest that the myeloid cell signature generated by FEC + oHSV-1 therapy
could have positive prognostic implications.
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Figure 3. Macrophage gene signature induced by FEC + oHSV-1 therapy correlates with improved clinical outcomes.
(A) Kaplan–Meier survival plot for TNBC patient RFS (n = 220) microarray data based on mean mRNA expression level of
the wight macrophage-associated genes in Table 1. (B) Kaplan–Meier survival plot for all BC patient RFS (n = 2032) and
microarray data based on mean mRNA expression level of the eight macrophage-associated genes in Table 1.

3.3. FEC + oHSV-1 Increases Inflammatory Myeloid Cells in the Peripheral Blood and Spleen

To assess the changes occurring in the immune cell populations as a result of
FEC + oHSV-1 therapy, we performed flow cytometry analysis (Figure 4). The mice
were treated with PBS, FEC, oHSV-1, or FEC + oHSV-1, and blood was collected 9 and
13 days after the start of treatment. While there were no significant changes in T cells, B
cells, or MDSCs, FEC + oHSV-1 therapy significantly increased the amount of circulating
inflammatory monocytes (CD11b+Ly6ChiLy6G- cells) and macrophages (F4/80+ cells) on
both days 9 and 13 (Figure 4).

While classical myelopoiesis occurs in the bone marrow, recent data suggest that the
spleen is a prominent site of extramedullary hematopoiesis (EMH) in cancer [31]. For
this reason, we decided to look into the spleen of tumor-bearing mice treated with PBS,
FEC, oHSV-1, or FEC + oHSV-1. Interestingly, while we found that the level of M1-like
macrophages did not change in the peripheral blood (Figure 5A) and that the overall
frequency of macrophages was not significantly changed across treatment groups in the
spleen, the macrophages isolated from the spleens of the mice treated with FEC + oHSV-1
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expressed iNOS, suggesting an M1-like phenotype (Figure 5B,C). This further supports the
role of FEC + oHSV-1 therapy in polarizing macrophages to an inflammatory phenotype.
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Figure 4. FEC + oHSV-1 therapy increases monocytes and macrophages in the peripheral blood. C57/Bl6 mice bearing
E0771 subcutaneous tumors were treated with either PBS (n = 5), FEC (n = 5), oHSV-1 (n = 5), or FEC + oHSV-1 (n = 10).
Blood was taken 9 and 13 days after the start of treatment and was analyzed via flow cytometry. (A) Representative flow
plots showing the gating strategy for each immune cell type. (B) Bar plots showing the frequencies of T cells (CD8+ and
CD4+), B cells (CD19+B220+), MDSCs (Ly6CintLy6Ghi), monocytes (Ly6ChiLy6G−), and macrophages (F4/80+) in circulating
PBMCs. Dots are representative of individual mice. Error bars are representative of the standard deviation. ANOVA test
was used for statistical analyses.
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3.4. FEC + oHSV-1 Therapeutic Efficacy Further Potentiated by Upregulation of S100A8/A9

We closely investigated the top upregulated genes in the transcriptomic profile of the
tumors from mice the treated with FEC + oHSV-1 therapy. Not only was the switch in the
myeloid phenotype driven by the genes associated with macrophages, but additionally, two
of the top upregulated genes were S100A8 and S100A9, which key players in myeloid cell
differentiation and modulation. While the exact mechanism of pro- and antitumorigenic
functions of S100A8/A9 remain elusive to date, studies have shown that this heterodimer
drives apoptotic pathways when found at high concentrations [32–35].

Mice bearing E0771 subcutaneous tumors were treated with PBS, FEC, oHSV-1, or
FEC + oHSV-1, and flow cytometry analysis was performed on the peripheral blood
6, 9, 10, 13, and 15 days after the start of treatment. FEC + oHSV-1 therapy increased
levels of S100A8/A9 in the peripheral blood (Figure 6A). Furthermore, the expression was
predominantly localized to the F4/80+ macrophages, peaking on day 10 Figure 6B,C and
Figure S2). Interestingly, when we looked at the expression of S100A8/A9 on the M1-like
macrophages (CD11b + F4/80 + iNOS + S100A8/A9 + cells), we saw an increase in this
population with FEC + oHSV-1 therapy (Figure 6D). These findings are in line with the
RNA transcriptome profile, further indicating the importance of macrophages in shifting
myeloid cell differentiation.

3.5. S100A8 and S100A9 Are Predictive of Response to FEC Therapy in Breast Cancer

To further assess the prognostic relevance of elevated levels of S100A8 and S100A9 in
breast cancer, we utilized a publicly available cohort of combined clinical microarray data
containing response rates to various therapies [18]. The evaluation of S100A8 and S100A9
mRNA expression (independently) in the patients treated with FEC therapy indicated
that both S100A8 and S100A9 were predictors of complete pathological response (S100A8:
AUC = 0.71, p < 0.0001; S100A9: AUC = 0.626, p = 0.0014) (Figure 7).
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AUC = 0.71, p < 0.0001; S100A9: AUC = 0.626, p = 0.0014). Response defined as complete pathological
response versus residual disease after completing therapy.
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4. Discussion

Immunotherapy has continued to cement itself as a pillar of cancer care, with widespread
clinical success in a variety of cancer types. However, responses to immunotherapy treat-
ments, and in particular ICB, vary greatly between patients, and the drivers of therapeutic
response have remained largely elusive to date. While myeloid cells have arisen as potent
regulators of tumor evolution, their plasticity and metabolic heterogeneity means that
they are heavily influenced by the TME and cellular populations that they come in contact
with [36]. The accumulation of MDSCs in breast tumors is largely driven by cytokine and
chemokine production and can influence the differentiation of TAMs to more suppressive
phenotypes [37]. Additionally, B cells are known to be drivers of myeloid cell differentiation
and key influencers of the cytokine and chemokine secretome in the TME [12,14,15]. While
we often talk about cells of the myeloid lineage as being static cell types, it is important
to remember that they are dynamic, plastic, and consistently undergoing differentiation.
One way in which we can characterize their functional state is by the proteins that they
express/secrete at a given time.

S100A8 and S100A9 are calcium-binding proteins that belong to the S100 family. They
often exist as a heterodimer and have minimal function in the homodimer state due to
instability [32]. This heterodimer is constitutively expressed by myeloid cells, which can
function as a calcium sensor, with roles in cytoskeletal rearrangement and metabolic path-
ways [32,38]. In response to inflammation and cellular stress, S100A8/A9 is released from
the cytoplasm and actively participates in the modulation of immune homeostasis by
stimulating leukocyte recruitment and by inducing cytokine secretion [32]. While these
proteins have been extensively studied across various disease types, their exact role in
inflammatory and malignant conditions continues to be controversial in the literature. In
particular, S100A8 and S100A9 have been described as having both pro- and antitumori-
genic functions [39,40].

We have previously reported a combination of FEC + oHSV-1 therapy as being capable
of sensitizing tumors to ICB. To further investigate this phenomenon, herein, we have
described the RNA profile of tumors treated with either FEC + oHSV-1 therapy or PBS and
the myeloid gene signature associated with our therapeutic platform. Notable from our
findings, FEC + oHSV-1 significantly downregulated MTORC1 signaling. Indeed, S100A9
has been shown to control the MTORC1 modulation of MDSCs [41–43]. Additionally,
recently published studies have also dictated that therapies that can successfully sensitize
breast tumors to ICB do so through the epigenetic reprogramming of myeloid cells in the
TME, shifting TAMs to an antitumor M1 phenotype and promoting the STAT3-mediated
suppression of myeloid cells [44]. These findings are in line with our analysis of cellular
populations in PBMCs.

While clinical studies have demonstrated the prognostic relevance of TILs in many
subtypes of breast cancer [45,46], TNBC patients are found to have more tumors with
intermediate or high levels of TILs than other non-TNBC subtypes of the disease [47].
Increased TILs are associated with a better response to therapy and improved overall
survival [46]. The correlative effects of TILs are limited not only to their density in the
TME but more notably on the phenotypic state of the infiltrates. In our model, we showed
that the level of macrophages and other myeloid-lineage cells may be consistent in terms
of the overall frequency, but their phenotype largely determines their functionality and
pro- or antitumorigenic functions. Specifically, the polarization of macrophages to an M1
phenotype drives inflammatory myeloid cells and antitumor immunity. Our data suggest
that this polarization occurs in the spleen, as the frequency of macrophages exhibiting
M1-like characteristics are uniform across all treatment groups when assessed in the blood
but rapidly undergo differentiation in the spleen.

These findings are in line with other studies assessing the regulation and importance
of myeloid cells in the TME. Takabe and colleagues have shown that TAMs play a crucial
role in breast cancer biology and that tumors bearing higher levels of M1 macrophages
had a more favorable tumor immune landscape [48]. Interestingly, Gabrilovich et al. have
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shown that the presence of S100A9-positive macrophages was predictive of a poor clinical
outcome in patients with head and neck cancer and of a poor response to ICB in patients
with metastatic melanoma [49]. These findings are contradictory to our own studies
and suggest that further analysis is required to determine if S100A8/A9 expression as a
predictor of therapeutic outcome is cancer-type dependent. Indeed, it may be plausible
that the expression levels of S100A8/A9 in our model were elevated as a response to
extended cellular damage, stress, and oncolysis in the TME from chemotherapy and
oncolytic virotherapy.

It is important to note a limitation of our RNA microarray analysis, as we used whole
tumor digests for RNA extraction. In the future, it will be interesting and important to
isolate myeloid cells from tumors and to perform RNA analysis on specific cell types
(or alternatively use single cell sequencing methods) to identify strong mechanistic links
and ensure that the gene signatures that we have extracted from our data can be directly
attributed to MDSCs and/or macrophages. Together, our findings combined with others in
the literature further highlight the complexity of the immunosuppressive mechanisms and
plasticity of myeloid cells within the TME, a phenomenon that warrants further analysis as
we aim to improve responses to immunotherapy treatments and to better understand their
mechanistic functions.
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18. Fekete, J.T.; Győrffy, B. ROCplot.org: Validating predictive biomarkers of chemotherapy/hormonal therapy/anti-HER2 therapy
using transcriptomic data of 3,104 breast cancer patients. Int. J. Cancer 2019, 145, 3140–3151. [CrossRef] [PubMed]

19. Guo, H.; Jin, D.; Chen, X. Lipocalin 2 is a regulator of macrophage polarization and NF-kB/STAT3 pathway activation. Mol.
Endocrinol. 2014, 28, 1616–1628. [CrossRef]

20. Patterson, D.C.; Ignatowicz, A.P.; Samuels, J.S.; Rayalam, S.; Shashidharamurthy, R. Lipocalin2, an innate immune protein,
modulates iNOS and arginase-1 in macrophages to promote the anti-inflammatory function. J. Immunol. 2017, 198, 206–216.

21. Sanada, Y.; Yamamoto, T.; Satake, R.; Yamashita, A.; Kanai, S.; Kato, N.; Van De Loo, F.A.; Nishimura, F.; Scherer, P.E.; Yanaka, N.
Serum Amyloid A3 Gene Expression in Adipocytes is an Indicator of the Interaction with Macrophages. Sci. Rep. 2016, 6, 38697.
[CrossRef] [PubMed]

22. Sun, L.; Zhou, H.; Zhu, Z.; Yan, Q.; Wang, L.; Liang, Q.; Ye, R.D. Ex Vivo and In Vitro Effect of Serum Amyloid A in the Induction
of Macrophage M2 Markers and Efferocytosis of Apoptotic Neutrophils. J. Immunol. 2015, 194, 4891–4900. [CrossRef]

23. Torraca, V.; Cui, C.; Boland, R.; Bebelman, J.-P.; van der Sar, A.; Smit, M.; Siderius, M.; Spaink, H.; Meijer, A. The CXCR3-CXCL11
signaling axis mediates macrophage recruitment and dissemination of mycobacterial infection. Co. Biol. 2015, 7, 253–269.
[CrossRef] [PubMed]

24. Gibaldi, D.; Vilar-Pereira, G.; Pereira, I.R.; Silva, A.A.; Barrios, L.C.; Ramos, I.P.; Mata dos Santos, H.A.; Gazzinelli, R.; Lannes-
Vieira, J. CCL3/Macrophage Inflammatory Protein-1α Is Dually Involved in Parasite Persistence and Induction of a TNF- and
IFNγ-Enriched Inflammatory Milieu in Trypanosoma cruzi-Induced Chronic Cardiomyopathy. Front. Immunol. 2020, 11, 306.
[CrossRef]

25. Rider, P.; Carmi, Y.; Guttman, O.; Braiman, A.; Cohen, I.; Voronov, E.; White, M.R.; Dinarello, C.A.; Apte, R.N. IL-1α and IL-1β
Recruit Different Myeloid Cells and Promote Different Stages of Sterile Inflammation. J. Immunol. 2011, 187, 4835–4843. [CrossRef]

26. Lv, L.L.; Tang, P.M.K.; Li, C.J.; You, Y.K.; Li, J.; Huang, X.R.; Ni, J.; Feng, M.; Liu, B.C.; Lan, H.Y. The pattern recognition receptor,
Mincle, is essential for maintaining the M1 macrophage phenotype in acute renal inflammation. Kidney Int. 2017, 91, 587–602.
[CrossRef]

27. Li, J.; Chen, J.; Zhang, M.; Zhang, C.; Wu, R.; Yang, T.; Qiu, Y.; Liu, J.; Zhu, T.; Zhang, Y.; et al. The mTOR Deficiency in Monocytic
Myeloid-Derived Suppressor Cells Protects Mouse Cardiac Allografts by Inducing Allograft Tolerance. Front. Immunol. 2021,
12, 995. [CrossRef]

http://doi.org/10.1016/j.it.2010.10.002
http://doi.org/10.1084/jem.20041419
http://doi.org/10.1007/s00262-016-1953-z
http://www.ncbi.nlm.nih.gov/pubmed/28108766
http://doi.org/10.1186/s12885-018-4441-3
http://doi.org/10.1007/s00262-008-0523-4
http://doi.org/10.1371/journal.pone.0127028
http://doi.org/10.1186/s13045-019-0760-3
http://doi.org/10.1038/s42003-021-02375-9
http://www.ncbi.nlm.nih.gov/pubmed/34253827
http://doi.org/10.3389/fimmu.2019.01084
http://doi.org/10.1002/eji.200940288
http://doi.org/10.1371/journal.pntd.0007674
http://doi.org/10.1128/JVI.76.14.7020-7029.2002
http://doi.org/10.1007/s10549-009-0674-9
http://www.ncbi.nlm.nih.gov/pubmed/20020197
http://doi.org/10.1002/ijc.32369
http://www.ncbi.nlm.nih.gov/pubmed/31020993
http://doi.org/10.1210/me.2014-1092
http://doi.org/10.1038/srep38697
http://www.ncbi.nlm.nih.gov/pubmed/27929048
http://doi.org/10.4049/jimmunol.1402164
http://doi.org/10.1242/dmm.017756
http://www.ncbi.nlm.nih.gov/pubmed/25573892
http://doi.org/10.3389/fimmu.2020.00306
http://doi.org/10.4049/jimmunol.1102048
http://doi.org/10.1016/j.kint.2016.10.020
http://doi.org/10.3389/fimmu.2021.661338


Cancers 2021, 13, 5590 14 of 14

28. Rodriguez, R.M.; Suarez-Alvarez, B.; Lopez-Larrea, C. Therapeutic Epigenetic Reprogramming of Trained Immunity in Myeloid
Cells. Trends Immunol. 2019, 40, 66–80. [CrossRef]

29. Chen, S.; Yang, J.; Wei, Y.; Wei, X. Epigenetic regulation of macrophages: From homeostasis maintenance to host defense. Cell.
Mol. Immunol. 2020, 17, 36–49. [CrossRef]

30. Álvarez-Errico, D.; Vento-Tormo, R.; Sieweke, M.; Ballestar, E. Epigenetic control of myeloid cell differentiation, identity and
function. Nat. Rev. Immunol. 2015, 15, 7–17. [CrossRef] [PubMed]

31. Wu, C.; Hua, Q.; Zheng, L. Generation of Myeloid Cells in Cancer: The Spleen Matters. Front. Immunol. 2020, 11, 1126. [CrossRef]
32. Wang, S.; Song, R.; Wang, Z.; Jing, Z.; Wang, S.; Ma, J. S100A8/A9 in inflammation. Front. Immunol. 2018, 9, 1298. [CrossRef]

[PubMed]
33. Ghavami, S.; Chitayat, S.; Hashemi, M.; Eshraghi, M.; Chazin, W.J.; Halayko, A.J.; Kerkhoff, C. S100A8/A9: A Janus-faced

molecule in cancer therapy and tumorgenesis. Eur. J. Pharmacol. 2009, 625, 73–83. [CrossRef] [PubMed]
34. Ghavami, S.; Rashedi, I.; Dattilo, B.M.; Eshraghi, M.; Chazin, W.J.; Hashemi, M.; Wesselborg, S.; Kerkhoff, C.; Los, M. S100A8/A9

at low concentration promotes tumor cell growth via RAGE ligation and MAP kinase-dependent pathway. J. Leukoc. Biol. 2008.
[CrossRef] [PubMed]

35. Turovskaya, O.; Foell, D.; Sinha, P.; Vogl, T.; Newlin, R.; Nayak, J.; Nguyen, M.; Olsson, A.; Nawroth, P.P.; Bierhaus, A.; et al.
RAGE, carboxylated glycans and S100A8/A9 play essential roles in colitis-associated carcinogenesis. Carcinogenesis 2008, 83,
1484–1492. [CrossRef]

36. Sieow, J.L.; Gun, S.Y.; Wong, S.C. The sweet surrender: How myeloid cell metabolic plasticity shapes the tumor microenvironment.
Front. Cell Dev. Biol. 2018, 6, 168. [CrossRef]

37. Cha, Y.J.; Koo, J.S. Role of Tumor-Associated Myeloid Cells in Breast Cancer. Cells 2020, 9, 1785. [CrossRef]
38. Goyette, J.; Geczy, C.L. Inflammation-associated S100 proteins: New mechanisms that regulate function. Amino Acids 2011, 41,

821–842. [CrossRef]
39. Bagheri, V.; Apostolopoulos, V. Pro-inflammatory S100A9 Protein: A Double-Edged Sword in Cancer? Inflammation 2019, 42,

1137–1138. [CrossRef] [PubMed]
40. Srikrishna, G. S100A8 and S100A9: New insights into their roles in malignancy. J. Innate Immun. 2011, 4, 31–40. [CrossRef]

[PubMed]
41. Trikha, P.; Carson, W.E. Signaling pathways involved in MDSC regulation. Biochim. Biophys. Acta—Rev. Cancer 2014, 1846, 55–65.

[CrossRef]
42. Zhong, X.; Xie, F.; Chen, L.; Liu, Z.; Wang, Q. S100A8 and S100A9 promote endothelial cell activation through the RAGE-mediated

mammalian target of rapamycin complex 2 pathway. Mol. Med. Rep. 2020, 22, 5293–5303. [CrossRef] [PubMed]
43. Ohata, H.; Shiokawa, D.; Obata, Y.; Sato, A.; Sakai, H.; Fukami, M.; Hara, W.; Taniguchi, H.; Ono, M.; Nakagama, H.; et al.

NOX1-Dependent mTORC1 Activation via S100A9 Oxidation in Cancer Stem-like Cells Leads to Colon Cancer Progression. Cell
Rep. 2019, 28, 1282–1295.e8. [CrossRef] [PubMed]

44. Sidiropoulos, D.N.; Rafie, C.; Christmas, B.J.; Davis-Marcisak, E.F.; Sharma, G.; Bigelow, E.; Gupta, A.; Yegnasubramanian, S.;
Stearns, V.; Connolly, R.M.; et al. Phenotypic shifts of tumor associated macrophages and STAT3 mediated suppression of myeloid
derived suppressor cells drive sensitization of HER2 + tumor immunity. bioRxiv 2021. [CrossRef]

45. Loi, S.; Sirtaine, N.; Piette, F.; Salgado, R.; Viale, G.; Van Eenoo, F.; Rouas, G.; Francis, P.; Crown, J.P.A.; Hitre, E.; et al. Prognostic
and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive
breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J. Clin.
Oncol. 2013, 31, 860–867. [CrossRef] [PubMed]

46. Adams, S.; Gray, R.J.; Demaria, S.; Goldstein, L.; Perez, E.A.; Shulman, L.N.; Martino, S.; Wang, M.; Jones, V.E.; Saphner, T.J.; et al.
Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant
breast cancer trials: ECOG 2197 and ECOG 1199. J. Clin. Oncol. 2014, 32, 2959. [CrossRef] [PubMed]

47. Denkert, C.; von Minckwitz, G.; Darb-Esfahani, S.; Lederer, B.; Heppner, B.I.; Weber, K.E.; Budczies, J.; Huober, J.; Klauschen, F.;
Furlanetto, J.; et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: A pooled analysis of
3771 patients treated with neoadjuvant therapy. Lancet Oncol. 2018, 19, 40–50. [CrossRef]

48. Oshi, M.; Tokumaru, Y.; Asaoka, M.; Yan, L.; Satyananda, V.; Matsuyama, R.; Matsuhashi, N.; Futamura, M.; Ishikawa, T.; Yoshida,
K.; et al. M1 Macrophage and M1/M2 ratio defined by transcriptomic signatures resemble only part of their conventional clinical
characteristics in breast cancer. Sci. Rep. 2020, 10, 16554. [CrossRef]

49. Kwak, T.; Wang, F.; Deng, H.; Condamine, T.; Kumar, V.; Perego, M.; Kossenkov, A.; Montaner, L.J.; Xu, X.; Xu, W.; et al. Distinct
Populations of Immune-Suppressive Macrophages Differentiate from Monocytic Myeloid-Derived Suppressor Cells in Cancer.
Cell Rep. 2020, 33, 108571. [CrossRef]

http://doi.org/10.1016/j.it.2018.11.006
http://doi.org/10.1038/s41423-019-0315-0
http://doi.org/10.1038/nri3777
http://www.ncbi.nlm.nih.gov/pubmed/25534619
http://doi.org/10.3389/fimmu.2020.01126
http://doi.org/10.3389/fimmu.2018.01298
http://www.ncbi.nlm.nih.gov/pubmed/29942307
http://doi.org/10.1016/j.ejphar.2009.08.044
http://www.ncbi.nlm.nih.gov/pubmed/19835859
http://doi.org/10.1189/jlb.0607397
http://www.ncbi.nlm.nih.gov/pubmed/18339893
http://doi.org/10.1093/carcin/bgn188
http://doi.org/10.3389/fcell.2018.00168
http://doi.org/10.3390/cells9081785
http://doi.org/10.1007/s00726-010-0528-0
http://doi.org/10.1007/s10753-019-00981-8
http://www.ncbi.nlm.nih.gov/pubmed/30949820
http://doi.org/10.1159/000330095
http://www.ncbi.nlm.nih.gov/pubmed/21912088
http://doi.org/10.1016/j.bbcan.2014.04.003
http://doi.org/10.3892/mmr.2020.11595
http://www.ncbi.nlm.nih.gov/pubmed/33174028
http://doi.org/10.1016/j.celrep.2019.06.085
http://www.ncbi.nlm.nih.gov/pubmed/31365870
http://doi.org/10.1101/2021.01.29.428708
http://doi.org/10.1200/JCO.2011.41.0902
http://www.ncbi.nlm.nih.gov/pubmed/23341518
http://doi.org/10.1200/JCO.2013.55.0491
http://www.ncbi.nlm.nih.gov/pubmed/25071121
http://doi.org/10.1016/S1470-2045(17)30904-X
http://doi.org/10.1038/s41598-020-73624-w
http://doi.org/10.1016/j.celrep.2020.108571

	Introduction 
	Materials and Methods 
	Cell Lines 
	Mouse Experiments 
	Chemotherapy Treatments 
	Oncolytic Virus Treatments 
	Survival Analysis: Kaplan–Meier and ROC Plots 
	Clariom S Assay 
	Flow Cytometry 
	Statistical Analysis 

	Results 
	FEC + oHSV-1 Improves Survival Outcomes 
	FEC + oHSV-1 Upregulates Inflammatory Myeloid Cell Pathways 
	FEC + oHSV-1 Increases Inflammatory Myeloid Cells in the Peripheral Blood and Spleen 
	FEC + oHSV-1 Therapeutic Efficacy Further Potentiated by Upregulation of S100A8/A9 
	S100A8 and S100A9 Are Predictive of Response to FEC Therapy in Breast Cancer 

	Discussion 
	References

